JPH0216497A - Electric melting furnace for solidifying radioactive waste utilizing magnetic field and melting method - Google Patents

Electric melting furnace for solidifying radioactive waste utilizing magnetic field and melting method

Info

Publication number
JPH0216497A
JPH0216497A JP16647888A JP16647888A JPH0216497A JP H0216497 A JPH0216497 A JP H0216497A JP 16647888 A JP16647888 A JP 16647888A JP 16647888 A JP16647888 A JP 16647888A JP H0216497 A JPH0216497 A JP H0216497A
Authority
JP
Japan
Prior art keywords
furnace
magnetic field
molten glass
melting furnace
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16647888A
Other languages
Japanese (ja)
Other versions
JPH07104436B2 (en
Inventor
Hiroshi Igarashi
寛 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63166478A priority Critical patent/JPH07104436B2/en
Publication of JPH0216497A publication Critical patent/JPH0216497A/en
Publication of JPH07104436B2 publication Critical patent/JPH07104436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a glass melting furnace small in size and light in weight, to increase glass melting sped and to prevent the sedimentation of a furnace bottom sediment by attaching plural electrodes for allowing an AC current to be applied to molten glass and plural magnetic poles for generating an alternating magnetic field to the glass melting furnace. CONSTITUTION:Electrodes 2, 3 are inserted into one pair of opposed side walls of a melting furnace, connected electrically to a secondary winding side of a transformer 4, and molten glass 8 is conducted electrically by an AC current and heated, also, magnetic poles 5, 6 are inserted into the other pair of side walls, and by a magnetic pole excitation winding 7 connected electrically to a primary winding side of the transformer 4, an alternating magnetic field for intersecting with a current for flowing in the molten glass 8 is generated. In such a way, by an interaction of these current and magnetic field, the molten glass is allowed to generate force of the same direction hourly, the heat transfer quantity to a raw material layer from the molten glass is increased and the melting capacity is improved, the melting furnace can be made small in size and light in weight, and also, the setting and sedimentation to the furnace bottom of a furnace bottom sediment can be suppressed and prevented.

Description

【発明の詳細な説明】 〈従来の技術〉 放射性物質の再処理工場から発生する高放射性廃棄物を
より安全に輸送・貯蔵及び処分するための固化形態とし
てガラス固化体がある。高放射性廃棄物とガラス原料(
以後両者を含めて単に原料と言う)を溶融炉内に供給す
ると、原料は溶融炉の溶融ガラス表面を覆うような状態
になり、溶融ガラスからの熱移動により、廃棄物中の水
分の蒸発、仮焼、ガラス化反応が連続的におこり、既に
存在する溶融ガラスと混ざり合って均質なガラスとなる
。溶融ガラスを高温に保持するために必要なエネルギー
は、溶融ガラス中に対向して配置した少なくとも一対の
電極間に電流を流し、その間に存在する′/B融ガラス
をジュール発熱させることにより供給される。
[Detailed Description of the Invention] <Prior Art> Vitrification is a solidified form for safer transportation, storage, and disposal of highly radioactive waste generated from radioactive material reprocessing plants. Highly radioactive waste and glass raw materials (
When the raw materials (hereinafter simply referred to as raw materials) are fed into the melting furnace, the raw materials cover the surface of the molten glass in the melting furnace, and heat transfer from the molten glass causes evaporation of water in the waste. Calcining and vitrification reactions occur continuously, and the glass mixes with the already existing molten glass to form a homogeneous glass. The energy necessary to maintain the molten glass at a high temperature is supplied by passing an electric current between at least a pair of electrodes placed oppositely in the molten glass and generating Joule heat in the '/B molten glass existing between them. Ru.

溶融されたガラスは連続的にまたは間歇的にキャニスタ
と呼ばれる金属容器に注入され、そのキャニスタは貯蔵
施設内で貯蔵され、最終的には深地層中に埋設する等の
方法により処分されることが計画されている。
The molten glass is poured continuously or intermittently into a metal container called a canister, which is stored in a storage facility and eventually disposed of by burying it in deep underground or other methods. It is planned.

〈発明が解決しようとする課題〉 この種の溶融炉は、運転員の放射線被爆量低減のためセ
ルと呼ばれる放射線遮蔽を施された空間に配置され、遠
隔操作により運転、保守及び交換がなされるものである
から、可及的小型化、軽量化して、溶融炉が寿命に達し
た後の二次廃棄物量もできるだけ少なくしたいという要
請がある。ところが上述したように、原料は主として溶
融ガラス表面からの熱移動により加熱溶融されるので、
溶融炉の処理能力を増加させようとすると溶融ガラスの
上面の面積(以下溶融表面積という)を大きくする必要
があり、これに伴って溶融炉が大型化し、溶融炉が寿命
に達した後の二次廃棄物量も増加することになった。
<Problem to be solved by the invention> This type of melting furnace is placed in a radiation-shielded space called a cell to reduce radiation exposure of operators, and is operated, maintained, and replaced by remote control. Therefore, there is a desire to make the melting furnace as small and lightweight as possible, and to reduce the amount of secondary waste as much as possible after the melting furnace reaches the end of its life. However, as mentioned above, the raw materials are heated and melted mainly by heat transfer from the molten glass surface.
In order to increase the processing capacity of a melting furnace, it is necessary to increase the area of the top surface of the molten glass (hereinafter referred to as the melting surface area). The amount of waste generated also increased.

また、高放射性廃棄物に含まれているRu、Pd、Rh
等の白金族元素はガラスに難溶性で、比重が大きいため
、溶融炉の炉底に沈降堆積する。Pd、Rhはガラス中
では還元されて電気の良導体である金属として存在し、
Ruは金属又はRuO2結晶として存在するが、RuO
2は酸化物ではあっても電子部品用の導電性ペースト等
に用いられているように電気の良導体である。このよう
な良導電性物質が高濃度に炉底に堆積すると、炉底近傍
のガラスの高温固有抵抗値は上部のガラスに比べて小さ
くなり(白金族元素を高濃度に含む炉底近傍のガラスを
、以後、炉底堆積物という)、電極間に流す電流が炉底
に集中して炉底の温度が異常に上昇し、逆に溶融が表面
のガラス温度が下がって原料溶融能力を低下させること
になった。
In addition, Ru, Pd, Rh contained in highly radioactive waste
Since platinum group elements such as glass are poorly soluble in glass and have a high specific gravity, they settle and accumulate at the bottom of the melting furnace. Pd and Rh are reduced in glass and exist as metals that are good conductors of electricity.
Ru exists as a metal or RuO2 crystal, but RuO
Although 2 is an oxide, it is a good conductor of electricity, as it is used in conductive pastes for electronic parts. When such highly conductive substances are deposited at the bottom of the furnace in a high concentration, the high-temperature resistivity of the glass near the bottom becomes smaller than that of the glass at the top (glass near the bottom containing a high concentration of platinum group elements). (hereinafter referred to as furnace bottom deposits), the current flowing between the electrodes concentrates on the furnace bottom, causing the temperature at the furnace bottom to rise abnormally, and conversely, the melting temperature of the glass on the surface decreases, reducing the raw material melting ability. is what happened.

更にまた、?8融炉の底面をほぼ水平とするときには、
炉底に堆積した白金族元素はガラスをキャニスタに流下
してら流動せず、益々炉底に累積して遂には運転ができ
なくさせた。このような不都合をなくすには、炉底に3
0°〜70°の勾配を設けることで炉底に取り付けたガ
ラス流出口から連続的又は間歇的にガラスを炉底堆積物
と共に抜き出し可能となし、炉底と電極との距離を一対
の電極間距離の約1/2以上とする必要があったが、し
かし、このようにすると溶融炉が深くなり、炉底近傍の
ガラスの温度低下を招いた。
Yet again? 8. When making the bottom of the melting furnace almost horizontal,
The platinum group elements deposited at the bottom of the furnace did not flow after the glass was poured into the canister, and accumulated further at the bottom of the furnace, eventually making operation impossible. To eliminate this inconvenience, place 3 at the bottom of the hearth.
By providing an inclination of 0° to 70°, glass can be extracted continuously or intermittently from the glass outlet attached to the furnace bottom along with the furnace bottom deposits, and the distance between the furnace bottom and the electrodes can be adjusted to the distance between the pair of electrodes. It was necessary to set the distance to about 1/2 or more, but this made the melting furnace deep and caused a drop in the temperature of the glass near the bottom of the furnace.

本発明はガラス溶融炉の小型軽量化、ガラス溶融速度の
増大、炉底堆積物の堆積防止といった課題を解決するこ
とを、その目的としている。
The object of the present invention is to solve the problems of reducing the size and weight of a glass melting furnace, increasing the glass melting rate, and preventing the accumulation of deposits on the bottom of the furnace.

く課題を解決するための手段〉 本発明の磁場を利用した放射性廃棄物固化用電気溶融炉
は、ガラス溶融炉に、該ガラス溶融炉内の溶融ガラスに
交流電流を通じる複数の電極と交番磁界を発生させる複
数のFj&極を取付け、これらの電流と磁界との相互作
用により該溶融ガラスに時間的に同じ向きの力を生じさ
せることによって、上記の目的を達成したものである。
Means for Solving the Problems> The electric melting furnace for solidifying radioactive waste using a magnetic field of the present invention includes a glass melting furnace, a plurality of electrodes for passing an alternating current to the molten glass in the glass melting furnace, and an alternating magnetic field. The above object is achieved by attaching a plurality of Fj & poles that generate , and generating forces in the same direction over time on the molten glass through the interaction of these currents and magnetic fields.

磁極は、溶融炉の炉壁を貫通させて溶融ガラスと接触し
ても、或いは炉壁の内部に設置して溶融ガラスと接触し
なくもでき、磁極に交番磁界を発生させるための励磁巻
線は、常電導性を示す材料を使用しても、或いは超電導
性を示す材料を用いて超電導性を示す条件下で使用して
もよい、また磁極は、平坦な炉底を有する溶融炉ではそ
の平坦な炉底近傍に配設し、勾配を付した炉底を有する
溶融炉ではその勾配を付した炉底の近傍に補助電極と共
に配設される。
The magnetic pole can penetrate the furnace wall of the melting furnace and come into contact with the molten glass, or it can be installed inside the furnace wall and not come into contact with the molten glass, and the magnetic pole has an excitation winding for generating an alternating magnetic field. The magnetic poles may be used under superconducting conditions using materials that exhibit normal conductivity or materials that exhibit superconductivity. In a melting furnace having a sloped furnace bottom, it is installed near a flat furnace bottom, and an auxiliary electrode is installed near the sloped furnace bottom.

また、本発明の方法は、ガラス溶融炉に設けられた複数
の電極間で溶融ガラスに交流電流を通じると共に複数の
81極間により交番磁界を発生させ、これらの電流と磁
界との相互作用により溶融ガラスに時間的に同じ向きの
力を生じさせて該溶融ガラスを流動せしめ、これによっ
て該溶融ガラスから溶融表面に存在する未溶融原料への
伝熱を促進することや、溶融炉炉底に沈降し易い物質の
炉底への沈降蓄積を抑制防止することが可能となる。
Further, the method of the present invention involves passing an alternating current through the molten glass between a plurality of electrodes provided in a glass melting furnace, and generating an alternating magnetic field between a plurality of 81 poles, and by the interaction between these currents and the magnetic field. A force in the same direction over time is generated in the molten glass to cause the molten glass to flow, thereby promoting heat transfer from the molten glass to the unmelted raw material present on the molten surface, or to the bottom of the melting furnace. It becomes possible to suppress and prevent sedimentation and accumulation of substances that tend to settle to the bottom of the furnace.

く作 用〉 加熱用の直接通電電流と磁場との相互作用によってフレ
ミングの左手の法則により溶融炉内の溶融ガラスの流動
を促進する力を生じさせる。
Effect> The interaction between the direct current for heating and the magnetic field creates a force that promotes the flow of molten glass in the melting furnace according to Fleming's left hand rule.

この力によって、溶融ガラスから溶融表面上の原料層へ
の伝熱量の増加、溶融能力の向上を図ること、炉底堆積
物の沈降堆積の抑制防止することが可能となる。
This force makes it possible to increase the amount of heat transferred from the molten glass to the raw material layer on the molten surface, improve the melting ability, and suppress and prevent sedimentation and accumulation of furnace bottom deposits.

〈実施例〉 第1図は、電気溶融炉1の槽内に磁場をかけた場合の基
本構造を示しならのである。溶融炉1の向かい合う1組
の側壁には電極2.3が挿入され、電極2.3は変圧器
4の二次巻線側と電気的に接続することによって、溶融
ガラス8(図中、−点鎖線は溶融ガラス液面位置を示す
)に交流電流を通電し、この電流により溶融ガラス8を
発熱させる。また、溶融炉1の向かい合う他の1#fl
の側壁には磁極5.6が挿入され、磁極ら、6は変圧器
4の一次巻線側と電気的に接続するa補動磁巻線7によ
って上記溶融ガラス8中を流れる電流と交叉する交番磁
界を発生させる。磁界の磁束密度をB、流体中の電流密
度をJとしたとき、流体の単位体積当たりに発生する電
磁力Fは、フレミングの左手の法則により下式で表すこ
とができる。
<Example> FIG. 1 shows the basic structure when a magnetic field is applied to the tank of an electric melting furnace 1. Electrodes 2.3 are inserted into a pair of opposing side walls of the melting furnace 1, and the electrodes 2.3 are electrically connected to the secondary winding side of the transformer 4, so that the molten glass 8 (- An alternating current is applied to the molten glass (the dotted chain line indicates the position of the molten glass liquid level), and the molten glass 8 is caused to generate heat by this current. In addition, the other 1#fl facing the melting furnace 1
A magnetic pole 5.6 is inserted into the side wall of the molten glass 8, and the magnetic pole 6 intersects the current flowing through the molten glass 8 by the auxiliary magnetic winding 7, which is electrically connected to the primary winding side of the transformer 4. Generates an alternating magnetic field. When the magnetic flux density of the magnetic field is B and the current density in the fluid is J, the electromagnetic force F generated per unit volume of the fluid can be expressed by the following equation using Fleming's left-hand rule.

F=JxB 但し、F、J、及びBはベクトル量とする。F=JxB However, F, J, and B are vector quantities.

通電電流と磁界は時間的にその大きさと方向が変化する
が、発生する力Fの方−Nま変化しない、このため一方
向の力が溶融ガラス8に生じ、溶融炉1内に強制的に対
流が引き起こされる。
Although the magnitude and direction of the current flowing and the magnetic field change over time, the generated force F does not change by -N. Therefore, a force in one direction is generated in the molten glass 8 and is forced into the melting furnace 1. Convection is caused.

本発明は、このように電流を通じた溶融ガラス8を磁界
中におき、溶融ガラス8自身に発生する力により溶融炉
1内の溶融ガラス8に対流の駆動力を生じさせるという
基本構想に立脚するものである。
The present invention is based on the basic concept of placing the molten glass 8 through which an electric current is passed in a magnetic field, and generating a convection driving force in the molten glass 8 in the melting furnace 1 by the force generated in the molten glass 8 itself. It is something.

磁極励磁用巻線7には常電導物質製のほか、超電導物質
を利用して、超電導性を示す条件で使用するようにして
もよい。
In addition to being made of a normal conductive material, the magnetic pole excitation winding 7 may be made of a superconducting material and used under conditions that exhibit superconductivity.

溶融炉1内における溶融ガラス8が電極2.3間に通じ
た電流により加熱されてたとき、第2図の矢印で示すよ
うな自然対流が生じる。溶融ガラス8で発生する熱は、
対流熱伝達及び輻射により溶融ガラス8から溶融表面に
存在する原料層9に移動し、主にこの熟ff1Qによっ
て溶融炉1に供給されるガラス原料9aと放射性廃棄物
9bは溶融されることについては既に述べた通りである
。一般に溶融炉1を構成する耐火物は通常複層構造であ
るが、図示するを省略している。
When the molten glass 8 in the melting furnace 1 is being heated by the current passed between the electrodes 2.3, natural convection occurs as shown by the arrows in FIG. The heat generated in the molten glass 8 is
The glass raw material 9a and radioactive waste 9b that are transferred from the molten glass 8 to the raw material layer 9 existing on the melting surface by convection heat transfer and radiation, and are mainly supplied to the melting furnace 1 by this ripening ff1Q are melted. As already stated. In general, the refractories constituting the melting furnace 1 usually have a multilayer structure, but are not shown in the figure.

磁極5.6は、第3図(a)に示すように、溶融炉1側
壁を貫通して溶融ガラス8と接触するように槽内に挿入
してもよいし、第3図(b)に示すように、充分な透磁
率を有する耐火物で溶融炉1を楕成し、その耐火物の内
部に磁1if15.6を設置して、溶融ガラス8と接触
しないようにすることらできる。
The magnetic pole 5.6 may be inserted into the tank so as to penetrate the side wall of the melting furnace 1 and come into contact with the molten glass 8, as shown in FIG. As shown, the melting furnace 1 can be made of a refractory having sufficient magnetic permeability in an oval shape, and the magnet 1if15.6 can be installed inside the refractory so that it does not come into contact with the molten glass 8.

第3図fa)と第3図(b)は、また、磁束Bと電流J
がほぼ直行するように配置されることを示し、第4図は
その縦断面を示している。この例では、磁束Bと電流J
の向きを決めるに当たって、第2図に示した溶融ガラス
8の対流の向きとほぼ一致するように、磁束Bと電流J
との相互作用によって溶融ガラス8に生じる力Fの向き
を下向きとしている。第5図は、この場合の、溶融ガラ
スの促進された対流を模式的に示している。対流の促進
により溶融ガラス8から原料層への熱伝達量が増加し、
全体としての熱の移動量Q′は磁場をかけない場合の熱
の移動JiQに比べ、同じ伝熱面積では大きくなる。つ
まり同じ溶融表面積で比較すれば、前者は後者に比べ原
料の溶融速度が大きくなり、同じ溶融速度で比較すれば
溶融表面積がより小さくて済む、この故、直接通電溶融
炉に磁場をかけることで溶融炉の小型軽量化が達成でき
るのである。
Figure 3fa) and Figure 3(b) also show the magnetic flux B and current J
FIG. 4 shows a longitudinal section thereof. In this example, magnetic flux B and current J
When determining the direction of
The force F generated on the molten glass 8 by the interaction with the molten glass 8 is directed downward. FIG. 5 schematically shows the accelerated convection of the molten glass in this case. By promoting convection, the amount of heat transferred from the molten glass 8 to the raw material layer increases,
The overall heat transfer amount Q' is larger than the heat transfer JiQ when no magnetic field is applied for the same heat transfer area. In other words, when comparing at the same melting surface area, the former has a higher melting speed of the raw material than the latter, and when comparing at the same melting speed, the melting surface area is smaller. Therefore, by directly applying a magnetic field to the energized melting furnace, This makes it possible to make the melting furnace smaller and lighter.

以上は主に溶融ガラス8の対流促進によって溶融速度を
増大さぜるという見地から述べたが、つぎには炉底堆積
¥lA10の沈降堆積の抑制という見地から説明する。
The above has been described mainly from the viewpoint of increasing the melting rate by promoting the convection of the molten glass 8, but next, it will be explained from the viewpoint of suppressing sedimentation of the furnace bottom deposit \lA10.

第6図は、平らな炉底部に炉底H1積物10が堆積した
様子を示している。記述の如く炉底堆積物10は溶融ガ
ラス8より比抵抗が小さいから、電@5.6間に通電す
ると、その電流は、炉底堆積物10が堆積していない場
合に比べて、より槽底部に集中する傾向を示す。
FIG. 6 shows how the furnace bottom H1 stack 10 is deposited on the flat furnace bottom. As mentioned above, the furnace bottom deposits 10 have a lower resistivity than the molten glass 8, so when electricity is passed between the electric currents 5 and 6, the current flows through the tank more than when the furnace bottom deposits 10 are not deposited. It shows a tendency to concentrate at the bottom.

符号11の凹状の矢印は、このことを意味したが底堆積
物10を流れる代表的な電流線である。
The concave arrow 11 signifies this and is a typical current line flowing through the bottom sediment 10.

第7図と第8図において、溶融炉1は平坦な炉底構造を
なし、磁極5.6は磁束が電流にほぼ直交し、かつ炉底
近傍の深さに磁束密度Bが最も高くなるように配置され
、電流密度Jと磁束密度Bの向きは電磁力Fが上向きに
なるように組み合わされている。第9図は、上記の上向
きの力により、炉底堆積物10が上方に移動され、その
とき溶融ガラス8にも上向きの力が働いて上向きに移動
しようとするので、堆積物10の上向きの移動はさらに
容易になることを示している。このようにして電流と磁
束との相互作用により炉底堆積物10の炉底への沈降及
び堆積は抑制又は防止され、溶融ガラス8中には炉底堆
積物10が含まれていても炉底堆積物10の炉底への堆
積を抑制又は防止し、炉底堆積物10への電流集中を生
じることなく、円滑に溶融炉1を運転することができる
。炉底を平坦にすれば、炉底に傾斜をつける構造に比べ
て、溶融炉1の構造がより単純になるだけでなく、炉の
深さをより浅くし、溶融炉1を小型軽量化することがで
きること、いうまでもない。
In FIGS. 7 and 8, the melting furnace 1 has a flat bottom structure, and the magnetic poles 5.6 are arranged so that the magnetic flux is almost orthogonal to the current and the magnetic flux density B is highest at a depth near the bottom of the furnace. The directions of current density J and magnetic flux density B are combined so that electromagnetic force F is directed upward. FIG. 9 shows that the furnace bottom deposit 10 is moved upward by the above-mentioned upward force, and at that time, the molten glass 8 is also exerted with an upward force and tends to move upward, so that the upward movement of the deposit 10 is This means that movement will become easier. In this way, the interaction between the current and the magnetic flux suppresses or prevents the settling and accumulation of the furnace bottom deposits 10 on the furnace bottom, and even if the furnace bottom deposits 10 are included in the molten glass 8, It is possible to suppress or prevent the deposits 10 from accumulating on the furnace bottom, and to smoothly operate the melting furnace 1 without causing current concentration on the furnace bottom deposits 10. Making the furnace bottom flat not only makes the structure of the melting furnace 1 simpler than a structure in which the furnace bottom is sloped, but also makes the depth of the furnace shallower, making the melting furnace 1 smaller and lighter. Needless to say, it can be done.

第10図と第11図の実施例は、炉底のガラス流出口に
向かって炉底に勾配をつけた実施例を示している。溶融
炉が深くなると、炉底近傍の溶融ガラス8の温度が低下
し易くなるから、炉底付近の溶融ガラス8を通電加熱す
るための一対の補助Z @ 2 a、3aが炉底付近に
設けている。更にこの補助電極2a、3a間で通電する
電流とほぼ直行する磁束が得られるように磁極5.6が
配置されている。電流と磁束の向きは、炉底付近の溶融
ガラス8及び炉底堆積物10に上向きの力が作用するよ
うに決められている。もし磁界がないとすると、溶融ガ
ラス8をガラス流出口12のフリーズバルブ(図示せず
)により定期的に抜き出すまでの間に、炉底堆積物10
が徐々に炉底に蓄積して補助il:極2a、 38間抵
抗を小とするから、炉底付近の溶融ガラス8を昇温する
のに電極2,3にはより電流を多く流す必要が生じ、ひ
いては電極2.3の侵食抑制のために電流のTh極表面
密度を一定値以下にする目的から電極2.3を大型化し
て必要な表面積を確保せざるを得なくなる。しかし磁界
をかけると、炉底堆積物を上方に流動させるようにする
ことができ、補助電極2a、 3a間抵抗の低下は抑制
され、結果的に電極2.3の大型化を避けることができ
る。
The embodiments shown in FIGS. 10 and 11 show embodiments in which the furnace bottom is sloped toward the glass outlet in the furnace bottom. As the melting furnace becomes deeper, the temperature of the molten glass 8 near the bottom of the furnace tends to drop, so a pair of auxiliary supports Z @ 2 a, 3 a are provided near the bottom of the furnace to heat the molten glass 8 near the bottom of the furnace. ing. Furthermore, the magnetic poles 5.6 are arranged so as to obtain a magnetic flux that is substantially perpendicular to the current flowing between the auxiliary electrodes 2a, 3a. The directions of the current and magnetic flux are determined so that an upward force acts on the molten glass 8 and the furnace bottom deposits 10 near the furnace bottom. If there were no magnetic field, the furnace bottom deposits 10 would accumulate until the molten glass 8 was periodically withdrawn by a freeze valve (not shown) at the glass outlet 12.
gradually accumulates at the bottom of the furnace and reduces the resistance between the auxiliary electrodes 2a and 38, so it is necessary to flow more current through the electrodes 2 and 3 to raise the temperature of the molten glass 8 near the bottom of the furnace. In order to suppress the erosion of the electrode 2.3 and to reduce the current Th electrode surface density to a certain value or less, the electrode 2.3 must be enlarged to secure the necessary surface area. However, by applying a magnetic field, the bottom deposits can be made to flow upwards, and the decrease in resistance between the auxiliary electrodes 2a and 3a can be suppressed, and as a result, it is possible to avoid increasing the size of the electrodes 2.3. .

また、勾配をつけた炉底に磁極5.6を配設したこの実
施例では、溶融炉1の炉底を平坦にした場合に比べると
、磁極5.6は小さくてよく、必要な磁束も少なくて済
むことになる。
In addition, in this embodiment in which the magnetic pole 5.6 is arranged on the sloped bottom of the furnace, the magnetic pole 5.6 can be smaller than in the case where the bottom of the melting furnace 1 is flat, and the required magnetic flux is also reduced. You'll end up needing less.

〈発明の効果〉 本発明によれば、加熱用の直接通Th電流と磁場との相
互作用によって溶融炉内の溶融ガラスに流動を促進する
力を生ぜしめるようにしたから、溶融ガラスから溶融表
面上の原料層への伝熱量が増加し、溶融能力を向上させ
ることができ、同じ溶融能力では溶融炉を小型、軽量化
して、溶融炉が寿命に達したときの二次廃棄物量を減ら
すことができる。また、上記した槽内流動の促進で、溶
融炉の炉底を平坦な1rI4造としながら、炉底堆′F
r!物の炉底への沈降、堆積を抑制防止できるようにな
る。
<Effects of the Invention> According to the present invention, a force that promotes flow is generated in the molten glass in the melting furnace by the interaction between the direct heating Th current and the magnetic field. The amount of heat transferred to the upper raw material layer increases, which can improve the melting capacity, and with the same melting capacity, the melting furnace can be made smaller and lighter, reducing the amount of secondary waste when the melting furnace reaches the end of its life. I can do it. In addition, by promoting the flow in the tank described above, the bottom of the melting furnace is made of a flat 1rI4 structure, and the bottom of the furnace is
r! It becomes possible to suppress and prevent materials from settling and accumulating on the bottom of the furnace.

更に炉底に勾配を有する溶融炉とした場合にあっては、
炉底堆積物の沈降、堆積を抑制防止することにより、炉
底近傍の溶融ガラスを直接通電加熱するだめの補助電極
の寸法を小さくすることができる。
Furthermore, in the case of a melting furnace with a slope at the bottom,
By suppressing and preventing sedimentation and accumulation of the furnace bottom deposits, it is possible to reduce the size of the auxiliary electrode that directly heats the molten glass in the vicinity of the furnace bottom.

その他、励磁巻線に超伝導物質を利用し、超伝導性を示
す条件で電流を通じれば、磁極に生じる磁束密度をより
大きくでき、溶融ガラスに生じる流動をより促進できる
し、その耐火物の内部に磁極を設置して、溶融ガラス8
と接触しないようにすると、溶融ガラス8との接触によ
る磁極5.6の腐蝕を減少できる。
In addition, if a superconducting material is used in the excitation winding and current is passed under conditions that exhibit superconductivity, the magnetic flux density generated in the magnetic poles can be increased, and the flow generated in the molten glass can be further promoted. By installing magnetic poles inside, the molten glass 8
By avoiding contact with the molten glass 8, corrosion of the magnetic pole 5.6 due to contact with the molten glass 8 can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる磁場を利用した放射性廃棄物固化
用電気溶融炉の基本構造を示した説明図、第2図は電極
間に通じた電流により加熱されてたときの主な流れの様
子を模式的に示した説明図、第3図(a)と第3図(b
)はF!i極の配役の仕方並びに磁界の磁束密度B、流
体中の電流密度J、流体の単位体積当たりに発生する電
磁力Fとの関係を示す説明図、第4図は第3図(b)の
11断面図、第5図は第4図の場合における溶融ガラス
の対流を模式的に示す説明図、第6図は炉底が平らな場
合の炉底H1積物と、その炉底堆積物を流れる代表的な
電流線を示す説明図、第7図と第8図は炉底堆積物を上
方に移動させる場合の磁界の磁束密度B、流体中の電流
密度J、流体の単位体積当たりに発生ずる電磁力Fとの
関係を示す説明図、第9図は第8図の場合における炉底
堆積物が上方に移動される状態を示す説明図、第10図
と第11図は炉底に設けたガラス流出口に向かって炉底
に勾配をつけなときの実施例のv1断面図と線断面図で
ある。 1・・・ガラス7g融炉、2.3・・・電極、2a、3
a・・・補助電極、4・・・変圧器、5.6・・・磁極
、7・・・磁極励磁巻線、8・・・溶融ガラス、9・・
・原料層、9a・・・高放射性廃棄物、9b・・・ガラ
ス原料、10・・・炉底堆積物、11・・・炉底堆積物
を流れる代表的な電流線、12・・・ガラス流出口。
Figure 1 is an explanatory diagram showing the basic structure of the electric melting furnace for solidifying radioactive waste using a magnetic field according to the present invention, and Figure 2 shows the main flow when heated by the current passed between the electrodes. Explanatory diagrams schematically showing the situation, Figures 3(a) and 3(b)
) is F! Figure 4 is an explanatory diagram showing how the i-poles are arranged and the relationship between the magnetic flux density B of the magnetic field, the current density J in the fluid, and the electromagnetic force F generated per unit volume of the fluid. 11 is a sectional view, and FIG. 5 is an explanatory diagram schematically showing the convection of molten glass in the case of FIG. 4. FIG. Figures 7 and 8 are explanatory diagrams showing typical flowing current lines, and show the magnetic flux density B of the magnetic field when moving the bottom deposits upward, the current density J in the fluid, and the power generated per unit volume of fluid. An explanatory diagram showing the relationship with the generated electromagnetic force F, Figure 9 is an explanatory diagram showing the state in which the furnace bottom deposits are moved upward in the case of Figure 8, and Figures 10 and 11 are FIG. 4 is a v1 cross-sectional view and a line cross-sectional view of an embodiment in which the furnace bottom is not sloped toward the glass outlet. 1... Glass 7g melting furnace, 2.3... Electrode, 2a, 3
a... Auxiliary electrode, 4... Transformer, 5.6... Magnetic pole, 7... Magnetic pole excitation winding, 8... Molten glass, 9...
- Raw material layer, 9a... Highly radioactive waste, 9b... Glass raw material, 10... Furnace bottom deposit, 11... Typical current line flowing through the furnace bottom deposit, 12... Glass Outlet.

Claims (1)

【特許請求の範囲】 1、ガラス溶融炉に、該ガラス溶融炉内の溶融ガラスに
交流電流を通じる複数の電極と交番磁界を発生させる複
数の磁極を取付け、これらの電流と磁界との相互作用に
より該溶融ガラスに時間的に同じ向きの力を生じさせる
ことを特徴とする磁場を利用した放射性廃棄物固化用電
気溶融炉。 2、磁極は溶融炉の炉壁を貫通させて溶融ガラスと接触
するか又は炉壁の内部に設置して溶融ガラスと接触しな
くした請求項1の磁場を利用した放射性廃棄物固化用電
気溶融炉。3、磁極に交番磁界を発生させるための励磁
巻線は常電導性を示す材料を使用するか又は超電導性を
示す材料を用いて超電導性を示す条件下で使用する請求
項1の磁場を利用した放射性廃棄物固化用電気溶融炉。 4、溶融炉は平坦な炉底を有し、磁極はその平坦な炉底
近傍に配設されている請求項1の磁場を利用した放射性
廃棄物固化用電気溶融炉。 5、溶融炉は勾配を付した炉底を有し、磁極はその勾配
を付した炉底の近傍に補助電極と共に配設されている請
求項1の磁場を利用した放射性廃棄物固化用電気溶融炉
。 6、ガラス溶融炉に設けられた複数の電極間で溶融ガラ
スに交流電流を通じると共に複数の磁極間により交番磁
界を発生させ、これらの電流と磁界との相互作用により
溶融ガラスに時間的に同じ向きの力を生じさせて該溶融
ガラスを流動せしめ、該溶融ガラスから溶融表面に存在
する未溶融原料への伝熱を促進することを特徴とする磁
場を利用した放射性廃棄物固化用電気溶融方法。 7、ガラス溶融炉に設けられた複数の電極間で溶融ガラ
スに交流電流を通じると共に複数の磁極間により交番磁
界を発生させ、これらの電流と磁界との相互作用により
溶融ガラスに時間的に同じ向きの力を生じさせて該溶融
ガラスを流動せしめ、溶融炉炉底に沈降し易い物質の炉
底への沈降蓄積を抑制防止することを特徴とする磁場を
利用した放射性廃棄物固化用電気溶融方法。
[Scope of Claims] 1. A glass melting furnace is equipped with a plurality of electrodes for passing an alternating current through the molten glass in the glass melting furnace and a plurality of magnetic poles for generating an alternating magnetic field, and the interaction between these currents and the magnetic field is An electric melting furnace for solidifying radioactive waste using a magnetic field, characterized in that a force is generated in the same direction over time on the molten glass. 2. Electric melting for solidifying radioactive waste using a magnetic field according to claim 1, wherein the magnetic pole penetrates the wall of the melting furnace and comes into contact with the molten glass, or is installed inside the furnace wall so as not to come into contact with the molten glass. Furnace. 3. The excitation winding for generating an alternating magnetic field at the magnetic poles uses a material exhibiting normal conductivity or a material exhibiting superconductivity and is used under conditions exhibiting superconductivity.Using the magnetic field of claim 1 Electric melting furnace for solidifying radioactive waste. 4. The electric melting furnace for solidifying radioactive waste using a magnetic field according to claim 1, wherein the melting furnace has a flat furnace bottom, and the magnetic pole is disposed near the flat furnace bottom. 5. Electric melting for solidifying radioactive waste using a magnetic field according to claim 1, wherein the melting furnace has a sloped furnace bottom, and the magnetic pole is arranged together with an auxiliary electrode near the sloped furnace bottom. Furnace. 6. An alternating current is passed through the molten glass between the multiple electrodes installed in the glass melting furnace, and an alternating magnetic field is generated between the multiple magnetic poles, and the interaction between these currents and the magnetic field causes the molten glass to change over time. An electric melting method for solidifying radioactive waste using a magnetic field characterized by generating a directional force to flow the molten glass and promoting heat transfer from the molten glass to unmelted raw materials present on the molten surface. . 7. An alternating current is passed through the molten glass between the multiple electrodes installed in the glass melting furnace, and an alternating magnetic field is generated between the multiple magnetic poles, and the interaction between these currents and the magnetic field causes the molten glass to change over time. Electric melting for radioactive waste solidification using a magnetic field, which generates a force in the direction to cause the molten glass to flow, thereby suppressing and preventing the sedimentation and accumulation of substances that tend to settle at the bottom of the melting furnace. Method.
JP63166478A 1988-07-04 1988-07-04 Electric melting furnace and melting method for radioactive waste solidification using magnetic field Expired - Fee Related JPH07104436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166478A JPH07104436B2 (en) 1988-07-04 1988-07-04 Electric melting furnace and melting method for radioactive waste solidification using magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166478A JPH07104436B2 (en) 1988-07-04 1988-07-04 Electric melting furnace and melting method for radioactive waste solidification using magnetic field

Publications (2)

Publication Number Publication Date
JPH0216497A true JPH0216497A (en) 1990-01-19
JPH07104436B2 JPH07104436B2 (en) 1995-11-13

Family

ID=15832145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166478A Expired - Fee Related JPH07104436B2 (en) 1988-07-04 1988-07-04 Electric melting furnace and melting method for radioactive waste solidification using magnetic field

Country Status (1)

Country Link
JP (1) JPH07104436B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037143A (en) * 2008-08-05 2010-02-18 Central Res Inst Of Electric Power Ind Glass melting furnace
JP2010090016A (en) * 2008-10-10 2010-04-22 Ihi Corp Method for suppressing deposition of electroconductive substance and glass melting furnace
JP2013212989A (en) * 2013-07-16 2013-10-17 Ihi Corp Method for controlling deposition of conductive substance, and glass melting furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249795A (en) * 1975-10-16 1977-04-21 Xerox Corp Laser
JPS5655899A (en) * 1979-10-15 1981-05-16 Tokyo Shibaura Electric Co Glass melt reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249795A (en) * 1975-10-16 1977-04-21 Xerox Corp Laser
JPS5655899A (en) * 1979-10-15 1981-05-16 Tokyo Shibaura Electric Co Glass melt reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037143A (en) * 2008-08-05 2010-02-18 Central Res Inst Of Electric Power Ind Glass melting furnace
JP2010090016A (en) * 2008-10-10 2010-04-22 Ihi Corp Method for suppressing deposition of electroconductive substance and glass melting furnace
JP2013212989A (en) * 2013-07-16 2013-10-17 Ihi Corp Method for controlling deposition of conductive substance, and glass melting furnace

Also Published As

Publication number Publication date
JPH07104436B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP4691710B2 (en) Electric melting furnace for waste vitrification
EP2978548B1 (en) Method and apparatus for moving molten metal
GB2224106A (en) A melting furnace for treating wastes and a heating method for the same
EP0228583B1 (en) An electric melting furnace for glassifying high-radioactive waste
US4903277A (en) Electric melting furnace with partitioned melting cavity for solidifying highly radioactive waste in glass
KR20150004788A (en) Process and device for bringing two immiscible liquids into contact, without mixing and at high temperature, with heating and brazing by induction
EP0176897B1 (en) Induction heating vessel
JPH0216497A (en) Electric melting furnace for solidifying radioactive waste utilizing magnetic field and melting method
DE2728262C2 (en) Process for melting metals or metal alloys
EP0853131A1 (en) Process and plant for induction melting and purification of aluminium, copper, brass, lead and bronze alloys
JPH0778555B2 (en) Electric melting furnace for solidification of waste
JP2529427B2 (en) Glass melting furnace
US8917754B2 (en) Aluminum melting apparatus
SE430573B (en) DEVICE FOR SUPPLYING MOLD STEEL TO A GOOD UNDER POSITION
DE2724489C2 (en) Metal melting furnace
JPH04227466A (en) Dc arc furnace
JPS6112238B2 (en)
JP5126973B2 (en) Glass melting furnace
JP5776178B2 (en) Deposit removal method for glass melting furnace
RU2737663C1 (en) Induction furnace with cold crucible for vitrification of hlw
US1879431A (en) Induction electric furnace
JP2000162389A (en) Melting device
JP4815640B2 (en) Glass melting furnace
JP5720730B2 (en) Method for suppressing deposition of conductive material
JPH04161897A (en) Melting furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees