JP4691710B2 - Electric melting furnace for waste vitrification - Google Patents

Electric melting furnace for waste vitrification Download PDF

Info

Publication number
JP4691710B2
JP4691710B2 JP2006210862A JP2006210862A JP4691710B2 JP 4691710 B2 JP4691710 B2 JP 4691710B2 JP 2006210862 A JP2006210862 A JP 2006210862A JP 2006210862 A JP2006210862 A JP 2006210862A JP 4691710 B2 JP4691710 B2 JP 4691710B2
Authority
JP
Japan
Prior art keywords
heat
resistant alloy
molten glass
furnace
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006210862A
Other languages
Japanese (ja)
Other versions
JP2008037673A (en
Inventor
敏夫 正木
照雄 山下
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2006210862A priority Critical patent/JP4691710B2/en
Publication of JP2008037673A publication Critical patent/JP2008037673A/en
Application granted granted Critical
Publication of JP4691710B2 publication Critical patent/JP4691710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Description

本発明は、廃棄物ガラス固化処理用電気溶融炉に関し、特に、溶融炉内の溶融ガラスに通電することにより発生するジュール熱を利用してガラス原料を溶融させ、溶融ガラス内に廃棄物を混入させて固化処理するための電気溶融炉に関するものである。この溶融炉は、各種の産業廃棄物のガラス固化処理、特に高放射性液体廃棄物のガラス固化処理に使用するのに好適である。   The present invention relates to an electric melting furnace for waste glass solidification treatment, and in particular, glass raw material is melted using Joule heat generated by energizing molten glass in the melting furnace, and waste is mixed into the molten glass. The present invention relates to an electric melting furnace for solidifying treatment. This melting furnace is suitable for use in vitrification treatment of various industrial wastes, particularly vitrification treatment of highly radioactive liquid waste.

従来の廃棄物固化処理用電気溶融炉は、耐火物溶融炉では耐火煉瓦により炉体および溶融槽を形成し、その溶融槽内に1対ないし複数対の耐熱合金製の電極を配設した構造である。金属製溶融炉では耐熱合金製の溶融槽壁を有する円筒状の溶融槽に該溶融槽壁を対極とする耐熱合金製の加熱電極を該溶融槽内に1本ないし数本配設した構造である。   A conventional electric melting furnace for solidifying solid waste has a structure in which a furnace body and a melting tank are formed of refractory bricks in a refractory melting furnace, and one or more pairs of heat-resistant alloy electrodes are arranged in the melting tank. It is. In a metal melting furnace, one or several heating electrodes made of a heat-resistant alloy having the melting tank wall as a counter electrode are arranged in a cylindrical melting tank having a melting tank wall made of a heat-resistant alloy. is there.

このような電気溶融炉は、溶融ガラスが導電性を有することを利用し、前記電極を介して溶融槽内の溶融ガラスに電流を流すことにより発生するジュール熱によってガラスを加熱溶融する構成であり、放射性液体廃棄物およびガラス原料を、溶融炉の上部から溶融ガラス液面上に供給することにより、ここで溶融ガラスによって加熱されて昇温,水分の蒸発,仮焼の過程を経て溶融ガラスと混ざり合った後に溶融炉から排出,冷却されてガラス固化される。   Such an electric melting furnace uses the fact that molten glass has conductivity, and is configured to heat and melt the glass by Joule heat generated by passing an electric current through the electrode to the molten glass in the melting tank. By supplying the radioactive liquid waste and the glass raw material from the upper part of the melting furnace onto the molten glass liquid surface, the molten glass is heated by the molten glass and heated, evaporated, and calcined. After mixing, it is discharged from the melting furnace, cooled and vitrified.

溶融炉を構成する耐火煉瓦および金属材料の健全性は、それらと接触する溶融ガラスの温度によって左右されるため、溶融炉内の溶融ガラスの温度分布は均一であることが望ましい。このために、溶融炉の形状や廃棄物処理量などに応じて様々な電極配置が試みられている。   Since the soundness of the refractory bricks and the metal material constituting the melting furnace depends on the temperature of the molten glass in contact with them, it is desirable that the temperature distribution of the molten glass in the melting furnace is uniform. For this reason, various electrode arrangements have been attempted according to the shape of the melting furnace, the amount of waste disposal, and the like.

高放射性液体廃棄物を処理する場合には、炉底部壁の異常温度上昇が発生し、廃棄物処理能力が低下する問題が生じている。この炉底部壁の異常温度上昇現象は、高放射性液体廃棄物に含まれているRu,Pd,Rh等の白金族元素が溶融ガラスに難溶性で溶融ガラスより高い粘性の導電性物質を形成して炉底に堆積して電極間電流がその導電性堆積物に集中することから、発生するジュール熱が上方の溶融ガラス液面に十分に供給されないことが原因である。   When processing highly radioactive liquid waste, the abnormal temperature rise of a furnace bottom part wall generate | occur | produces and the problem which a waste disposal capacity falls arises. This abnormal temperature rise phenomenon at the bottom wall of the furnace is due to the fact that platinum group elements such as Ru, Pd, and Rh contained in highly radioactive liquid waste form a conductive material that is hardly soluble in molten glass and has higher viscosity than molten glass. The reason is that the Joule heat generated is not sufficiently supplied to the upper surface of the molten glass because the electrode current is concentrated on the conductive deposit and the interelectrode current is concentrated on the conductive deposit.

例えば、耐火物溶融炉については、米国ワシントン州パスコで1988年9月11日から15日にわたって開催された国際廃棄物管理会議スペクトラム88の議事録(Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'88)(American Nuclear Society,Inc.出版)の75頁に記載されているホルスト・ヴィーゼ(Horst Wiese)の「ベルギーのパメラプラントでの高放射性液体廃棄物の工業的ガラス固化」(Industrial Vitrification of High Level Liquid Waste with The PAMERA Plant in Belgium)では、通常の3分の1の電気抵抗値および通常の5倍の粘性値を有する白金族元素からなる導電性物質が炉底に5cmの厚さに堆積したことによって通電特性が変化し、ガラス製造速度が30kg/hrから20kg/hrに低下したと報告されている。   For example, for refractory melting furnaces, the Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management was held in Pasco, Washington, USA, from September 11 to 15, 1988. SPECTRUM '88) (House Wiese, “Industrial Vitrification of highly radioactive liquid waste in Belgian Pamela Plant” described on page 75 of American Nuclear Society, Inc.) of High Level Liquid Waste with the PAMERA Plant in Belgium), a conductive material composed of platinum group elements with a normal electrical resistance value of 1/3 and a viscosity value 5 times the normal is 5cm thick at the bottom of the furnace. It is reported that the current-carrying characteristics changed due to the deposition on the glass, and the glass production rate decreased from 30 kg / hr to 20 kg / hr.

また、同会議の議事録の82頁に記載された虎田真一郎(Shin-ichiro Torata)の「動燃東海ガラス固化技術開発施設のためのガラス溶融炉の開発」(Development of Glass Melter for PNC Tokai Vitrification Facility)には、炉底勾配を持つ実験室規模の溶融炉を使用した数種の実験の結果、45°の勾配が白金族元素からなる堆積物の排出に有効であることが判り、同勾配を持つ実規模大の溶融炉の試験結果から、その効果が評価されたと報告されている。   In addition, Shin-ichiro Torata's “Development of Glass Melting Furnace for Tokai Vitrification Technology Development Facility” described on page 82 of the minutes of the meeting (Development of Glass Melter for PNC Tokai Vitrification In the Facility), several experiments using a laboratory-scale melting furnace with a bottom gradient showed that a 45 ° gradient was effective for discharging sediments composed of platinum group elements. It is reported that the effect was evaluated from the test results of a large-scale melting furnace with

たま、金属溶融炉については、日本原子力研究開発機構の公開研究成果報告書である「円筒電極直接通電型溶融炉工学試験装置第9回試験(JCEM−E9試験)」(N8410 98-041)では、45°の炉底勾配を有する金属溶融炉にて白金族元素の抜き出し性については良好な結果を得ているにもかかわらず、白金族元素を含有した模擬廃液での処理能力は、白金族元素を含有しない模擬度廃液を用いた試験での結果よりも20%以上低下することが確認された。これは、溶融ガラス中の導電性白金族元素の濃度が溶融槽の上層部分と下層部分では下層部分の方が高くなることによる、加熱電流密度分布の下部への移動が主な原因と考える、と報告されている。   As for the metal melting furnace, the "Ninth Test of the Cylindrical Electrode Direct Current Melting Furnace Engineering Test Apparatus (JCEM-E9 Test)" (N8410 98-041), which is a public research result report of the Japan Atomic Energy Agency Despite obtaining good results for the extraction performance of platinum group elements in a metal melting furnace having a furnace bottom gradient of 45 °, the treatment capacity with simulated waste liquid containing platinum group elements is It was confirmed that it decreased by 20% or more from the result of the test using the simulated waste liquid not containing the element. This is considered to be mainly due to the movement of the heating current density distribution to the lower part due to the concentration of the conductive platinum group element in the molten glass being higher in the lower layer part in the upper layer part and lower layer part of the melting tank, It is reported.

Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'88 American Nuclear Society,Inc.出版Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'88 American Nuclear Society, Inc. 円筒電極直接通電型溶融炉工学試験装置第9回試験(JCEM-E9試験)−高放射性廃液固化研究報告− 1998年2月 動力炉・核燃料事業団 東海事業所Cylindrical Electrode Direct Current Melting Furnace Engineering Test Unit 9th Test (JCEM-E9 Test)-High Radioactive Waste Liquid Solidification Research Report-February 1998 Tokai Works

このように従来の溶融炉では、炉底に勾配を持たせているにもかかわらず、若干量の導電性物質がガラス溶融炉の底部あるいは勾配面に堆積し、あるいは溶融槽の下部において溶融ガラス内の導電性物質の濃度が高くなることが予想され、そのような現象が発生した場合には、前述したような通電異常あるいは廃棄物処理能力の低下という現象が発生することになる。   As described above, in the conventional melting furnace, a small amount of conductive material is deposited on the bottom or slope surface of the glass melting furnace, or the molten glass is formed at the lower part of the melting tank, although the bottom of the furnace has a gradient. When the concentration of the conductive substance in the inside is expected to be high and such a phenomenon occurs, the above-described phenomenon of abnormal electric conduction or a decrease in waste disposal capacity occurs.

本発明の1つの目的は、ガラス固化処理すべき廃棄物中に含まれている白金族元素などにより生成される導電性物質によって溶融槽内での溶融ガラスへの通電加熱特性が偏って廃棄物処理能力が低下するのを防止することにある。具体的には、溶融槽内の溶融ガラスの下層部分の導電性物質の分布濃度が上層部分より大きくなることによる通電加熱における発熱部分の偏りを防止することにある。   One object of the present invention is to dispose of waste due to the biased current-heating characteristics of the molten glass in the melting tank due to the conductive material produced by the platinum group elements contained in the waste to be vitrified. It is to prevent the processing capacity from being lowered. Specifically, there is to prevent the bias of the heat generation part in the energization heating due to the distribution concentration of the conductive material in the lower layer part of the molten glass in the melting tank being larger than that in the upper layer part.

本発明の他の目的は、更に、ガラス固化処理すべき廃棄物中に含まれている白金族元素などにより溶融槽内に生成される導電性物質の該溶融槽外への排出を容易にすることにより、溶融槽の底部に堆積する導電性物質層による通電弊害を防止することにある。   Another object of the present invention is to further facilitate discharge of the conductive substance generated in the melting tank by the platinum group element contained in the waste to be vitrified to the outside of the melting tank. This is to prevent the adverse effect of energization caused by the conductive material layer deposited on the bottom of the melting tank.

本発明の他の目的は、更に、溶融槽内のガラス原料の溶融および溶融ガラスの排出/停止の制御を容易にすることにある。   Another object of the present invention is to facilitate control of melting of the glass raw material in the melting tank and discharging / stopping of the molten glass.

本発明の他の目的は、更に、炉体を構成する部品における交換部品の費用、交換時間および解体廃棄物量の低減を可能にすることにある。   Another object of the present invention is to make it possible to reduce the cost of replacement parts, the replacement time, and the amount of demolition waste in the parts constituting the furnace body.

本発明は、基本的には、円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と該円環状耐火煉瓦製垂直部壁によって前記円錐状耐熱合金製炉底部壁から電気的に絶縁して設けた円筒状耐熱合金製垂直部壁によって包囲して溶融空間を形成し、前記円錐状耐熱合金製炉底部壁は、前記溶融空間における下部の円錐状側壁の全域を形成するように構成した溶融槽と、前記溶融槽内にガラス原料および廃棄物を供給する供給口と、前記溶融槽内の廃棄物を含む溶融ガラスを排出する溶融ガラス排出口と、前記円錐状耐熱合金製炉底部壁および円筒状耐熱合金製垂直部壁を対極とするように前記溶融槽の中心部に垂下させて設置した耐熱合金製加熱電極と、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁および耐熱合金製加熱電極に設けた空冷式の冷却手段と、前記円錐状耐熱合金製炉底部壁と耐熱合金製加熱電極の間に交流電圧を印加するように接続した第1の交流電源装置と、前記円筒状耐熱合金製垂直部壁と前記耐熱合金製加熱電極の間に交流電圧を印加するように接続した第2の交流電源装置を備えたことを特徴とする廃棄物ガラス固化処理用電気溶融炉であり、
更に具体的には、前記円錐状耐熱合金製炉底部壁の傾斜壁面は、底部中央部に位置する溶融ガラス排出口に向けて45°〜60°の均一な勾配で形成し、あるいは、前記円錐状耐熱合金製炉底浴壁の傾斜壁面は、底部中央部に位置する溶融ガラス排出口に向けて45°〜90°まで段階的または連続的に変化する勾配で形成し、
また、前記円錐状耐熱合金製炉底部壁と前記溶融ガラス排出口の周辺には、補助加熱装置を配設し、
更に、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁と溶融ガラス排出口と耐熱合金製加熱電極および補助加熱装置は、それぞれ、単独に交換可能な独立部品として構成したことを特徴とする。
Basically, the present invention is electrically connected to the conical heat-resistant alloy furnace bottom wall by the conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, and the annular refractory brick vertical wall. A melting space is formed by being surrounded by a cylindrical heat-resistant alloy vertical wall provided in an insulating manner, and the bottom wall of the cone-shaped heat-resistant alloy furnace forms the entire area of the lower conical side wall in the melting space. A melting tank configured; a supply port for supplying glass raw material and waste into the melting tank; a molten glass outlet for discharging molten glass containing waste in the melting tank; and the conical heat-resistant alloy furnace A heat-resistant alloy heating electrode suspended from the center of the melting tank with the bottom wall and a cylindrical heat-resistant alloy vertical wall as a counter electrode, the conical heat-resistant alloy furnace bottom wall, and an annular refractory brick Vertical wall and cylindrical heat-resistant alloy vertical wall And an air-cooling cooling means provided on the heat-resistant alloy heating electrode, and a first AC power supply device connected to apply an AC voltage between the conical heat-resistant alloy furnace bottom wall and the heat-resistant alloy heating electrode; And a second AC power supply device connected so as to apply an AC voltage between the cylindrical heat resistant alloy vertical wall and the heat resistant alloy heating electrode. A melting furnace,
More specifically, the inclined wall surface of the bottom wall of the conical heat-resistant alloy furnace is formed with a uniform gradient of 45 ° to 60 ° toward the molten glass outlet located in the center of the bottom, or the cone The inclined wall surface of the bottom heat-resistant alloy-made furnace bottom bath wall is formed with a gradient that changes stepwise or continuously from 45 ° to 90 ° toward the molten glass discharge port located at the center of the bottom,
In addition, an auxiliary heating device is disposed around the bottom wall of the conical heat-resistant alloy furnace and the molten glass discharge port,
Furthermore, the conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, the cylindrical heat-resistant alloy vertical wall, the molten glass outlet, the heat-resistant alloy heating electrode and the auxiliary heating device are each independently It is configured as a replaceable independent part.

また、前記円錐状耐熱合金製炉底部壁の周囲に設けた補助加熱装置は、前記溶融槽内の溶融ガラスを前記溶融ガラス排出口から排出させる前の所定時間にわたって発熱させて該溶融槽内における前記円錐状耐熱合金製炉底部壁の近傍の溶融ガラスを更に加熱するように構成したことを特徴とする。   The auxiliary heating device provided around the bottom wall of the conical heat-resistant alloy furnace heats the molten glass in the melting tank for a predetermined time before being discharged from the molten glass discharge port. The molten glass in the vicinity of the bottom wall of the conical heat resistant alloy furnace is further heated.

また、前記溶融槽内には、該溶融槽内の溶融ガラスを攪拌するための攪拌気体供給管および/または機械式攪拌装置を設けたことを特徴とする。   The melting tank is provided with a stirring gas supply pipe and / or a mechanical stirring device for stirring the molten glass in the melting tank.

このように構成した廃棄物ガラス固化処理用電気溶融炉は、供給口から溶融槽内に供給されたガラス原料と廃棄物を、円錐状耐熱合金製炉底部壁と円筒状耐熱合金製垂直部壁と耐熱合金製加熱電極により構成される3種類の電極によってこれらの電極間の溶融ガラスに通電することにより発生するジュール熱で加熱して廃棄物を含む溶融ガラスに変化させる。 The electric melting furnace for waste vitrification configured as described above is composed of a glass raw material and waste supplied from a supply port into a melting tank, and a conical heat-resistant alloy furnace bottom wall and a cylindrical heat - resistant alloy vertical wall. And the three types of electrodes composed of heat-resistant alloy heating electrodes are heated by Joule heat generated by energizing the molten glass between these electrodes to change into molten glass containing waste.

そして、溶融槽内の溶融ガラスの下層部分の導電性物質の分布濃度が上層部分より大きくなったり溶融槽の円錐状耐熱合金製炉底部壁上に導電性物質が堆積たりしたとしても、第2の交流電源装置から円筒状耐熱合金製垂直部壁と耐熱合金製加熱電極の間に印加される交流電圧によって溶融槽内の溶融ガラスの上層部分にも必要な加熱電流を流すことができるために、溶融ガラスの表面近辺での発熱を大きくして原料への熱の供給を大きくすることを可能にする。 Even if the conductive material distribution concentration in the lower layer part of the molten glass in the melting tank becomes larger than that in the upper layer part or the conductive substance is deposited on the bottom wall of the conical heat-resistant alloy furnace in the melting tank, the second Because the AC voltage applied between the vertical wall of the cylindrical heat - resistant alloy and the heating electrode made of the heat-resistant alloy can pass the necessary heating current to the upper layer of the molten glass in the melting tank. It is possible to increase the heat supply to the raw material by increasing the heat generation in the vicinity of the surface of the molten glass.

円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁および耐熱合金製加熱電極に設けた空冷式の冷却手段は、これらの壁と電極の温度上昇を抑えて材料の侵食を抑制する。 Air-cooled cooling means provided on the conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, the cylindrical heat - resistant alloy vertical wall and the heat-resistant alloy heating electrode are used to increase the temperature of these walls and electrodes. Suppresses erosion of the material.

円錐状耐熱合金製炉底部壁に形成した45〜60°程度の勾配または45〜90°まで変化する勾配は、廃棄物に含まれる白金族元素がガラスに難溶性の導電性物質を形成しても該導電製物質の溶融槽外への排出を容易にして底部壁に導電性物質が堆積して層状物質が形成されるのを防止する。   The gradient of about 45-60 ° formed on the bottom wall of the cone-shaped heat-resistant alloy furnace, or the gradient changing to 45-90 °, causes platinum group elements contained in the waste to form a conductive material that is hardly soluble in glass. Also, the conductive material can be easily discharged out of the melting tank to prevent the conductive material from being deposited on the bottom wall and forming a layered material.

また、円錐状耐熱合金製炉底部壁と溶融ガラス排出口の周辺に配設した補助加熱装置は、溶融槽内のガラス原料の溶融および溶融ガラスの排出/停止の制御を補助する。   An auxiliary heating device disposed around the bottom wall of the conical heat-resistant alloy furnace and the molten glass discharge port assists in controlling the melting of the glass raw material in the melting tank and the discharge / stop of the molten glass.

また、単独に交換可能な独立部品として構成した円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁と溶融ガラス排出口と耐熱合金製加熱電極および補助加熱装置は、交換部品の費用、交換時間および解体廃棄物量の低減を可能にする。 In addition, a conical heat-resistant alloy furnace bottom wall, an annular refractory brick vertical wall, a cylindrical heat - resistant alloy vertical wall, a molten glass discharge port, a heat-resistant alloy heating electrode, The auxiliary heating device allows for a reduction in the cost of replacement parts, replacement time and the amount of demolition waste.

本発明は、円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と該円環状耐火煉瓦製垂直部壁によって前記円錐状耐熱合金製炉底部壁から電気的に絶縁して設けた円筒状耐熱合金製垂直部壁によって包囲して溶融空間を形成し、前記円錐状耐熱合金製炉底部壁は、前記溶融空間における下部の円錐状側壁の全域を形成するように構成した溶融槽における前記円錐状耐熱合金製炉底部壁と耐熱合金製加熱電極の間に交流電圧を印加するように接続した第1の交流電源装置から独立した前記円筒状耐熱合金製垂直部壁と前記耐熱合金製加熱電極の間に交流電圧を印加するように接続した第2の交流電源装置によって溶融槽内の溶融ガラスの上層部分に通電するように構成したことにより、ガラス固化処理すべき廃棄物中に含まれている白金族元素などにより生成される導電性物質によって溶融槽内の溶融ガラスの下層部分の導電性物質の分布濃度が上層部分より大きくなっても該上層部分にも十分な電流を流すことができ、通電加熱における発熱部分の偏りを防止して廃棄物処理能力の低下を防止することができる。 The present invention is provided by electrically insulating from the bottom wall of the cone-shaped heat-resistant alloy furnace by the cone-shaped heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, and the annular refractory brick vertical wall. A melting space is formed by being surrounded by a cylindrical heat-resistant alloy vertical wall, and the bottom wall of the conical heat-resistant alloy furnace is a melting tank configured to form the entire area of the lower conical side wall in the melting space . The cylindrical heat-resistant alloy vertical wall and the heat-resistant alloy independent from the first AC power source connected to apply an AC voltage between the conical heat-resistant alloy furnace bottom wall and the heat-resistant alloy heating electrode Included in the waste to be vitrified by the configuration in which the upper layer portion of the molten glass in the melting tank is energized by the second AC power supply device connected to apply an AC voltage between the heating electrodes. Platinum family Even if the distribution concentration of the conductive material in the lower layer part of the molten glass in the melting tank is larger than that in the upper layer part due to the conductive substance produced by the element, a sufficient current can be passed through the upper layer part. In this case, it is possible to prevent the bias of the heat generation portion in the case of the waste and to prevent the waste processing capacity from being lowered.

また、円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁および耐熱合金製加熱電極に設けた空冷式の冷却手段は、これらの壁と電極の温度上昇を抑えて材料の侵食を抑制する。 Also, the air-cooling cooling means provided on the conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, the cylindrical heat - resistant alloy vertical wall, and the heat-resistant alloy heating electrode, Controls material erosion by suppressing temperature rise.

本発明は、更に、前記円錐状耐熱合金製炉底部壁の傾斜壁面を、底部中央部に位置する溶融ガラス排出口に向けて45°〜60°の均一な勾配で形成し、または、底部中央部に位置する溶融ガラス排出口に向けて45°〜90°まで段階的または連続的に変化する勾配で形成したことにより、ガラス固化処理すべき廃棄物中に含まれている白金族元素などにより溶融槽内に生成される導電性物質の該溶融槽外への排出が容易になり、前記円錐状耐熱合金製炉底部壁に堆積する導電性物質層による通電弊害(異常発熱)を防止することができる。   In the present invention, the inclined wall surface of the bottom wall of the conical heat-resistant alloy furnace is formed with a uniform gradient of 45 ° to 60 ° toward the molten glass discharge port located at the bottom center, or the bottom center. Due to the platinum group elements contained in the waste to be vitrified by forming with a gradient that changes stepwise or continuously from 45 ° to 90 ° toward the molten glass outlet located in the section. The discharge of the conductive material generated in the melting tank to the outside of the melting tank is facilitated, and the adverse effect of electricity (abnormal heat generation) due to the conductive material layer deposited on the bottom wall of the conical heat-resistant alloy furnace is prevented. Can do.

本発明は、更に、前記円錐状耐熱合金製炉底部壁と前記溶融ガラス排出口の周辺には、補助加熱装置を配設したことにより、溶融槽内のガラス原料の溶融および溶融ガラスの排出/停止の制御を容易に実現することができる。特に、溶融槽内の溶融ガラスを溶融ガラス排出口から排出させる前の所定時間にわたって発熱させて溶融槽内における円錐状耐熱合金製炉底部壁の近傍の溶融ガラスを更に加熱することにより、溶融ガラスの粘度を小さくして排出を円滑にすることができる。   In the present invention, an auxiliary heating device is provided around the bottom wall of the conical heat-resistant alloy furnace and the molten glass discharge port, thereby melting the glass raw material in the melting tank and discharging / discharging the molten glass. Stop control can be easily realized. In particular, the molten glass is heated by heating the molten glass in the vicinity of the conical heat-resistant alloy furnace bottom wall in the melting tank by generating heat for a predetermined time before discharging the molten glass in the melting tank from the molten glass discharge port. It is possible to make the discharge smooth by reducing the viscosity.

本発明は、更に、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁と溶融ガラス排出口と耐熱合金製加熱電極および補助加熱装置は、それぞれ、単独に交換可能な独立部品として構成したことにより、炉体を構成する部品における交換部品の費用、交換時間および解体廃棄物量の低減を可能にすることができる。 The present invention further includes the above-mentioned conical heat-resistant alloy furnace bottom wall, annular refractory brick vertical wall, cylindrical heat - resistant alloy vertical wall, molten glass discharge port, heat-resistant alloy heating electrode, and auxiliary heating device, By configuring each as an independent part that can be replaced independently, it is possible to reduce the cost of replacement parts, the replacement time, and the amount of dismantling waste in the parts constituting the furnace body.

本発明の廃棄物ガラス固化処理用電気溶融炉の最良の実施形態は、
円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と該円環状耐火煉瓦製垂直部壁によって前記円錐状耐熱合金製炉底部壁から電気的に絶縁して設けた円筒状耐熱合金製垂直部壁によって包囲して溶融空間を形成し、前記円錐状耐熱合金製炉底部壁は、前記溶融空間における下部の円錐状側壁の全域を形成するように構成した溶融槽と、前記溶融槽内にガラス原料および廃棄物を供給する供給口と、前記溶融槽内の廃棄物を含む溶融ガラスを排出する溶融ガラス排出口と、前記円錐状耐熱合金製炉底部壁および円筒状耐熱合金製垂直部壁を対極とするように前記溶融槽の中心部に垂下させて設置した耐熱合金製加熱電極と、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁および耐熱合金製加熱電極に設けた空冷式の冷却手段と、前記円錐状耐熱合金製炉底部壁と耐熱合金製加熱電極の間に交流電圧を印加するように接続した第1の交流電源装置と、前記円筒状耐熱合金製垂直部壁と前記耐熱合金製加熱電極の間に交流電圧を印加するように接続した第2の交流電源装置を備え、
前記円錐状耐熱合金製炉底部壁の傾斜壁面は、底部中央部に位置する溶融ガラス排出口に向けて45°〜60°の均一な勾配で形成し、または、底部中央部に位置する溶融ガラス排出口に向けて45°〜90°まで段階的または連続的に変化する勾配で形成し、
前記円錐状耐熱合金製炉底部壁と前記溶融ガラス排出口の周辺には、補助加熱装置を配設し、
前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁と溶融ガラス排出口と耐熱合金製加熱電極および補助加熱装置は、それぞれ、単独に交換可能な独立部品として構成する。
The best embodiment of the electric melting furnace for waste vitrification of the present invention is:
Cylindrical heat-resistant alloy furnace bottom wall, annular refractory brick vertical wall, and cylindrical refractory brick vertical wall, electrically insulated from the conical heat-resistant alloy furnace bottom wall. A melting space that is surrounded by a vertical wall made of a metal to form a melting space, and the bottom wall of the conical heat-resistant alloy furnace is formed to form the entire area of the lower conical side wall in the melting space; and the melting tank A supply port for supplying glass raw materials and waste, a molten glass discharge port for discharging molten glass containing waste in the melting tank, a furnace bottom wall made of the conical heat resistant alloy and a vertical shape made of a cylindrical heat resistant alloy Heat-resistant alloy heating electrode installed in the center of the melting tank so as to have a counter wall as a counter electrode, the bottom wall of the conical heat-resistant alloy furnace, the vertical wall of the annular refractory brick, and the cylindrical heat-resistant alloy Vertical wall and heat-resistant alloy heater An air-cooling type cooling means provided in the first heat source, a first AC power supply device connected to apply an AC voltage between the conical heat-resistant alloy furnace bottom wall and the heat-resistant alloy heating electrode, and the cylindrical heat-resistant alloy A second AC power supply device connected to apply an AC voltage between the vertical wall made of heat and the heating electrode made of the heat-resistant alloy,
The inclined wall surface of the conical heat-resistant alloy furnace bottom wall is formed with a uniform gradient of 45 ° to 60 ° toward the molten glass discharge port located at the bottom center, or the molten glass located at the bottom center. Formed with a gradient that changes stepwise or continuously from 45 ° to 90 ° towards the outlet,
An auxiliary heating device is disposed around the bottom wall of the conical heat-resistant alloy furnace and the molten glass outlet,
The conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, the cylindrical heat-resistant alloy vertical wall, the molten glass outlet, the heat-resistant alloy heating electrode and the auxiliary heating device can be replaced independently. It is configured as an independent part.

また、前記溶融槽内には、該溶融槽内の溶融ガラスを攪拌するための攪拌気体供給管および/または機械式攪拌装置を設ける。   The melting tank is provided with a stirring gas supply pipe and / or a mechanical stirring device for stirring the molten glass in the melting tank.

図1は、本発明に実施例1における廃棄物ガラス固化処理用電気溶融炉の縦断正面図、図2は、図1におけるA−A’矢視断面図、図3は、図1におけるB−B’矢視断面図、図4は、廃棄物ガラス固化処理運転のフローチャートである。   1 is a longitudinal front view of an electric melting furnace for waste vitrification in Example 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. B 'arrow sectional drawing and FIG. 4 are flowcharts of waste vitrification processing operation.

溶融槽1は、円錐状耐熱合金製炉底部壁2と円環状耐火煉瓦製垂直部壁3および円筒状耐熱合金製垂直部壁4によって包囲して溶融空間を形成するように構成する。円環状耐火煉瓦製垂直部壁3は、円錐状耐熱合金製炉底部壁2と円筒状耐熱合金製垂直部壁4の間に位置させて両者間を電気的に絶縁するように機能させる。前記各部壁2,3,4内には、それぞれ、冷却媒体である冷却空気を流通させる冷却ジャケット5,6,7を設ける。また、前記円錐状耐熱合金製炉底部壁2は、その中心部の下方に位置する溶融ガラス排出口8に向かって60°の勾配で絞り込む傾斜壁面を形成する。そして、これらの前記各部壁2,3,4の外側には断熱性を持った各種の耐火煉瓦9〜13を配置し、更にその外周を金属ケーシング14で覆って炉全体を構成する。   The melting tank 1 is configured to be surrounded by a conical heat-resistant alloy furnace bottom wall 2, an annular refractory brick vertical wall 3, and a cylindrical heat-resistant alloy vertical wall 4 to form a melting space. The circular refractory brick vertical wall 3 is positioned between the conical heat-resistant alloy furnace bottom wall 2 and the cylindrical heat-resistant alloy vertical wall 4 and functions to electrically insulate the two. Cooling jackets 5, 6, and 7 for circulating cooling air that is a cooling medium are provided in the respective part walls 2, 3, and 4. In addition, the conical heat-resistant alloy furnace bottom wall 2 forms an inclined wall surface that is narrowed by a 60 ° gradient toward the molten glass discharge port 8 located below the center portion thereof. Then, various refractory bricks 9 to 13 having heat insulation properties are arranged outside the respective part walls 2, 3, and 4, and the outer periphery thereof is covered with a metal casing 14 to constitute the entire furnace.

前記円錐状耐熱合金製炉底部壁2における傾斜壁面は、廃棄物に含まれる白金族元素が溶融ガラスに難溶性の導電性物質を形成して前記円錐状耐熱合金製炉底部壁2の壁面に堆積することにより電気的な弊害を招来する導電性堆積物を溶融ガラス排出口8から溶融ガラスと共に容易に排出できるようにするためのものであり、45°〜60°の均一な勾配で形成し、あるいは45°〜90°まで段階的または連続的に傾斜角度が変化するような勾配で形成することが望ましい。   The inclined wall surface in the bottom wall 2 of the cone-shaped heat-resistant alloy is formed on the wall surface of the bottom wall 2 of the cone-shaped heat-resistant alloy by forming a platinum group element contained in the waste into a hardly soluble conductive material in the molten glass. The conductive deposit that causes electrical damage by being deposited can be easily discharged together with the molten glass from the molten glass discharge port 8, and is formed with a uniform gradient of 45 ° to 60 °. Alternatively, it is desirable to form with a gradient such that the inclination angle changes stepwise or continuously from 45 ° to 90 °.

溶融ガラス排出口8の下方には、ガラス固化体容器(図示省略)を出し入れ可能に設置する。   Below the molten glass discharge port 8, a glass solidified body container (not shown) is installed so that it can be taken in and out.

炉の底部に位置する円盤状の耐火煉瓦9は、前記金属ケーシング14の内側にあって耐火煉瓦底部層を形成し、その中央部に、前記溶融ガラス排出口8を前記前記円錐状耐熱合金製炉底部壁2から炉外に導出させると共に該溶融ガラス排出口8を加熱制御することにより溶融ガラスの流出を制御(流出/遮断)する誘導加熱用コイル15を配置するための空間9aを備え、更に、前記空間9aの壁面に装着した補助加熱装置16を備える。補助加熱装置16は、発熱抵抗体を用いて構成する。そして、誘導加熱用コイル15または補助加熱装置16により前記溶融ガラス排出口8からの溶融ガラスの流出を制御する。   The disc-shaped refractory brick 9 located at the bottom of the furnace is inside the metal casing 14 to form a refractory brick bottom layer, and the molten glass discharge port 8 is formed at the center of the conical heat-resistant alloy. A space 9a for disposing an induction heating coil 15 that leads out of the furnace bottom wall 2 and controls the outflow of the molten glass by controlling the heating of the molten glass discharge port 8 (outflow / blocking); Furthermore, an auxiliary heating device 16 attached to the wall surface of the space 9a is provided. The auxiliary heating device 16 is configured using a heating resistor. Then, the outflow of the molten glass from the molten glass discharge port 8 is controlled by the induction heating coil 15 or the auxiliary heating device 16.

円筒状の耐火煉瓦10は、前記金属ケーシング14の内側にあって前記耐火煉瓦9上に耐火煉瓦外周部層を形成する。この円筒状の耐火煉瓦10の内側の下部に配置した下部耐火煉瓦11は、前記円錐状耐熱合金製炉底部壁2の外周を支持する耐火煉瓦下部内周部層を形成する。この下部耐火煉瓦11は、その内周壁面に補助加熱装置17を備える。   The cylindrical refractory brick 10 is inside the metal casing 14 and forms a refractory brick outer peripheral layer on the refractory brick 9. The lower refractory brick 11 disposed in the lower portion inside the cylindrical refractory brick 10 forms a refractory brick lower inner peripheral layer supporting the outer periphery of the conical heat resistant alloy furnace bottom wall 2. The lower refractory brick 11 includes an auxiliary heating device 17 on its inner peripheral wall surface.

前記補助加熱装置17は、抵抗発熱体または誘導加熱用コイルを用いて構成し、溶融槽1内に投入されたガラス原料(固化ガラス)を前記円錐状耐熱合金製炉底部壁2と耐熱合金製垂直部壁4と耐熱合金製加熱電極18により構成される3種類の電極によって通電可能な溶融状態になる温度まで加熱する起動運転および溶融槽1内の溶融ガラス24の下層部分の温度調整に使用する。   The auxiliary heating device 17 is configured by using a resistance heating element or an induction heating coil, and the glass raw material (solidified glass) charged into the melting tank 1 is made of the conical heat resistant alloy furnace bottom wall 2 and the heat resistant alloy. Used for start-up operation for heating to a temperature at which a molten state that can be energized by three types of electrodes constituted by the vertical wall 4 and the heat-resistant alloy heating electrode 18 is used, and for adjusting the temperature of the lower layer portion of the molten glass 24 in the melting tank 1 To do.

特に、前記補助加熱装置17は、溶融槽1内の溶融ガラス24の下層部分の導電性物質の濃度が高くなることによる通電加熱弊害が発生しても溶融槽1内の溶融ガラス24の温度分布を適正化する補助加熱を実現することができ、これにより溶融ガラス24の流下などの運転制御が容易になり、均一な廃棄物含有ガラスの製造を可能にする。   In particular, the auxiliary heating device 17 has a temperature distribution of the molten glass 24 in the melting tank 1 even if a current-carrying adverse effect due to an increase in the concentration of the conductive material in the lower layer portion of the molten glass 24 in the melting tank 1 occurs. Auxiliary heating for optimizing the temperature of the molten glass 24 can be realized, thereby facilitating operational control such as the flow of the molten glass 24 and the production of uniform waste-containing glass.

前記補助加熱装置16,17は、外部の電源装置(図示省略)から給電するように接続する。補助加熱装置16,17から外部の電源装置への引出線は、図示説明は省略するが、耐熱性の絶縁導線を使用し、補助加熱装置16からの引出線は、空間9aを形成する耐火煉瓦9の壁面に沿って外部に導出して補助加熱装置16と共に下方から着脱できるように設置し、補助加熱装置17からの引出線は、耐火煉瓦11,12の内壁に沿って上方に引き延ばして耐火煉瓦13を貫通させることにより外部に導出し、補助加熱装置17と共に上方から着脱できるように設置する。
た、前記円筒状の耐火煉瓦10の内側の上部に配置した上部耐火煉瓦12は、前記円環状耐火煉瓦製垂直部壁3と円筒状耐熱合金製垂直部壁4の外周を支持する耐火煉瓦上部内周部層を形成する。
The auxiliary heating devices 16 and 17 are connected so that power is supplied from an external power supply device (not shown). The lead wires from the auxiliary heating devices 16 and 17 to the external power supply device are not shown in the drawings, but heat-resistant insulated conductors are used, and the lead wires from the auxiliary heating device 16 are refractory bricks forming the space 9a. 9 and is installed so that it can be detached from the lower side together with the auxiliary heating device 16, and the lead wire from the auxiliary heating device 17 is extended upward along the inner walls of the refractory bricks 11 and 12 to be refractory. diverted to the outside by passing the bricks 13, it placed so as to be detachable from above with the auxiliary heating device 17.
Also, the upper refractory brick 12 which is arranged inside the upper portion of the cylindrical refractory bricks 10, the refractory bricks to hold a periphery of the annular refractory brick vertical wall 3 and a cylindrical heat-resistant alloy vertical wall 4 An upper inner peripheral layer is formed.

炉体の天井部に位置する円盤状の耐火煉瓦13は、円筒状の耐火煉瓦10の内側に嵌入して上部耐火煉瓦12の上端に載置されて耐火煉瓦上蓋層を形成する。この円盤状の耐火煉瓦13には、その中央部に、耐熱合金製加熱電極18を貫通させて設置する加熱電極貫通穴13aおよび該貫通穴の回りにその他の手段を貫通させるように設置するための貫通穴を備える。   The disc-shaped refractory brick 13 located at the ceiling of the furnace body is fitted inside the cylindrical refractory brick 10 and placed on the upper end of the upper refractory brick 12 to form a refractory brick upper cover layer. The disc-shaped refractory brick 13 is provided with a heating electrode through-hole 13a installed through the heating electrode 18 made of a heat-resistant alloy and other means around the through-hole in the center of the disc-shaped refractory brick 13. With through-holes.

耐熱合金製加熱電極18は、前記耐熱合金製炉底部壁2および耐熱合金製垂直部壁4を対極として位置するように前記耐火煉瓦13の加熱電極貫通穴13aを貫通させて溶融槽1の中心部に垂下させて設置する。この耐熱合金製加熱電極18は、浴槽1内の任意の高さに移動させることができるように設置する。また、この耐熱合金製加熱電極18は、内部に冷却通路18aを備え、冷却空気入口19から供給した冷却空気を流通させて冷却空気出口20から排出するように構成する。また、このような耐熱合金製加熱電極18は、複数本設置するように構成することも可能である。   The heating electrode 18 made of heat-resistant alloy penetrates through the heating electrode through hole 13a of the refractory brick 13 so that the heat-resistant alloy furnace bottom wall 2 and the heat-resistant alloy vertical wall 4 are positioned as counter electrodes. Install it hanging on the part. The heat-resistant alloy heating electrode 18 is installed so that it can be moved to an arbitrary height in the bathtub 1. The heating electrode 18 made of a heat-resistant alloy is provided with a cooling passage 18 a inside, and is configured to circulate the cooling air supplied from the cooling air inlet 19 and discharge it from the cooling air outlet 20. Further, a plurality of such heat-resistant alloy heating electrodes 18 may be installed.

耐火煉瓦13には、更に、溶融槽1の上部から該溶融槽1内に処理対象の廃棄物とガラス原料を供給するための廃棄物供給口21とガラス原料供給口22と、廃棄物処理時に発生する廃ガスを排出するための廃ガス出口23と、溶融槽1内の溶融ガラス24を攪拌するために該溶融槽1(溶融ガラス24)内に攪拌空気を供給する攪拌空気供給配管25および機械式攪拌装置26を貫通させて設置する。攪拌空気は、他の気体に変えることも可能である。   The refractory brick 13 further includes a waste supply port 21 and a glass raw material supply port 22 for supplying waste and glass raw material to be processed into the melting tank 1 from the upper part of the melting tank 1, and during waste processing. A waste gas outlet 23 for discharging the generated waste gas, a stirring air supply pipe 25 for supplying stirring air into the melting tank 1 (molten glass 24) in order to stir the molten glass 24 in the melting tank 1, and A mechanical stirrer 26 is passed through. The stirring air can be changed to another gas.

このように構成する廃棄物ガラス固化処理用電気溶融炉における前記円錐状耐熱合金製炉底部壁2と円環状耐火煉瓦製垂直部壁3および円筒状耐熱合金製垂直部壁4、溶融ガラス排出口8、誘導加熱用コイル15、耐熱合金製加熱電極18、補助加熱装置16,17は、それぞれ、独立して溶融炉の上部または下部より順次に着脱して交換可能とするように独立した部品構造として交換部品の費用、交換時間および解体廃棄物量の低減を可能とする。   The conical heat-resistant alloy furnace bottom wall 2, the annular refractory brick vertical wall 3, the cylindrical heat-resistant alloy vertical wall 4, and the molten glass discharge port in the waste glass solidification electric melting furnace configured as described above. 8. Inductive heating coil 15, heat-resistant alloy heating electrode 18, and auxiliary heating devices 16 and 17 are independent component structures so that they can be independently detached and replaced sequentially from the top or bottom of the melting furnace. As a result, it is possible to reduce the cost of replacement parts, the replacement time, and the amount of demolition waste.

また、溶融槽1を構成する円錐状耐熱合金製炉底部壁2と耐火煉瓦製垂直部壁3と耐熱合金製垂直部壁4の周辺は、予め組積みした断熱性を持った各種の耐火煉瓦9〜13によって包囲し、更に、金属ケーシング14によって覆った構成であるので、その構造維持および強度維持に優れ、更に、耐食性,耐火性,断熱性に優れ、十分な強度をもった炉体を実現することができる。   In addition, the surroundings of the conical heat-resistant alloy furnace bottom wall 2, the refractory brick vertical wall 3 and the heat-resistant alloy vertical wall 4 constituting the melting tank 1 are preliminarily stacked various refractory bricks having heat insulation properties. Since the structure is surrounded by 9 to 13 and covered with a metal casing 14, it is excellent in maintaining its structure and strength, and further having excellent strength, corrosion resistance, fire resistance, heat insulation, and sufficient strength. Can be realized.

前記円錐状耐熱合金製炉底部壁2と耐熱合金製垂直部壁4と耐熱合金製加熱電極18により構成する3種類の電極は、溶融槽1内において溶融ガラス24を必要な温度に加熱昇温することができるように該溶融ガラス24に通電するのに十分な大きさとする。   The three types of electrodes constituted by the conical heat-resistant alloy furnace bottom wall 2, the heat-resistant alloy vertical wall 4 and the heat-resistant alloy heating electrode 18 heat the molten glass 24 to a required temperature in the melting tank 1. The size is sufficient to energize the molten glass 24 so that it can be used.

前記3種類の電極によって溶融槽1内の溶融ガラス24に通電して該溶融ガラス24を均一に加熱昇温するように該溶融ガラス24に通電するための直接通電加熱電源装置は、円錐状耐熱合金製炉底部壁2と耐熱合金製加熱電極18間に交流電圧を印加するように接続した第1の交流電源装置27と、耐熱合金製垂直部壁4と耐熱合金製加熱電極18間に交流電圧を印加するように接続した第2の交流電源装置28を備える。第1の交流電源装置27と第2の交流電源装置28は、電気的に独立した電源装置として構成し、それぞれ、定電力制御,定電流制御あるいは定電圧制御などによって所望の通電制御を可能とするように構成する。   A direct energization heating power supply device for energizing the molten glass 24 so that the molten glass 24 is energized and heated uniformly by heating the molten glass 24 in the melting tank 1 with the three kinds of electrodes is a conical heat-resistant device. A first AC power supply device 27 connected so as to apply an AC voltage between the bottom wall 2 of the alloy furnace and the heat-resistant alloy heating electrode 18, and an AC current between the heat-resistant alloy vertical wall 4 and the heat-resistant alloy heating electrode 18. A second AC power supply device 28 connected to apply a voltage is provided. The first alternating current power supply device 27 and the second alternating current power supply device 28 are configured as electrically independent power supply devices, each capable of performing desired energization control by constant power control, constant current control, constant voltage control, or the like. To be configured.

前記円錐状耐熱合金製炉底部壁2および耐熱合金製垂直部壁4から第1の交流電源装置27および第2の交流電源装置28への引出線は、図示説明は省略するが、耐熱性の絶縁導線を使用し、円錐状耐熱合金製炉底部壁2からの引出線は、耐火煉瓦12の内壁に沿って上方に引き延ばして耐火煉瓦13を貫通させることにより外部に導出し、円錐状耐熱合金製炉底部壁2と共に上方から着脱できるように設置し、耐熱合金製垂直部壁4からの引出線は、耐熱合金製垂直部壁4の上端から上方に引き出して耐火煉瓦13を貫通させることにより外部に導出し、耐熱合金製垂直部壁4と共に上方から着脱できるように設置する。   The lead lines from the conical heat-resistant alloy furnace bottom wall 2 and the heat-resistant alloy vertical wall 4 to the first AC power supply device 27 and the second AC power supply device 28 are not shown in the figure, but they are heat resistant. An insulated conductor is used, and the lead wire from the conical heat-resistant alloy furnace bottom wall 2 is led out to the outside by extending upward along the inner wall of the refractory brick 12 and penetrating the refractory brick 13. It is installed so that it can be attached and detached together with the bottom wall 2 of the furnace, and the leader line from the vertical wall 4 made of heat-resistant alloy is drawn upward from the upper end of the vertical wall 4 made of heat-resistant alloy and penetrates the refractory brick 13. It leads out and installs so that it can be attached or detached from the upper part with the vertical part wall 4 made from a heat-resistant alloy.

このように構成した電気溶融炉においては、第1の交流電源装置27から円錐状耐熱合金製炉底部壁2と耐熱合金製加熱電極18間に印加される交流電圧によって溶融槽1内の溶融ガラス24に流れる電流は、主として溶融槽1内の溶融ガラス24の下層部分を通過して該部にジュール熱を発生するように流れ、第2の交流電源装置28から耐熱合金製垂直部壁4と耐熱合金製加熱電極18間に印加される交流電圧によって溶融槽1内の溶融ガラス24に流れる電流は、主として溶融槽1内の溶融ガラス24の上層部分を通過して該部にジュール熱を発生するように流れるようになる。   In the electric melting furnace configured as described above, the molten glass in the melting tank 1 is applied by the AC voltage applied from the first AC power supply device 27 between the conical heat-resistant alloy furnace bottom wall 2 and the heat-resistant alloy heating electrode 18. The current flowing in the flow 24 mainly flows through the lower layer portion of the molten glass 24 in the melting tank 1 so as to generate Joule heat in the portion, and from the second AC power supply 28 to the vertical wall 4 made of heat-resistant alloy. The current flowing in the molten glass 24 in the melting tank 1 by the AC voltage applied between the heat-resistant alloy heating electrodes 18 mainly passes through the upper layer part of the molten glass 24 in the melting tank 1 and generates Joule heat in the part. To flow like.

また、前記誘導加熱用コイル15と補助加熱装置16,17は、それぞれ、個別に給電制御することができるように電源装置(図示省略)に接続し、冷却ジャケット5,6,7は、それぞれ、個別に冷却媒体の供給を制御することができるように冷却媒体供給装置(図示省略)に接続する。   In addition, the induction heating coil 15 and the auxiliary heating devices 16 and 17 are connected to a power supply device (not shown) so that power feeding can be controlled individually, and the cooling jackets 5, 6, and 7 are respectively It connects with a cooling medium supply apparatus (illustration omitted) so that supply of a cooling medium can be controlled separately.

従来の金属製溶融炉において、溶融ガラス24中の導電性白金族元素の混在分布濃度が溶融槽内の上層部分と下層部分では下層部分の方が高くなることによって、加熱電流密度分布が下層部分へ移動して通電加熱が偏ることにより廃棄物処理能力が低下している。   In the conventional metal melting furnace, the mixed distribution concentration of the conductive platinum group elements in the molten glass 24 is higher in the lower layer portion in the upper layer portion and the lower layer portion in the melting tank, so that the heating current density distribution becomes lower layer portion. The waste treatment capacity is reduced due to the biased electric heating.

しかしながら、この実施例1では、耐熱合金製垂直部壁4と加熱電極18間の電流通路が、主として、耐熱合金炉底部壁2と加熱電極18間の電流通路から独立して溶融ガラス24の上層部分に形成されることから、その近辺の加熱電流密度を大きくして該部に大きなジュール発熱を発生することから、溶融ガラス24の表面近くに投入されているガラス原料および廃棄物への熱供給を大きくすることができ、廃棄物処理能力を向上させることができる。   However, in the first embodiment, the current path between the heat resistant alloy vertical wall 4 and the heating electrode 18 is mainly the upper layer of the molten glass 24 independently of the current path between the heat resistant alloy furnace bottom wall 2 and the heating electrode 18. Since it is formed in the portion, the heating current density in the vicinity thereof is increased to generate a large Joule heat generation in the portion, so that heat supply to the glass raw material and waste put near the surface of the molten glass 24 The waste treatment capacity can be improved.

また、耐熱合金製垂直部壁4を溶融ガラス24の表面よりも上位まで伸びるように配置することにより、高温の溶融ガラス24の熱を効率的に溶融槽1内の上部空間に伝えて該溶融ガラス24の表面近くに投入されたガラス原料および廃棄物の上表面からも該ガラス原料および廃棄物に熱を供給して該ガラス原料および廃棄物の加熱効率を向上させることができる。これにより廃棄物処理能力が向上するようになる。   Further, by arranging the vertical part wall 4 made of heat-resistant alloy so as to extend above the surface of the molten glass 24, the heat of the high-temperature molten glass 24 is efficiently transmitted to the upper space in the melting tank 1 and melted. It is possible to improve the heating efficiency of the glass raw material and waste by supplying heat to the glass raw material and waste from the upper surface of the glass raw material and waste thrown near the surface of the glass 24. This improves the waste disposal capacity.

このように溶融槽1内の溶融ガラス24とガラス原料および廃棄物を効率良く加熱して実現する廃棄物処理能力の向上は、溶融炉の小型化を可能にする。   Thus, the improvement of the waste processing capability realized by efficiently heating the molten glass 24, the glass raw material, and the waste in the melting tank 1 enables downsizing of the melting furnace.

このように構成した廃棄物ガラス固化処理用電気溶融炉の運転について、図4を参照して説明する。   The operation of the waste glass solidification treatment electric melting furnace configured as described above will be described with reference to FIG.

ステップS
ガラス原料をガラス原料供給口22から溶融槽1内に投入し、補助加熱装置17を機能させて溶融槽1内のガラス原料を該ガラス原料に電流を流して発熱させる通電加熱を可能にする溶融状態になるまで加熱し、通電加熱可能な溶融ガラス状態になると交流電源装置27,28を機能させて円錐状耐熱合金製炉底部壁2と耐熱合金製垂直部壁4と耐熱合金製加熱電極18により構成した3種類の電極によって溶融ガラス24に通電することにより該溶融ガラス24に発生するジュール熱を発生させ、このジュール熱によって溶融ガラス24を加熱するようにする。
Step S 1
A glass raw material is introduced into the melting tank 1 from the glass raw material supply port 22, and the auxiliary heating device 17 is made to function so that the glass raw material in the melting tank 1 can be heated by applying current to the glass raw material to generate heat. When the molten glass is heated up to a state and becomes a molten glass state that can be energized and heated, the AC power supply devices 27 and 28 function to make the conical heat resistant alloy furnace bottom wall 2, the heat resistant alloy vertical wall 4, and the heat resistant alloy heating electrode 18. The Joule heat generated in the molten glass 24 is generated by energizing the molten glass 24 with the three types of electrodes configured as described above, and the molten glass 24 is heated by the Joule heat.

ステップS
高放射性液体廃棄物とガラス原料を廃棄物供給口21とガラス原料供給口22から溶融槽1内の溶融ガラス24の表面上に連続的に投入する。
Step S 2
The highly radioactive liquid waste and the glass raw material are continuously charged from the waste supply port 21 and the glass raw material supply port 22 onto the surface of the molten glass 24 in the melting tank 1.

ステップS
溶融槽1内に投入された高放射性液体廃棄物とガラス原料を所期の温度に加熱昇温することができるように、交流電源装置27,28によって前記円錐状耐熱合金製炉底部壁2と耐熱合金製垂直部壁4と耐熱合金製加熱電極18により構成する3種類の電極から溶融槽1内の溶融ガラス24内に流す電流を制御することによって該溶融ガラス24内でのジュール熱の発生を調整して該溶融ガラス24の温度分布を所期の特性となし、攪拌空気供給配管25から溶融ガラス24内に攪拌空気を供給すると共に機械式攪拌装置26を機能させて溶融ガラス24を攪拌し、溶融槽1内に発生した廃ガスを廃ガス出口23から炉外に排出することによって、放射性液体廃棄物およびガラス原料を加熱して昇温,水分の蒸発,仮焼の過程を経て溶融ガラスと混ざり合った状態とする。この間、溶融ガラス排出口8はガラスが溶融しない(溶融ガラス24が固化する)温度に維持しておく。
Step S 3
The conical heat-resistant alloy furnace bottom wall 2 and the AC heat-resistant alloy furnace 27 and 28 are heated by the AC power supply devices 27 and 28 so that the highly radioactive liquid waste and the glass raw material charged in the melting tank 1 can be heated to a predetermined temperature. Generation of Joule heat in the molten glass 24 by controlling the current flowing in the molten glass 24 in the melting tank 1 from three kinds of electrodes constituted by the vertical wall 4 made of the heat resistant alloy and the heating electrode 18 made of the heat resistant alloy. Thus, the temperature distribution of the molten glass 24 is made to have the desired characteristics, the stirring air is supplied into the molten glass 24 from the stirring air supply pipe 25 and the mechanical stirring device 26 is operated to stir the molten glass 24. Then, the waste gas generated in the melting tank 1 is discharged from the waste gas outlet 23 to the outside of the furnace to heat the radioactive liquid waste and the glass raw material to be melted through the process of temperature rising, water evaporation, and calcination. Gala And the mixed state with. During this time, the molten glass discharge port 8 is maintained at a temperature at which the glass does not melt (the molten glass 24 solidifies).

このような加熱において、円錐状耐熱合金製炉底部壁2と円環状耐火煉瓦製垂直部壁3と耐熱合金製垂直部壁4と耐熱合金製加熱電極18は、冷却ジャケット5,6,7および冷却通路18aに適宜に冷媒を通して冷却することにより、過熱を抑制して侵食速度の低下を実現する。   In such heating, the conical heat-resistant alloy furnace bottom wall 2, the annular refractory brick vertical wall 3, the heat-resistant alloy vertical wall 4 and the heat-resistant alloy heating electrode 18 are provided with cooling jackets 5, 6, 7 and By appropriately cooling the coolant through the cooling passage 18a, overheating is suppressed and the erosion rate is reduced.

この加熱および冷却の方法は、具体的には、例えば、
(1)耐火煉瓦製垂直部壁4を冷却しつつ、冷却した耐熱合金製垂直部壁4と冷却した耐熱合金製加熱電極18の間の溶融ガラス24を通電加熱すると共に耐熱合金製炉底部壁2を冷却する、
(2)冷却した耐熱合金製垂直部壁4と冷却した耐熱合金製加熱電極18の間の溶融ガラス24を通電加熱すると共に耐熱合金製炉底部壁2を冷却しない状態で補助過熱装置17によって加熱する、
(3)冷却した耐熱合金製垂直部壁4と冷却した耐熱合金製加熱電極18の間の溶融ガラス24を通電加熱すると共に冷却した耐熱合金製炉底部壁2と冷却した耐熱合金製加熱電極18の間の溶融ガラス24を通電加熱する、
等の方法を適宜に選択して実施することができる。
Specifically, this heating and cooling method is, for example,
(1) While the vertical wall 4 made of refractory bricks is being cooled, the molten glass 24 between the cooled heat-resistant alloy vertical wall 4 and the cooled heat-resistant alloy heating electrode 18 is heated by heating and the bottom wall of the heat-resistant alloy furnace 2 is cooled,
(2) The molten glass 24 between the cooled heat-resistant alloy vertical wall 4 and the cooled heat-resistant alloy heating electrode 18 is energized and heated by the auxiliary superheater 17 without cooling the heat-resistant alloy furnace bottom wall 2. To
(3) The molten glass 24 between the cooled heat-resistant alloy vertical wall 4 and the cooled heat-resistant alloy heating electrode 18 is energized and heated and the cooled heat-resistant alloy furnace bottom wall 2 and the cooled heat-resistant alloy heating electrode 18 are heated. Heating the molten glass 24 between
Such a method can be selected as appropriate.

そして、溶融槽1内の溶融ガラス24の液位が所定値に近づき、所定時間後には所定値に到達して排出するに至る所定時間前に達したときには、通電加熱に加えて、補助加熱装置17を作動させることにより溶融槽1内の溶融ガラス24への加熱量を増加させて該溶融槽1内における円錐状耐熱合金製炉底部壁2の近傍の溶融ガラス24を更に加熱して該部の溶融ガラス24の粘度を小さくして円滑な排出を実現するような制御を実行する。   When the liquid level of the molten glass 24 in the melting tank 1 approaches a predetermined value and reaches a predetermined value after a predetermined time and reaches a predetermined time before discharging, an auxiliary heating device is added in addition to the energization heating. 17 is operated to increase the amount of heating to the molten glass 24 in the melting tank 1 and further heat the molten glass 24 in the vicinity of the conical heat-resistant alloy furnace bottom wall 2 in the melting tank 1. Control is performed to reduce the viscosity of the molten glass 24 to achieve smooth discharge.

ステップS
このような加熱状態において、連続的な廃棄物とガラス原料の供給により溶融槽1内の溶融ガラス24の液位が所定値に達したかどうかを検出して処理を分岐する。この液位の検出は、溶融槽1内に検出センサ(図示省略)を設置しておく方法や投入した廃棄物とガラス原料の量から推定する方法等で実現する。
Step S 4
In such a heating state, the processing is branched by detecting whether or not the liquid level of the molten glass 24 in the melting tank 1 has reached a predetermined value by continuous supply of waste and glass raw material. The detection of the liquid level is realized by a method of installing a detection sensor (not shown) in the melting tank 1 or a method of estimating from the amount of waste and glass raw material introduced.

ステップS
溶融ガラス排出口8を誘導加熱用コイル15および/または補助加熱装置16によって加熱して該溶融ガラス排出口8内の固化ガラスを溶融することにより、溶融槽1内の溶融ガラス24が溶融ガラス排出口8を通って流出することができるようにする。
Step S 5
The molten glass discharge port 8 is heated by the induction heating coil 15 and / or the auxiliary heating device 16 to melt the solidified glass in the molten glass discharge port 8, so that the molten glass 24 in the melting tank 1 is discharged from the molten glass. It is possible to flow out through the outlet 8.

ステップS
溶融槽1内の溶融ガラス24を溶融ガラス排出口8を通して流出させてガラス固化体容器(図示省略)に注入する。
Step S 6
The molten glass 24 in the melting tank 1 flows out through the molten glass discharge port 8 and is poured into a glass solidified body container (not shown).

ステップS
溶融ガラス排出口8から排出した溶融ガラス24の量が所定量に達したかどうかを検出して処理を分岐する。この検出は、溶融槽1内の溶融ガラス24の減少量あるいはガラス固化体容器に注入された溶融ガラス24の量を計測することなどにより実現する。
Step S 7
The processing is branched by detecting whether or not the amount of the molten glass 24 discharged from the molten glass discharge port 8 has reached a predetermined amount. This detection is realized by measuring a decrease amount of the molten glass 24 in the melting tank 1 or an amount of the molten glass 24 injected into the vitrified container.

ステップS
溶融ガラス排出口8から排出した溶融ガラス24の量が所定量に達すると、溶融ガラス排出口8からの溶融ガラス24の流出を停止させる。この流出停止は、誘導加熱用コイル15および/または補助加熱装置16による溶融ガラス排出口8の加熱を停止し、溶融ガラス排出口8の温度を該溶融ガラス排出口8内の溶融ガラス24が固化して流出できなくなるようにすることにより実現する。
Step S 8
When the amount of the molten glass 24 discharged from the molten glass discharge port 8 reaches a predetermined amount, the outflow of the molten glass 24 from the molten glass discharge port 8 is stopped. This outflow stop stops heating of the molten glass discharge port 8 by the induction heating coil 15 and / or the auxiliary heating device 16, and the temperature of the molten glass discharge port 8 is solidified by the molten glass 24 in the molten glass discharge port 8. This is achieved by preventing the outflow.

本発明の実施例1における廃棄物ガラス固化処理用電気溶融炉の縦断正面図である。It is a vertical front view of the electric melting furnace for waste vitrification processing in Example 1 of the present invention. 図1におけるA−A’矢視断面図である。It is A-A 'arrow sectional drawing in FIG. 図1におけるB−B’矢視断面図である。It is a B-B 'arrow sectional view in Drawing 1. 廃棄物ガラス固化処理運転のフローチャートである。It is a flowchart of a waste vitrification processing operation.

符号の説明Explanation of symbols

1…溶融槽、2…円錐状耐熱合金製炉底部壁、3…円環状耐火煉瓦製垂直部壁、4…円筒状耐熱合金製垂直部壁、8…溶融ガラス排出口、18…耐熱合金製加熱電極、21…廃棄物供給口、22…ガラス原料供給口、24…溶融ガラス、27…第1の交流電源装置、28…第2の交流電源装置。
DESCRIPTION OF SYMBOLS 1 ... Melting tank, 2 ... Conical heat-resistant alloy furnace bottom wall, 3 ... Annular refractory brick vertical wall, 4 ... Cylindrical heat-resistant alloy vertical wall, 8 ... Molten glass outlet, 18 ... Heat-resistant alloy made Heating electrode, 21 ... waste supply port, 22 ... glass raw material supply port, 24 ... molten glass, 27 ... first AC power supply device, 28 ... second AC power supply device.

Claims (7)

円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と該円環状耐火煉瓦製垂直部壁によって前記円錐状耐熱合金製炉底部壁から電気的に絶縁して設けた円筒状耐熱合金製垂直部壁によって包囲して溶融空間を形成し、前記円錐状耐熱合金製炉底部壁は、前記溶融空間における下部の円錐状側壁の全域を形成するように構成した溶融槽と、前記溶融槽内にガラス原料および廃棄物を供給する供給口と、前記溶融槽内の廃棄物を含む溶融ガラスを排出する溶融ガラス排出口と、前記円錐状耐熱合金製炉底部壁および円筒状耐熱合金製垂直部壁を対極とするように前記溶融槽の中心部に垂下させて設置した耐熱合金製加熱電極と、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁および耐熱合金製加熱電極に設けた空冷式の冷却手段と、前記円錐状耐熱合金製炉底部壁と耐熱合金製加熱電極の間に交流電圧を印加するように接続した第1の交流電源装置と、前記円筒状耐熱合金製垂直部壁と前記耐熱合金製加熱電極の間に交流電圧を印加するように接続した第2の交流電源装置を備えたことを特徴とする廃棄物ガラス固化処理用電気溶融炉。 Cylindrical heat-resistant alloy furnace bottom wall, annular refractory brick vertical wall, and cylindrical refractory brick vertical wall, electrically insulated from the conical heat-resistant alloy furnace bottom wall. A melting space that is surrounded by a vertical wall made of a metal to form a melting space, and the bottom wall of the conical heat-resistant alloy furnace is formed to form the entire area of the lower conical side wall in the melting space; and the melting tank A supply port for supplying glass raw materials and waste, a molten glass discharge port for discharging molten glass containing waste in the melting tank, a furnace bottom wall made of the conical heat resistant alloy and a vertical shape made of a cylindrical heat resistant alloy Heat-resistant alloy heating electrode installed in the center of the melting tank so as to have a counter wall as a counter electrode, the bottom wall of the conical heat-resistant alloy furnace, the vertical wall of the annular refractory brick, and the cylindrical heat-resistant alloy Vertical wall and heat-resistant alloy heater An air-cooling type cooling means provided in the first heat source, a first AC power supply device connected to apply an AC voltage between the conical heat-resistant alloy furnace bottom wall and the heat-resistant alloy heating electrode, and the cylindrical heat-resistant alloy A waste glass solidification electric melting furnace comprising a second AC power supply device connected so as to apply an AC voltage between a vertical wall made of heat and a heating electrode made of the heat-resistant alloy. 請求項1において、前記円錐状耐熱合金製炉底部壁の傾斜壁面は、底部中央部に位置する溶融ガラス排出口に向けて45°〜60°の均一な勾配で形成したことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   The disposal according to claim 1, wherein the inclined wall surface of the bottom wall of the cone-shaped heat-resistant alloy furnace is formed with a uniform gradient of 45 ° to 60 ° toward the molten glass outlet located in the center of the bottom. Electric melting furnace for solidifying glass. 請求項1において、前記円錐状耐熱合金製炉底浴壁の傾斜壁面は、底部中央部に位置する溶融ガラス排出口に向けて45°〜90°まで段階的または連続的に変化する勾配で形成したことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   In Claim 1, the inclined wall surface of the conical heat-resistant alloy furnace bottom bath wall is formed with a gradient that changes stepwise or continuously from 45 ° to 90 ° toward the molten glass outlet located in the center of the bottom. An electric melting furnace for waste vitrification treatment characterized by 請求項1〜3の1項において、前記円錐状耐熱合金製炉底部壁と前記溶融ガラス排出口の周辺には、補助加熱装置を配設したことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   4. The electric melting for waste glass solidification treatment according to claim 1, wherein an auxiliary heating device is disposed around the bottom wall of the conical heat-resistant alloy furnace and the molten glass discharge port. Furnace. 請求項4において、前記円錐状耐熱合金製炉底部壁と円環状耐火煉瓦製垂直部壁と円筒状耐熱合金製垂直部壁と溶融ガラス排出口と耐熱合金製加熱電極および補助加熱装置は、それぞれ、単独に交換可能な独立部品として構成したことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   In claim 4, the conical heat-resistant alloy furnace bottom wall, the annular refractory brick vertical wall, the cylindrical heat-resistant alloy vertical wall, the molten glass discharge port, the heat-resistant alloy heating electrode and the auxiliary heating device, An electric melting furnace for waste vitrification, which is configured as an independent part that can be replaced independently. 請求項4において、前記円錐状耐熱合金製炉底部壁の周囲に設けた補助加熱装置は、前記溶融槽内の溶融ガラスを前記溶融ガラス排出口から排出させる前の所定時間にわたって発熱させて該溶融槽内における前記円錐状耐熱合金製炉底部壁の近傍の溶融ガラスを更に加熱するように構成したことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   5. The auxiliary heating device provided around the bottom wall of the conical heat-resistant alloy furnace according to claim 4, wherein the auxiliary heating device generates heat for a predetermined time before discharging the molten glass in the melting tank from the molten glass discharge port. An electric melting furnace for waste vitrification treatment, wherein the molten glass in the vicinity of the bottom wall of the conical heat-resistant alloy furnace in the tank is further heated. 請求項1〜6の1項において、前記溶融槽内には、該溶融槽内の溶融ガラスを攪拌するための攪拌気体供給管および/または機械式攪拌装置を設けたことを特徴とする廃棄物ガラス固化処理用電気溶融炉。   The waste according to claim 1, wherein a stirring gas supply pipe and / or a mechanical stirring device for stirring the molten glass in the melting tank is provided in the melting tank. Electric melting furnace for vitrification treatment.
JP2006210862A 2006-08-02 2006-08-02 Electric melting furnace for waste vitrification Expired - Fee Related JP4691710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210862A JP4691710B2 (en) 2006-08-02 2006-08-02 Electric melting furnace for waste vitrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210862A JP4691710B2 (en) 2006-08-02 2006-08-02 Electric melting furnace for waste vitrification

Publications (2)

Publication Number Publication Date
JP2008037673A JP2008037673A (en) 2008-02-21
JP4691710B2 true JP4691710B2 (en) 2011-06-01

Family

ID=39173127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210862A Expired - Fee Related JP4691710B2 (en) 2006-08-02 2006-08-02 Electric melting furnace for waste vitrification

Country Status (1)

Country Link
JP (1) JP4691710B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109339B2 (en) * 2006-11-07 2012-12-26 株式会社Ihi Method and apparatus for melting control of electric melting furnace
JP4815639B2 (en) * 2009-02-20 2011-11-16 独立行政法人日本原子力研究開発機構 Multi-heating glass melting furnace
JP4815640B2 (en) * 2009-02-20 2011-11-16 独立行政法人日本原子力研究開発機構 Glass melting furnace
DE102010037376A1 (en) * 2009-09-15 2011-04-07 Schott Ag Method for the production of glass by processing a production aggregate, comprises heating a glass melt using alternating current by electrodes, which protrude in the glass melt, which consists of redox-buffer
JP5599599B2 (en) * 2009-11-20 2014-10-01 サイエンス ソリューションズ株式会社 Glass melting furnace and high-level waste processing method using the same
JP5776178B2 (en) * 2010-12-17 2015-09-09 株式会社Ihi Deposit removal method for glass melting furnace
JP5772349B2 (en) * 2011-07-28 2015-09-02 株式会社Ihi Glass melting furnace operation method
KR101585455B1 (en) * 2014-10-31 2016-01-15 한국수력원자력(주) Treatment equipment of radioactive liquid wastes
CN109851203B (en) * 2019-03-06 2022-04-22 彩虹显示器件股份有限公司 Heating device of plate glass kiln and using method thereof
CN111716588B (en) * 2020-06-24 2021-12-21 山东千川巨象材料科技有限公司 Inferior gram force board leftover bits are retrieved heat and are melted and recycle device
CN112028455A (en) * 2020-09-24 2020-12-04 连云港三明石英制品有限公司 Quartz continuous melting furnace capable of reducing tube wall deflection
CN114057377A (en) * 2021-10-27 2022-02-18 安徽科技学院 Environment-friendly erosion-resistant electric melting glass kiln furnace
CN115594387B (en) * 2022-10-28 2024-01-12 中核四川环保工程有限责任公司 Discharging method of high-level waste liquid glass-cured ceramic electric melting furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112798A (en) * 1988-10-21 1990-04-25 Power Reactor & Nuclear Fuel Dev Corp Melting furnace for treating waste and heating method thereof
JPH02306200A (en) * 1989-05-20 1990-12-19 Power Reactor & Nuclear Fuel Dev Corp Electric melting furnace for solidifying waste matter
JPH0712995A (en) * 1993-06-14 1995-01-17 Ishikawajima Harima Heavy Ind Co Ltd Melting furnace
JPH0720290A (en) * 1993-06-30 1995-01-24 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
JP2002013719A (en) * 2000-06-27 2002-01-18 Mitsubishi Heavy Ind Ltd Ash melting furnace and method of melting ashes
JP2004361215A (en) * 2003-06-04 2004-12-24 Japan Nuclear Cycle Development Inst States Of Projects Glass melting furnace and method for operating it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0315945D0 (en) * 2003-07-08 2003-08-13 British Nuclear Fuels Plc Remote tooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112798A (en) * 1988-10-21 1990-04-25 Power Reactor & Nuclear Fuel Dev Corp Melting furnace for treating waste and heating method thereof
JPH02306200A (en) * 1989-05-20 1990-12-19 Power Reactor & Nuclear Fuel Dev Corp Electric melting furnace for solidifying waste matter
JPH0712995A (en) * 1993-06-14 1995-01-17 Ishikawajima Harima Heavy Ind Co Ltd Melting furnace
JPH0720290A (en) * 1993-06-30 1995-01-24 Ishikawajima Harima Heavy Ind Co Ltd Glass fusion furnace
JP2002013719A (en) * 2000-06-27 2002-01-18 Mitsubishi Heavy Ind Ltd Ash melting furnace and method of melting ashes
JP2004361215A (en) * 2003-06-04 2004-12-24 Japan Nuclear Cycle Development Inst States Of Projects Glass melting furnace and method for operating it

Also Published As

Publication number Publication date
JP2008037673A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4691710B2 (en) Electric melting furnace for waste vitrification
JPH077102B2 (en) Melt furnace for waste treatment and its heating method
CN101405231B (en) Method for temperature manipulation of a melt
JP5564150B2 (en) Cold crucible induction melting furnace integrated with induction coil and melting furnace
JP3848302B2 (en) Glass melting furnace and operating method thereof
JP2738423B2 (en) Electric heating furnace for glass
JPH0778555B2 (en) Electric melting furnace for solidification of waste
WO1991014911A1 (en) Dc electric furnace for melting metal
JP2008174396A (en) Method and apparatus for discharging molten glass from glass melting furnace
SE449132B (en) DC LIGHT REAR OR PUMP FOR HEATING
JP4630976B2 (en) Glass melting furnace
EP2570392B1 (en) Melting furnace having a gas supplying apparatus
JP4815640B2 (en) Glass melting furnace
US9247586B2 (en) Unit for conductively heatable melting
JP4815639B2 (en) Multi-heating glass melting furnace
JP5126974B2 (en) Induction heating melting furnace and induction heating method
JP5776178B2 (en) Deposit removal method for glass melting furnace
JP5202855B2 (en) Melt discharge mechanism
RU2737663C1 (en) Induction furnace with cold crucible for vitrification of hlw
JP2011202985A (en) Melting furnace and method for operating the same
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JPH1123792A (en) Waste melting device
RU2780195C1 (en) Induction vitrification furnace for high level waste
JP2002071114A (en) Waste melting furnace
JP2000162389A (en) Melting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees