JP4815640B2 - Glass melting furnace - Google Patents

Glass melting furnace Download PDF

Info

Publication number
JP4815640B2
JP4815640B2 JP2009037437A JP2009037437A JP4815640B2 JP 4815640 B2 JP4815640 B2 JP 4815640B2 JP 2009037437 A JP2009037437 A JP 2009037437A JP 2009037437 A JP2009037437 A JP 2009037437A JP 4815640 B2 JP4815640 B2 JP 4815640B2
Authority
JP
Japan
Prior art keywords
melting tank
glass
melting
bath wall
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037437A
Other languages
Japanese (ja)
Other versions
JP2010189240A (en
Inventor
照雄 山下
敏夫 正木
厚志 宮内
秀和 小林
正義 中島
洋 守川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2009037437A priority Critical patent/JP4815640B2/en
Publication of JP2010189240A publication Critical patent/JP2010189240A/en
Application granted granted Critical
Publication of JP4815640B2 publication Critical patent/JP4815640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明は、直接通電によるジュール熱を利用して溶融槽内のガラス原料を溶融し、ガラス原料と共に溶融槽内に供給された廃棄物をガラス固化処理するためのガラス溶融炉に関し、更に詳しく述べると、先端部分が紡錘型に膨出した中空構造の冷却棒を溶融槽の中央に挿入することにより、溶融ガラスの流れ形成を良好にして十分な排出が行われるようにすると共に、溶融槽内における溶融ガラスの少量化を実現して白金族元素など導電性物質の炉底浴壁への堆積を抑制し、処理能力の低下を極力防止できるようにしたガラス溶融炉に関するものである。この溶融炉は、各種産業廃棄物の固化処理、特に高放射性液体廃棄物のガラス固化処理に有用である。   The present invention relates to a glass melting furnace for melting glass raw material in a melting tank using Joule heat by direct energization and vitrifying waste supplied into the melting tank together with the glass raw material. And inserting a hollow cooling rod with a tip swelled into a spindle shape into the center of the melting tank to ensure good flow of the molten glass and sufficient discharge. The present invention relates to a glass melting furnace that realizes a small amount of molten glass and suppresses deposition of conductive materials such as platinum group elements on the furnace bottom bath wall and prevents a reduction in processing capacity as much as possible. This melting furnace is useful for solidification treatment of various industrial wastes, in particular, vitrification treatment of high radioactive liquid wastes.

従来の廃棄物ガラス固化処理用電気溶融炉としては、大別すると耐火物溶融炉と金属製溶融炉がある。耐火物溶融炉は、耐火レンガにより炉体及び溶融槽を形成し、溶融槽内の側壁に1対ないし複数対の耐熱合金製の加熱電極を配設した構造である。それに対して金属製溶融炉は、耐熱合金製の浴壁を有する円筒状の溶融槽に該浴壁を対極とする耐熱合金製の加熱電極を溶融槽内に1本ないし複数本配設した構造である。   Conventional electric melting furnaces for vitrification of waste glass are roughly classified into a refractory melting furnace and a metal melting furnace. The refractory melting furnace has a structure in which a furnace body and a melting tank are formed of refractory bricks, and one or a plurality of pairs of heat-resistant alloy heating electrodes are disposed on the side walls in the melting tank. On the other hand, a metal melting furnace has a structure in which one or a plurality of heating electrodes made of a heat-resistant alloy having the bath wall as a counter electrode are arranged in a melting bath having a bath wall made of a heat-resistant alloy. It is.

これらの電気溶融炉では、溶融ガラスが導電性を有することを利用し、前記加熱電極を介して溶融槽内の溶融ガラスに通電することにより発生するジュール熱によって溶融ガラスを加熱する直接通電方式が採用されている。ここで、放射性液体廃棄物及びガラス原料を溶融炉の上部から溶融ガラス液面上に供給すると、それらは溶融ガラスによって加熱され、昇温、水分の蒸発、仮焼の過程を経て溶融ガラスになる。その後、溶融ガラスは溶融炉から排出され、冷却されてガラス固化体となる。   In these electric melting furnaces, utilizing the fact that molten glass has conductivity, there is a direct energization method in which molten glass is heated by Joule heat generated by energizing molten glass in a melting tank via the heating electrode. It has been adopted. Here, when the radioactive liquid waste and the glass raw material are supplied onto the molten glass liquid surface from the upper part of the melting furnace, they are heated by the molten glass and become molten glass through the process of temperature rise, evaporation of moisture, and calcination. . Thereafter, the molten glass is discharged from the melting furnace and cooled to become a vitrified body.

溶融炉を構成する耐火レンガあるいは金属材料の健全性は、それらと接触する溶融ガラスの温度によって左右される。そのため、溶融槽内の溶融ガラスの温度分布は均一であることが望ましい。このため、溶融炉の形状や廃棄物処理量などに応じて様々な電極配置が試みられている。   The soundness of the refractory bricks or metal materials constituting the melting furnace depends on the temperature of the molten glass in contact with them. Therefore, it is desirable that the temperature distribution of the molten glass in the melting tank is uniform. For this reason, various electrode arrangements have been attempted according to the shape of the melting furnace, the amount of waste disposal, and the like.

ところで、このような電気溶融炉を用いて高放射性液体廃棄物を処理した場合、炉底浴壁の異常温度上昇が生じ、廃棄物処理能力が低下する問題が生じている。これは高放射性液体廃棄物に含まれているRu、Pd、Rh等の白金族元素がガラスに難溶性の導電性物質を形成して炉底に堆積し、電極間電流がその導電性堆積物に集中するため、発生するジュール熱が上方の溶融ガラス液面に十分に供給されないことが原因である。   By the way, when a high radioactive liquid waste is processed using such an electric melting furnace, the abnormal temperature rise of a furnace bottom bath wall arises, and the problem which a waste disposal capacity falls arises. This is because platinum group elements such as Ru, Pd, and Rh contained in highly radioactive liquid waste form a poorly soluble conductive material in glass and deposit on the furnace bottom. This is because the generated Joule heat is not sufficiently supplied to the upper molten glass liquid surface.

例えば、耐火物溶融炉については、非特許文献1の75頁に記載されているホルスト・ヴィーゼ(Horst Wiese )の「ベルギーのパメラプラントでの高放射性液体廃棄物の工業的ガラス固化」(Industrial Vitrification of High Level Liquid Waste with The PAMERA Plant in Belgium)には、通常の3分の1の電気抵抗値を有する白金族元素からなる導電性物質が炉底に5cm堆積したことによって通電特性が変化し、ガラス製造速度が30kg/hr から20kg/hr に低下したことが報告されている。また、同じ非特許文献1の82頁に記載されている虎田真一郎の「動燃東海ガラス固化技術開発施設のためのガラス溶融炉の開発」(Development of Glass Melter for PNC Tokai Vitrification Facility)には、炉底勾配を持つ実験室規模の溶融炉を使用した数種の実験の結果、45°の勾配が白金族元素からなる堆積物の排出に有効であることが判り、同勾配を持つ実規模大の溶融炉の試験結果からも、その効果が評価されたと報告されている。   For example, for refractory melting furnaces, Horst Wiese's “Industrial Vitrification of highly radioactive liquid waste in a Belgian Pamela plant” described on page 75 of Non-Patent Document 1 of High Level Liquid Waste with The PAMERA Plant in Belgium), the conductive properties of platinum group elements having a normal electrical resistance value of 1/3 were deposited on the bottom of the furnace. It has been reported that the glass production rate has dropped from 30 kg / hr to 20 kg / hr. In addition, Shinichiro Torada, described on page 82 of the same non-patent document 1, describes “Development of Glass Melter for PNC Tokai Vitrification Facility” (Development of Glass Melter for PNC Tokai Vitrification Facility) Several experiments using a laboratory-scale melting furnace with a bottom gradient showed that a 45 ° gradient was effective for discharging sediments composed of platinum group elements. It is reported that the effect was evaluated also from the test result of the melting furnace.

金属溶融炉については、非特許文献2に、45°の炉底勾配を有する金属溶融炉にて白金族元素の抜き出し性については良好な結果を得ているにもかかわらず、白金族元素を含有した模擬廃液での処理能力は、白金族元素を含有しない模擬廃液を用いた試験での結果よりも20%以上低下することが確認されたと記載されている。これは、溶融ガラス中の導電性白金族元素の濃度が溶融槽の上部と下部では下部の方が高くなることによる、加熱電流密度分布の下部への移動が主な原因と考えられている。   Regarding the metal melting furnace, Non-Patent Document 2 contains a platinum group element in spite of good results regarding the extraction performance of the platinum group element in a metal melting furnace having a 45 ° furnace bottom gradient. It is described that the treatment capacity with the simulated waste liquid was confirmed to be 20% or more lower than the result of the test using the simulated waste liquid not containing platinum group elements. This is considered to be mainly due to the lowering of the heating current density distribution due to the fact that the concentration of the conductive platinum group element in the molten glass is higher at the upper and lower portions of the melting tank.

このように従来の電気溶融炉では、炉底勾配を有するにもかかわらず十分な排出が行われず、若干量の導電性物質がガラス溶融炉の底部あるいは勾配面に堆積し、溶融槽の下部の濃度が高くなることが予想され、その場合には前述したような通電異常あるいは廃棄物処理能力の低下という現象が生じることになる。また、通電異常や処理能力の低下が生じた場合には、溶融炉を交換する必要が生じ、高放射性液体廃棄物の処理が滞ることが考えられる。   As described above, in the conventional electric melting furnace, even though the furnace bottom has a gradient, sufficient discharge is not performed, and a small amount of conductive material is deposited on the bottom or slope surface of the glass melting furnace, It is expected that the concentration will increase, in which case the phenomenon of abnormal energization or a decrease in waste disposal capacity as described above will occur. In addition, when energization abnormality or reduction in processing capacity occurs, it is necessary to replace the melting furnace, and it is considered that processing of high radioactive liquid waste is delayed.

そこで本発明者等は、先に、耐熱合金製円錐状炉底部浴壁と、耐火レンガ製垂直部浴壁と、該耐火レンガ製垂直部浴壁によって前記耐熱合金製円錐状炉底部浴壁から電気的に絶縁した耐熱合金製垂直部浴壁とによって溶融槽を構成するガラス溶融炉を提案した(特許文献1参照)。このガラス溶融炉は、通電異常の発生あるいは廃棄物処理能力の低下などをある程度は抑制できるものの、必ずしも十分ではない。また、溶融ガラスの流下時における浴壁近傍の流れ形成、溶融槽内における溶融ガラスの少量化などの点で、未だ改善の余地がある。   Therefore, the present inventors, first, heat-resistant alloy cone furnace bottom bath wall, refractory brick vertical bath wall, the refractory brick vertical bath wall from the heat-resistant alloy cone furnace bottom bath wall The glass melting furnace which comprises a melting tank with the electrically insulated insulating vertical part bath wall was proposed (refer patent document 1). Although this glass melting furnace can suppress the occurrence of abnormal energization or a decrease in waste treatment capacity to some extent, it is not always sufficient. In addition, there is still room for improvement in terms of forming a flow near the bath wall when the molten glass flows and reducing the amount of molten glass in the melting tank.

特開2008−37673号公報JP 2008-37673 A

Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'88(米国ワシントン州パスコで1988年9月11日から15日にわたって開催された国際廃棄物管理会議スペクトラム88の議事録)Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management SPECTRUM'88 (Proceedings of the International Waste Management Conference Spectrum 88 held from 11 to 15 September 1988 in Pasco, Washington, USA) 「円筒電極直接通電型溶融炉工学試験装置第9回試験(JCEM−E9試験)」(N8410 98-041)−日本原子力研究開発機構の公開研究成果報告書"Cylindrical electrode direct current melting furnace engineering test equipment 9th test (JCEM-E9 test)" (N8410 98-041)-Japan Atomic Energy Agency public research results report

本発明が解決しようとする課題は、溶融ガラスの流下時における浴壁近傍の流れ形成を良好にして十分な排出が行われるようにすると共に、溶融槽内における溶融ガラスの少量化を実現して白金族元素など導電性物質の炉底浴壁への堆積を抑制し、それによって処理能力の低下を極力防止し、通電異常や処理能力の低下が生じた場合には、容易に溶融槽を交換できるようにし、かつ交換部分を必要最小限に留め、廃棄物の円滑なガラス固化処理を可能にすることである。   The problem to be solved by the present invention is to achieve a good flow formation in the vicinity of the bath wall when the molten glass flows down so that sufficient discharge is performed, and to realize a small amount of molten glass in the melting tank. Suppresses the deposition of conductive materials such as platinum group elements on the furnace bottom bath wall, thereby preventing a reduction in processing capacity as much as possible. And to keep the replacement part to a minimum and to allow smooth vitrification of the waste.

本発明では、溶融槽を、円錐状の炉底浴壁及びその上方に連続し一方の加熱電極を兼ねる円筒状の垂直浴壁からなり冷却手段を備えた耐熱合金製の一体構造とし、該垂直浴壁を対極とする他方の加熱電極は、冷却手段を備え前記溶融槽内に垂下する円筒状の中央電極とする。そして、直管部分と紡錘型に膨出する先端部分とが連続する中空構造の耐熱合金製の冷却棒を、その直管部分が中央電極内に電気絶縁体を介して位置し、先端部分が中央電極下端から突出するように前記溶融槽内に設置する。このように本発明では、先端部分が紡錘型に膨出する中空構造の耐熱合金製の冷却棒を溶融槽の中央に垂下させており、この点が最も主要な特徴である。   In the present invention, the melting tank has a conical furnace bottom bath wall and a cylindrical vertical bath wall continuous above and serving as one heating electrode. The other heating electrode having the bath wall as a counter electrode is a cylindrical central electrode that includes cooling means and hangs down in the melting tank. Then, a cooling rod made of a heat-resistant alloy having a hollow structure in which a straight pipe portion and a tip portion bulging into a spindle shape are continuous, the straight pipe portion is located in the central electrode via an electrical insulator, and the tip portion is It installs in the said melting tank so that it may protrude from a center electrode lower end. As described above, in the present invention, the cooling rod made of a heat-resistant alloy having a hollow structure whose tip portion swells into a spindle shape is suspended in the center of the melting tank, and this is the most important feature.

本発明に係るガラス溶融炉は、直管部分の先端部分が紡錘型に膨出する中空構造の耐熱合金製の冷却棒を溶融槽の中央に垂下させているので、溶融ガラスの流下時における浴壁近傍の流れ形成が良好となり、温度制御ができることと相俟って、溶融ガラスの十分な排出が行えるようになる。垂直浴壁(一方の加熱電極)と中央電極との間の通電により発生した熱の一部は、耐熱合金製の垂直浴壁及び中央電極を伝って溶融ガラス液面上の気相部を加熱するため、供給する原料の溶融速度を促進させることができ処理能力が向上する。その結果、必要な処理能力を保持したまま溶融炉の小型化が可能となることから、溶融槽内のガラス保有量を低減でき、高放射性液体廃棄物の処理の場合は溶融槽内の白金族元素の保有量を低減化できるため、溶融槽底部への白金族元素の堆積量が減少し、冷却棒の膨出した先端部分による良好な流れ形成と相俟って、堆積しても比較的容易に排出できるようになる。   In the glass melting furnace according to the present invention, a cooling rod made of a heat-resistant alloy having a hollow structure in which the tip portion of the straight pipe portion swells into a spindle shape is suspended in the center of the melting tank. The flow formation in the vicinity of the wall is good, and coupled with the temperature control, the molten glass can be sufficiently discharged. Part of the heat generated by energization between the vertical bath wall (one heating electrode) and the central electrode heats the gas phase on the molten glass liquid surface through the vertical bath wall and central electrode made of heat-resistant alloy. Therefore, the melting rate of the raw material to be supplied can be accelerated, and the processing capacity is improved. As a result, it is possible to reduce the size of the melting furnace while maintaining the necessary processing capacity, so that the amount of glass held in the melting tank can be reduced, and in the case of high radioactive liquid waste processing, the platinum group in the melting tank Since the amount of elements held can be reduced, the amount of platinum group elements deposited on the bottom of the melting tank is reduced, and it is relatively easy to deposit due to the good flow formation by the bulging tip of the cooling rod. It becomes possible to discharge easily.

また本発明の溶融槽は、円錐状の炉底浴壁及びその上方に連続し一方の加熱電極を兼ねる円筒状の垂直浴壁からなる耐熱合金製の一体構造であるので、全体を一括して交換可能であり、中央電極も引き抜き交換可能とすることで、交換部分を必要最小限に留め、廃棄物の円滑なガラス固化処理が可能となる。   In addition, the melting tank of the present invention is an integral structure made of a heat-resistant alloy consisting of a conical furnace bottom bath wall and a cylindrical vertical bath wall that continues above and serves as one heating electrode. The exchange is possible, and the central electrode can also be pulled out and exchanged, so that the exchange part can be kept to the minimum necessary, and the waste can be smoothly vitrified.

本発明に係るガラス溶融炉の一実施例を示す縦断面図。The longitudinal cross-sectional view which shows one Example of the glass fusing furnace which concerns on this invention. そのガラス溶融炉の上面図。The top view of the glass melting furnace.

ガラス溶融炉は、縦型円筒状の溶融槽と、該溶融槽の上部に位置するガラス原料及び廃棄物の供給口と、溶融槽の底部に位置する溶融ガラスの排出口と、耐熱合金製の複数の加熱電極を備え、溶融槽内に供給したガラス原料及び廃棄物に前記加熱電極を介して通電することにより加熱溶融し、溶融ガラスを排出するように構成した廃棄物ガラス固化処理用溶融炉である。ここで前記溶融槽は、円錐状の炉底浴壁及びその上方に連続し一方の加熱電極を兼ねる円筒状の垂直浴壁からなり冷却手段を備えた耐熱合金製の一体構造であり、該垂直浴壁を対極とする他方の加熱電極は、冷却手段を備え前記溶融槽内に垂下する円筒状の中央電極である。そして、直管部分と紡錘型に膨出する先端部分とが連続する中空構造の耐熱合金製の冷却棒を、その直管部分が中央電極内に電気絶縁体を介して位置し、先端部分が中央電極下端から突出するように前記溶融槽内に設置する。   The glass melting furnace comprises a vertical cylindrical melting tank, a glass material and waste supply port located at the top of the melting tank, a molten glass discharge port located at the bottom of the melting tank, and a heat-resistant alloy A melting furnace for waste glass solidification processing comprising a plurality of heating electrodes, and configured to heat and melt the glass raw material and waste supplied into the melting tank through the heating electrode and discharge the molten glass. It is. Here, the melting tank is a one-piece structure made of a heat-resistant alloy comprising a conical furnace bottom bath wall and a cylindrical vertical bath wall continuous above and serving as one heating electrode, and provided with cooling means. The other heating electrode having the bath wall as a counter electrode is a cylindrical central electrode that includes cooling means and hangs down in the melting tank. Then, a cooling rod made of a heat-resistant alloy having a hollow structure in which a straight pipe portion and a tip portion bulging into a spindle shape are continuous, the straight pipe portion is located in the central electrode via an electrical insulator, and the tip portion is It installs in the said melting tank so that it may protrude from a center electrode lower end.

中央電極は、溶融槽の中心軸に沿って上方から垂直浴壁に対応する位置まで挿入され、冷却棒の紡錘型に膨出している先端部分は、円錐状の炉底浴壁で囲まれた部分に収まるように設置される。これら中央電極及び冷却棒は、引き抜き交換可能とする。溶融槽の垂直浴壁の内部には、上段及び下段に分けて、複数本ずつの加熱手段を配設し、それら加熱手段も引き抜き交換可能とする。また、溶融槽の炉底浴壁の周囲にも加熱手段を配設する。   The center electrode is inserted from above to the position corresponding to the vertical bath wall along the center axis of the melting tank, and the tip portion of the cooling rod swelled into the spindle shape is surrounded by a conical furnace bottom bath wall. Installed to fit in the part. These central electrodes and cooling rods can be pulled out and replaced. Inside the vertical bath wall of the melting tank, a plurality of heating means are arranged in an upper stage and a lower stage, and these heating means can be drawn out and exchanged. A heating means is also provided around the furnace bottom bath wall of the melting tank.

溶融槽の外側全体は、冷却手段を備えたインナージャケットで囲まれており、溶融槽及び炉底浴壁周辺の加熱手段をインナージャケットからのユニットとして、または溶融槽を炉底浴壁周辺の加熱手段と共にユニットとして、あるいは溶融槽単体で、任意に交換可能とする。   The entire outside of the melting tank is surrounded by an inner jacket provided with a cooling means, and the heating means around the melting tank and the furnace bottom bath wall is a unit from the inner jacket, or the melting tank is heated around the furnace bottom bath wall. It can be arbitrarily replaced as a unit together with the means or as a single melting tank.

本発明では、溶融槽の供給口からガラス原料及び高放射性液体廃棄物を供給し、一方の加熱電極を兼ねる垂直浴壁と他方の加熱電極となる円筒電極との間に通電することによりジュール熱が発生し、周囲のガラスが加熱され、廃棄物を含む溶融ガラスが形成される。その際、加熱電極となる垂直浴壁及び中央電極は、冷却手段により適宜温度制御される。溶融ガラスは、円錐状の底部浴壁に沿って流れ、排出口から排出される。その際、溶融槽底部に45〜60°程度の勾配を設け、他方、先端部分が紡錘型の冷却棒を挿入することで、溶融ガラスの流下が円滑となり、十分な排出が行えるようになる。   In the present invention, Joule heat is supplied by supplying glass raw material and highly radioactive liquid waste from the supply port of the melting tank and energizing between a vertical bath wall also serving as one heating electrode and a cylindrical electrode serving as the other heating electrode. And the surrounding glass is heated to form a molten glass containing waste. At that time, the temperature of the vertical bath wall and the central electrode, which are heating electrodes, is appropriately controlled by the cooling means. The molten glass flows along the conical bottom bath wall and is discharged from the outlet. At that time, a gradient of about 45 to 60 ° is provided at the bottom of the melting tank, and a spindle-type cooling rod is inserted at the tip, so that the molten glass flows smoothly and can be discharged sufficiently.

更に本発明では、耐熱合金製の垂直浴壁を溶融ガラス表面より上方まで配置し、高温の溶融ガラスの熱を効率的に溶融槽上部空間に伝えて原料への熱の供給を大きくしている。その結果、廃棄物処理能力が向上し、溶融炉の小型化が可能となり、溶融槽内のガラス保有量を低減できる。高放射性液体廃棄物の処理の場合は溶融槽内の白金族元素保有量も低下する。従って、溶融槽底部への白金族元素の堆積量が減少し、冷却棒の膨出した先端部分による良好な流れ形成と相俟って、堆積しても比較的容易に排出できるようになる。なお、溶融ガラスの排出口に連続する排出管の周辺にも加熱手段を配設し、該加熱手段によって、廃棄物を含む溶融ガラスの排出管からの流出・停止が制御される。   Furthermore, in the present invention, a vertical bath wall made of a heat-resistant alloy is disposed above the surface of the molten glass, and heat of the high-temperature molten glass is efficiently transmitted to the upper space of the melting tank to increase the supply of heat to the raw material. . As a result, the waste treatment capacity is improved, the melting furnace can be downsized, and the glass holding amount in the melting tank can be reduced. In the case of treatment of highly radioactive liquid waste, the platinum group element holding amount in the melting tank also decreases. Accordingly, the amount of platinum group element deposited on the bottom of the melting tank is reduced, and in combination with the good flow formation by the bulging tip portion of the cooling rod, it can be discharged relatively easily even if deposited. A heating means is also provided around the discharge pipe continuous with the molten glass discharge port, and the heating means controls the outflow / stop of the molten glass containing waste from the discharge pipe.

図面は本発明に係る廃棄物ガラス固化用のガラス溶融炉の一実施例を示しており、図1はその縦断面を、図2は上面を、それぞれ示している。   The drawings show an embodiment of a glass melting furnace for solidifying waste glass according to the present invention. FIG. 1 shows a longitudinal section thereof, and FIG. 2 shows an upper surface thereof.

ガラス溶融炉は、基本的に、縦型円筒状の溶融槽10と、該溶融槽の上部に位置するガラス原料及び廃棄物の供給口(図示するのを省略)と、溶融槽10の底部に位置する溶融ガラスの排出口12と、耐熱合金製の複数の加熱電極を備え、溶融槽内に供給したガラス原料及び廃棄物に前記加熱電極を介して通電することにより加熱溶融し、溶融したガラスを排出口12から排出し、廃棄物のガラス固化処理するように構成されている。   The glass melting furnace basically includes a vertical cylindrical melting tank 10, a glass material and waste supply port (not shown) located at the top of the melting tank, and a bottom of the melting tank 10. A glass having a molten glass outlet 12 and a plurality of heating electrodes made of a heat-resistant alloy, heated and melted by energizing the glass raw material and waste supplied in the melting tank through the heating electrode, and melted. Is discharged from the discharge port 12, and the waste is vitrified.

前記溶融槽10は、円錐状の炉底浴壁14と、その上方に連続し一方の加熱電極を兼ねる円筒状の垂直浴壁16とを備えた耐熱合金製の一体構造である。炉底浴壁14には、底部中央に位置する溶融ガラスの排出口12に向けて、60°の勾配傾斜を設ける。なお、前記垂直浴壁16は空冷方式の冷却手段17を備えている。溶融槽10の外側全体は、冷却手段を備えたインナージャケット20で囲まれている。その周辺は各種耐火レンガや各種断熱レンガ22により組積し、更に、その外側は、構造維持及び強度維持のため金属ケーシング24で覆われる。これによって溶融炉は、耐食性、耐火性、断熱性に優れ、十分な強度をもつものとなる。   The melting tank 10 is an integral structure made of a heat-resistant alloy, which includes a conical furnace bottom bath wall 14 and a cylindrical vertical bath wall 16 that continues upward and serves as one heating electrode. The furnace bottom bath wall 14 is provided with a 60 ° gradient slope toward the molten glass outlet 12 located in the center of the bottom. The vertical bath wall 16 is provided with an air cooling type cooling means 17. The entire outside of the melting tank 10 is surrounded by an inner jacket 20 provided with cooling means. The surrounding area is piled up with various refractory bricks and various heat insulating bricks 22, and the outside is covered with a metal casing 24 for maintaining the structure and maintaining the strength. As a result, the melting furnace is excellent in corrosion resistance, fire resistance and heat insulation, and has sufficient strength.

加熱電極は、前記垂直浴壁16と、前記溶融槽10内に垂下される円筒状の中央電極26との組み合わせからなる。中央電極26も、空冷方式の冷却手段27を備えている。中央電極26は、溶融槽10内の任意の高さに設置できるようになっており、溶融槽10の中心軸に沿って上方から垂直浴壁16に対応する位置まで挿入される。なお、冷却手段によって加熱電極である垂直浴壁16及び中央電極26を冷却することにより、それら加熱電極の長寿命化を図っている。   The heating electrode is composed of a combination of the vertical bath wall 16 and a cylindrical central electrode 26 suspended in the melting tank 10. The central electrode 26 is also provided with an air cooling type cooling means 27. The central electrode 26 can be installed at an arbitrary height in the melting tank 10, and is inserted from above along the central axis of the melting tank 10 to a position corresponding to the vertical bath wall 16. In addition, the lifetime of these heating electrodes is extended by cooling the vertical bath wall 16 and the center electrode 26 which are heating electrodes by a cooling means.

そして、円筒状の中央電極26内に耐熱合金製の冷却棒30が設置されている。該冷却棒30は、直管部分30aと、紡錘型に膨出する先端部分30bとが連続する中空構造であって、直管部分30aが円筒状の中央電極26内に位置し、先端部分30bが中央電極26の下端から下方に突出し、円錐状の炉底浴壁14で囲まれた部分に収まるように設置される。先端部分30bは閉じた構造であり、直管部分30aから先端部分30bの底部近傍まで空気配管32が挿入されている。冷却空気を該空気配管32から供給し、その下端開口から放出して冷却棒30の内部を上昇するような空気の流れを形成し、周囲の溶融ガラスを冷却して温度制御できるように構成する。なお、冷却棒30と中央電極26との電気的な絶縁を図るため、冷却棒30の直管部分30aの外周側に電気絶縁体34を設ける。これら中央電極26及び冷却棒30などは、引き抜き交換可能とする。   A cooling rod 30 made of a heat resistant alloy is installed in the cylindrical central electrode 26. The cooling rod 30 has a hollow structure in which a straight tube portion 30a and a tip portion 30b that swells into a spindle shape are continuous, and the straight tube portion 30a is located within the cylindrical central electrode 26, and the tip portion 30b. Protrudes downward from the lower end of the central electrode 26 and is installed so as to be within a portion surrounded by the conical furnace bottom bath wall 14. The tip portion 30b has a closed structure, and an air pipe 32 is inserted from the straight pipe portion 30a to the vicinity of the bottom of the tip portion 30b. Cooling air is supplied from the air pipe 32, is discharged from the lower end opening thereof, forms an air flow that rises inside the cooling rod 30, and is configured to cool the surrounding molten glass and control the temperature. . In order to electrically insulate the cooling rod 30 from the central electrode 26, an electrical insulator 34 is provided on the outer peripheral side of the straight pipe portion 30a of the cooling rod 30. The central electrode 26 and the cooling rod 30 can be pulled out and exchanged.

溶融槽10の垂直浴壁16には、上段及び下段に分けて、複数本ずつの加熱手段(抵抗発熱体など)40を分散した状態で組み込む。これによって垂直浴壁16で囲まれている部分のガラスを加熱して溶融可能とし、溶融槽10内のガラスを直接通電可能な温度まで加熱する起動運転を制御する。これら加熱手段40は引き抜き交換可能とする。また、溶融槽10の炉底浴壁14の周囲にも加熱手段(抵抗発熱体など)42を設置する。ここでは、4箇所に分けて分散配設している。この加熱手段42により、円錐状の炉底浴壁14で囲まれている部分のガラスを加熱し溶融可能とする。これにより、特に廃棄物を含む溶融ガラスを排出する際に、溶融槽底部に蓄積されているガラスを流出し易くする。   In the vertical bath wall 16 of the melting tank 10, a plurality of heating means (such as resistance heating elements) 40 are incorporated in a dispersed state, divided into an upper stage and a lower stage. Thereby, the glass surrounded by the vertical bath wall 16 is heated to be meltable, and the starting operation of heating the glass in the melting tank 10 to a temperature at which direct energization can be performed is controlled. These heating means 40 can be pulled out and replaced. Further, a heating means (resistance heating element or the like) 42 is also installed around the furnace bottom bath wall 14 of the melting tank 10. Here, it is distributed in four locations. The heating means 42 heats the glass surrounded by the conical furnace bottom bath wall 14 so that the glass can be melted. Thereby, especially when discharging the molten glass containing waste, the glass accumulated at the bottom of the melting tank is easily discharged.

前述のように、溶融槽10の外側全体は、冷却手段を備えたインナージャケット20で囲まれており、溶融槽10及び底部浴壁周辺の加熱手段42をインナージャケット20からのユニットとして、または溶融槽10を底部浴壁周辺の加熱手段42と一緒にユニットとして、あるいは溶融槽10単体で、任意に交換可能とする。なお、インナージャケット外側の周辺構造(各種耐火レンガや各種断熱レンガ22、金属ケーシング24など)は再利用する。   As described above, the entire outside of the melting tank 10 is surrounded by the inner jacket 20 provided with cooling means, and the heating means 42 around the melting tank 10 and the bottom bath wall is used as a unit from the inner jacket 20 or melted. The tank 10 can be arbitrarily replaced as a unit together with the heating means 42 around the bottom bath wall or as a single melting tank 10. In addition, the peripheral structure outside the inner jacket (various refractory bricks, various heat insulating bricks 22, metal casing 24, etc.) is reused.

更に、炉底中央に位置する溶融ガラス排出口12から下方に延びている排出管50の周辺にも加熱手段52を設置する。これには、例えば誘導加熱用コイルや抵抗発熱体を用いる。この加熱手段52によって、溶融ガラス排出の開始及び停止を制御する。加熱動作によって排出管50の周囲温度を上げると、溶融槽底部に蓄積している溶融ガラスを排出させることができ、加熱動作の停止によって、排出管50の周辺の温度を下げると、溶融ガラスの排出を停止させることができる。   Furthermore, the heating means 52 is also installed around the discharge pipe 50 extending downward from the molten glass discharge port 12 located in the center of the furnace bottom. For this, for example, an induction heating coil or a resistance heating element is used. This heating means 52 controls the start and stop of molten glass discharge. When the ambient temperature of the discharge pipe 50 is increased by the heating operation, the molten glass accumulated at the bottom of the melting tank can be discharged. When the temperature around the discharge pipe 50 is decreased by stopping the heating operation, The discharge can be stopped.

このようなガラス溶融炉では、各冷却手段を作動させて垂直浴壁16及び中央電極26を冷却しながら、直接通電用の加熱電極である垂直浴壁16と中央電極26との間でガラスに直接通電し、それにより発生するジュール熱によって周囲のガラスが加熱され、廃棄物を含む溶融ガラスが形成される。なお、直接通電加熱用の電源回路(図示するのを省略する)には、定電力制御、定電流制御、定電圧制御などにより通電制御可能な交流電源を用いる。これにより溶融ガラスは適切な温度に維持され、均一な温度分布が実現される。   In such a glass melting furnace, each cooling means is operated to cool the vertical bath wall 16 and the central electrode 26, while the glass is formed between the vertical bath wall 16 and the central electrode 26, which are heating electrodes for direct energization. Direct energization is performed, and the surrounding glass is heated by Joule heat generated thereby, and a molten glass containing waste is formed. Note that an AC power source that can be energized and controlled by constant power control, constant current control, constant voltage control, or the like is used for a power circuit for direct energization heating (not shown). Thereby, the molten glass is maintained at an appropriate temperature, and a uniform temperature distribution is realized.

高放射性液体廃棄物及びガラス原料を、溶融炉の上部の原料供給口から溶融ガラス液面上に供給すると、ここで溶融ガラスによって加熱されて、昇温、水分の蒸発、仮焼の過程を経て廃棄物を含む溶融ガラスが形成される。溶融槽底部に45〜60°の勾配傾斜を設け、先端部分が紡錘型の冷却棒を挿入することで、溶融ガラスの良好な流れが形成され、冷却棒による温度制御も相俟って流下が円滑となり、溶融ガラスは十分に排出される。また、垂直浴壁(一方の加熱電極)と中央電極との間の通電により発生した熱の一部は、耐熱合金製の垂直浴壁及び中央電極を伝って溶融ガラス液面上の気相部を加熱するため、供給する原料の溶融速度を促進させることができ処理能力が向上する。その結果、必要な処理能力を保持したまま溶融炉の小型化が可能となることから、溶融槽内のガラス保有量を低減でき、高放射性液体廃棄物の処理の場合は溶融槽内の白金族元素の保有量も低減化できるため、溶融槽底部への白金族元素の堆積量が減少し、冷却棒の膨出した先端部分による良好な流れ形成と相俟って、堆積しても比較的容易に排出できるようになる。なお、溶融処理時に発生する廃ガスは、廃ガス出口から排出する。   When high-radioactive liquid waste and glass raw material are supplied onto the molten glass liquid surface from the raw material supply port at the top of the melting furnace, they are heated by the molten glass, and then go through the process of temperature rise, evaporation of moisture, and calcination Molten glass containing waste is formed. By providing a 45-60 ° gradient slope at the bottom of the melting tank and inserting a spindle-type cooling rod at the tip, a good flow of molten glass is formed, and the flow down along with temperature control by the cooling rod Smooth and the molten glass is fully discharged. In addition, a part of the heat generated by energization between the vertical bath wall (one heating electrode) and the central electrode is transmitted through the vertical bath wall and the central electrode made of a heat-resistant alloy to the gas phase portion on the molten glass liquid surface. Is heated, the melting rate of the raw material to be supplied can be accelerated, and the processing capacity is improved. As a result, it is possible to reduce the size of the melting furnace while maintaining the necessary processing capacity, so that the amount of glass held in the melting tank can be reduced, and in the case of high radioactive liquid waste processing, the platinum group in the melting tank Since the amount of elements held can be reduced, the amount of platinum group elements deposited on the bottom of the melting tank is reduced, coupled with good flow formation by the bulging tip of the cooling rod, It becomes possible to discharge easily. The waste gas generated during the melting process is discharged from the waste gas outlet.

更に、本発明では、耐熱合金製の垂直浴壁が溶融ガラス表面より上方まで配置されているので、高温の溶融ガラスの熱を効率的に溶融槽上部空間に伝えて原料への熱の供給を大きくでき、廃棄物処理能力が向上する。   Furthermore, in the present invention, since the vertical bath wall made of a heat-resistant alloy is disposed above the surface of the molten glass, the heat of the high-temperature molten glass is efficiently transmitted to the upper space of the melting tank to supply heat to the raw material. Can be increased, and waste disposal capacity is improved.

10 溶融槽
12 ガラス排出口
14 炉底浴壁
16 垂直浴壁
17 冷却手段
20 インナージャケット
26 中央電極
27 冷却手段
30 冷却棒
30a 直管部分
30b 先端部分
32 空気配管
34 電気絶縁体
50 排出管
52 加熱手段
DESCRIPTION OF SYMBOLS 10 Melting tank 12 Glass discharge port 14 Furnace bottom bath wall 16 Vertical bath wall 17 Cooling means 20 Inner jacket 26 Central electrode 27 Cooling means 30 Cooling rod 30a Straight pipe part 30b Tip part 32 Air piping 34 Electrical insulator 50 Exhaust pipe 52 Heating means

Claims (6)

縦型円筒状の溶融槽と、該溶融槽の上部に位置するガラス原料及び放射性液体廃棄物の供給口と、溶融槽の底部に位置する溶融ガラスの排出口と、耐熱合金製の複数の加熱電極を備え、溶融槽内に供給したガラス原料及び放射性液体廃棄物に前記加熱電極を介して通電することにより加熱溶融し、溶融ガラスを排出する放射性廃棄物ガラス固化処理用溶融炉において、
前記溶融槽は、円錐状の炉底浴壁及びその上方に連続し一方の加熱電極を兼ねる円筒状の垂直浴壁からなり冷却手段を備えた耐熱合金製の一体構造であって、該垂直浴壁を対極とする他方の加熱電極は、冷却手段を備え前記溶融槽内に垂下される円筒状の中央電極であり、直管部分と紡錘型に膨出する先端部分とが連続し中空構造であって前記直管部分から先端部分の底部近傍まで空気配管が挿入され冷却空気を該空気配管から供給可能とした耐熱合金製の冷却棒を、その直管部分が中央電極内に電気絶縁体を介して位置し、先端部分が中央電極から突出するように前記溶融槽内に設置することを特徴とするガラス溶融炉。
A vertical cylindrical melting tank, a glass raw material and radioactive liquid waste supply port located at the top of the melting tank, a molten glass discharge port located at the bottom of the melting tank, and a plurality of heat-resistant alloy heatings In the melting furnace for radioactive waste vitrification treatment, comprising an electrode, heated and melted by energizing the glass raw material and radioactive liquid waste supplied into the melting tank through the heating electrode, and discharging the molten glass,
The melting bath has a conical furnace bottom bath wall and a cylindrical vertical bath wall which is continuous above and serving as one heating electrode, and has an integral structure made of a heat-resistant alloy and provided with cooling means. The other heating electrode with the wall as a counter electrode is a cylindrical central electrode that has cooling means and hangs down in the melting tank, and has a hollow structure in which a straight tube portion and a tip portion that swells into a spindle shape are continuous. A heat-resistant alloy cooling rod in which an air pipe is inserted from the straight pipe portion to the vicinity of the bottom of the tip portion and cooling air can be supplied from the air pipe , and the straight pipe portion is an electric insulator in the central electrode. The glass melting furnace is placed in the melting tank so that the tip portion protrudes from the central electrode.
中央電極は、溶融槽の中心軸に沿って上方から垂直浴壁に対応する位置まで挿入され、冷却棒の紡錘型に膨出している先端部分が円錐状の炉底浴壁で囲まれた部分に収まるように設置されている請求項1記載のガラス溶融炉。   The central electrode is inserted from the top to the position corresponding to the vertical bath wall along the central axis of the melting tank, and the tip of the cooling rod that swells into the spindle shape is surrounded by the conical furnace bottom bath wall The glass melting furnace of Claim 1 installed so that it may fit in. 中央電極及び冷却棒が、引き抜き交換可能となっている請求項1又は2記載のガラス溶融炉。   The glass melting furnace according to claim 1 or 2, wherein the central electrode and the cooling rod are drawable and replaceable. 溶融槽の垂直浴壁に、上段及び下段に分けて、複数本ずつの加熱手段が分散配設され、それら加熱手段が引き抜き交換可能となっている請求項1乃至3のいずれかに記載のガラス溶融炉。   The glass according to any one of claims 1 to 3, wherein a plurality of heating means are distributed and arranged on the vertical bath wall of the melting tank in an upper stage and a lower stage, and the heating means can be drawn and replaced. Melting furnace. 溶融槽の炉底浴壁の周囲に加熱手段が配設されている請求項4記載のガラス溶融炉。   The glass melting furnace according to claim 4, wherein heating means is disposed around the furnace bottom bath wall of the melting tank. 溶融槽の外側全体が、冷却手段を備えたインナージャケットで囲まれ、溶融槽及び炉底浴壁周辺の加熱手段をインナージャケットからのユニットとして、または溶融槽を炉底浴壁周辺の加熱手段と共にユニットとして、あるいは溶融槽単体で、交換可能とした請求項5記載のガラス溶融炉。   The entire outside of the melting tank is surrounded by an inner jacket provided with a cooling means, and the heating means around the melting tank and the bottom bath wall as a unit from the inner jacket, or the melting tank together with the heating means around the bottom bath wall 6. The glass melting furnace according to claim 5, wherein the glass melting furnace can be replaced as a unit or as a single melting tank.
JP2009037437A 2009-02-20 2009-02-20 Glass melting furnace Expired - Fee Related JP4815640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037437A JP4815640B2 (en) 2009-02-20 2009-02-20 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037437A JP4815640B2 (en) 2009-02-20 2009-02-20 Glass melting furnace

Publications (2)

Publication Number Publication Date
JP2010189240A JP2010189240A (en) 2010-09-02
JP4815640B2 true JP4815640B2 (en) 2011-11-16

Family

ID=42815716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037437A Expired - Fee Related JP4815640B2 (en) 2009-02-20 2009-02-20 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP4815640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100463B3 (en) * 2013-01-17 2014-06-12 Ald Vacuum Technologies Gmbh Melting device for consolidating contaminated scrap

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077102B2 (en) * 1988-10-21 1995-01-30 動力炉・核燃料開発事業団 Melt furnace for waste treatment and its heating method
JP3848302B2 (en) * 2003-06-04 2006-11-22 核燃料サイクル開発機構 Glass melting furnace and operating method thereof
JP4691710B2 (en) * 2006-08-02 2011-06-01 独立行政法人 日本原子力研究開発機構 Electric melting furnace for waste vitrification
JP2008174396A (en) * 2007-01-16 2008-07-31 Japan Atomic Energy Agency Method and apparatus for discharging molten glass from glass melting furnace

Also Published As

Publication number Publication date
JP2010189240A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4691710B2 (en) Electric melting furnace for waste vitrification
US5304701A (en) Melting furnace for treating wastes and a heating method of the same
CN101405231B (en) Method for temperature manipulation of a melt
US7388896B2 (en) Induction melter apparatus
JP5564150B2 (en) Cold crucible induction melting furnace integrated with induction coil and melting furnace
KR20150135261A (en) Induction furnace and method for treating metal waste to be stored
JPH02306200A (en) Electric melting furnace for solidifying waste matter
NL8701283A (en) METHOD AND APPARATUS FOR ELECTRICAL MELTING OF GLASS.
JP2008174396A (en) Method and apparatus for discharging molten glass from glass melting furnace
JP4815640B2 (en) Glass melting furnace
EP2570392B1 (en) Melting furnace having a gas supplying apparatus
JP4815639B2 (en) Multi-heating glass melting furnace
US9247586B2 (en) Unit for conductively heatable melting
KR101680821B1 (en) Melt discharger having slit
KR100759311B1 (en) Furnace with easy removable refractory
JP5776178B2 (en) Deposit removal method for glass melting furnace
RU2737663C1 (en) Induction furnace with cold crucible for vitrification of hlw
RU2780195C1 (en) Induction vitrification furnace for high level waste
JPH1152095A (en) Device and method for separating waste
KR101951805B1 (en) Melt discharging device
JP2011202985A (en) Melting furnace and method for operating the same
JPH11326592A (en) Melting device
KR20180137681A (en) Melt discharger having nitrogen cooling structure
JP2013028483A (en) Furnace bottom nozzle part structure of glass melting furnace
JP3621042B2 (en) Immersion holding furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees