JPH02164795A - Production of zinc oxide whisker - Google Patents

Production of zinc oxide whisker

Info

Publication number
JPH02164795A
JPH02164795A JP63319020A JP31902088A JPH02164795A JP H02164795 A JPH02164795 A JP H02164795A JP 63319020 A JP63319020 A JP 63319020A JP 31902088 A JP31902088 A JP 31902088A JP H02164795 A JPH02164795 A JP H02164795A
Authority
JP
Japan
Prior art keywords
zinc
whiskers
zinc oxide
powder
zinc powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63319020A
Other languages
Japanese (ja)
Other versions
JP2563544B2 (en
Inventor
Minoru Yoshinaka
芳中 實
Eizo Asakura
朝倉 栄三
Motoi Kitano
基 北野
Jun Yagi
順 八木
Hideyuki Yoshida
吉田 英行
Takashige Sato
佐藤 隆重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63319020A priority Critical patent/JP2563544B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to KR1019900701787A priority patent/KR930007857B1/en
Priority to DE68924646T priority patent/DE68924646T2/en
Priority to EP90900992A priority patent/EP0407601B1/en
Priority to PCT/JP1989/001246 priority patent/WO1990007022A1/en
Priority to US07/566,475 priority patent/US5158643A/en
Priority to CA002005737A priority patent/CA2005737C/en
Publication of JPH02164795A publication Critical patent/JPH02164795A/en
Application granted granted Critical
Publication of JP2563544B2 publication Critical patent/JP2563544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To inexpensively obtain the zinc oxide whiskers of a gigantic tetrapod- shape structure excellent in a reinforcing effect by heating the zinc powder obtained by the gas melting-type flame spraying in an oxygen-contg. atmosphere to form zinc oxide. CONSTITUTION:Zinc powder is melted by an oxygen-gaseous fuel combustion flame or the plasma or air, argon, etc., and injected into the air to produce the zinc powder coated with an oxide film. When the oxide film is insufficiently formed, the zinc powder is brayed in the presence of water, aged, and then dried. The zinc powder coated with an oxide film is placed into a heat-resistant vessel, and heated at 700-1300 deg.C in an oxygen-contg. atmosphere to grow the gigantic tetrapod-shape whiskers. Since the obtained whiskers have a three- dimensional structure free of anisotropy, the anisotropy in the mechanical characteristic is not caused when the whiskers are used as a reinforcing material, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、巨大なテトラボッド状構造を有する酸化亜鉛
ウィスカーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing zinc oxide whiskers having a giant tetrabod-like structure.

従来の技術 現在、一般的工業素料として使用される酸化亜鉛はいわ
ゆるフランス法によるものが多く、粒子の大きさ、特に
形状がまちまちの団塊状粒子の集合体である。
BACKGROUND OF THE INVENTION At present, zinc oxide used as a general industrial raw material is mostly produced by the so-called French process, and is an aggregate of nodular particles of various particle sizes, particularly shapes.

又、細く短い針状結晶粒子を高収率で形成させる方法(
例えば特公昭60−5529号公報)があるが、これは
上記フランス法の改良法で、加熱亜鉛蒸気を急速に冷却
するものであり、このため巨大結晶体は生成せず、微小
寸法(長さが0.1〜1.5 μm)の針状結晶となる
In addition, a method for forming thin and short acicular crystal particles with high yield (
For example, Japanese Patent Publication No. 60-5529 (Japanese Patent Publication No. 60-5529) is an improved method of the above-mentioned French method, which rapidly cools the heated zinc vapor. Therefore, giant crystals are not formed, and micro-dimensions (length is 0.1 to 1.5 μm).

この様な寸法の針状結晶体は、現在市販されている各種
工業用ウィスカーと比較すると寸法面で約2桁小さい。
Acicular crystals having such dimensions are about two orders of magnitude smaller in size than various industrial whiskers currently on the market.

このため、前記ウィスカーの共通時特長である金属、セ
ラミック、樹脂等への補強効果は前記団塊状酸化亜鉛の
水準と大差なく、ウィスカー的な顕著な効果は認められ
ない。即ち繊維形状の単結晶性であるウィスカーは同材
質の団塊状物質よりは格段と機械的強度が大で、これを
他の物質中に混入して高い機械的強度を得るだめの強化
物質として注目されており、現在では、金属酸化物、金
属炭化物、金属窒化物等の工業用ウィスカーが市販され
ている。
Therefore, the reinforcing effect on metals, ceramics, resins, etc., which is a common feature of the whiskers, is not much different from that of the nodular zinc oxide, and no significant whisker-like effects are observed. In other words, whiskers, which are monocrystalline in the form of fibers, have much higher mechanical strength than nodule-like substances of the same material, and are attracting attention as reinforcing substances that can be mixed into other substances to obtain high mechanical strength. Currently, industrial whiskers made of metal oxides, metal carbides, metal nitrides, etc. are commercially available.

又、酸化亜鉛においても長さが間桁のウィスカーの例(
特開昭50−5597号公報)等があるが、これらは単
純針゛状体のもので、わざわざ亜鉛の合金を用いるため
、結晶中に不純物を含んだり、成長時に基板を必要とし
たり、低収率であったり、複雑な装置、操作で長時間を
要する等の実験室的検討に過ぎないものが多い。
Also, in zinc oxide, there is an example of a whisker with an interdigital length (
(Japanese Unexamined Patent Publication No. 50-5597), but these are simple needle-shaped bodies, and because they use a zinc alloy, they contain impurities in the crystal, require a substrate during growth, and are low-quality. Many of these are merely laboratory studies, such as yield issues, complicated equipment, and long operation times.

発明が解決しようとする課題 本発明は工業用ウィスカー級の寸法あるいはこれら以上
の寸法を有する酸化亜鉛の巨大結晶体を得る製造法を提
供することを目的とする。また、本発明は巨大テトラボ
ッド状構造の酸化亜鉛ウィスカーの製造方法を提供する
ものである。
Problems to be Solved by the Invention The object of the present invention is to provide a method for producing giant crystals of zinc oxide having dimensions of industrial whisker size or larger. The present invention also provides a method for producing zinc oxide whiskers having a giant tetrabod-like structure.

課題を解決するだめの手段 本発明による酸化亜鉛ウィスカーの製造方法は、ガス溶
解式又はプラズマジェット式の亜鉛金属溶射より得た亜
鉛粉末を酸素を含む雰囲気下で加熱処理して酸化亜鉛を
生成させることを特徴とする。
Means for Solving the Problems The method for manufacturing zinc oxide whiskers according to the present invention involves heat-treating zinc powder obtained by gas-dissolving or plasma-jet zinc metal spraying in an oxygen-containing atmosphere to generate zinc oxide. It is characterized by

ことにおいて、亜鉛金属溶射によシ得られる亜鉛粉末は
空気中に溶融粒として打ち出されその表面に酸化皮膜が
形成される。ウィスカーの大きさ、形状を更に改良する
ためこの粒子を後述のように水との共存下で抽潰、熟成
することもできる。
In particular, the zinc powder obtained by zinc metal spraying is ejected into the air as molten particles, and an oxide film is formed on the surface thereof. In order to further improve the size and shape of the whiskers, these particles can be crushed and aged in the coexistence of water as described below.

作  用 本発明の方法によって得られる酸化亜鉛ウィスカーは、
中心の核部とこの核部から異なる4軸方向に伸びた針状
結晶部からなり、前記針状結晶部の基部の径が0.7〜
14μmであり、前記針状結晶部の基部から先端までの
長さが3〜200μmである。又、針状結晶部が3軸あ
るいは2軸のものも多少混入するが、これらは成長中あ
るいは、後に他のウィスカーと接触して、その一部が折
損したり、成長が停止した結果である。
Function The zinc oxide whiskers obtained by the method of the present invention are
Consisting of a central core and needle-like crystal parts extending in four different axial directions from this core, the diameter of the base of the needle-like crystal part is 0.7 to
The length from the base to the tip of the needle-like crystal portion is 3 to 200 μm. In addition, there are some cases where the needle-shaped crystal part is triaxial or biaxial, but these are the result of part of the whisker being broken during growth or later coming into contact with other whiskers, or growth being stopped. .

又この成長中の接触により、完全なテトラボッド形の一
部に他のテトラボッドが付着したものも多少みられる。
Also, due to contact during this growth, some complete tetrabods have some other tetrabods attached to them.

他の形状即ち板状晶が針状部に付着することもあるが、
本発明の製造方法によればテトラボッド状のものが主体
となる。
Although other shapes, i.e., plate crystals, may be attached to the needles,
According to the manufacturing method of the present invention, tetrabod-like materials are mainly used.

本発明者らは、針状部の寸法が前述の如く細く短くかつ
二次的成長部を付着させた従来の結晶体からは飛躍的に
巨大で、かつて実現されたことのない巨大テトラボッド
状ウィスカーを発現させるべく種々実験研究の結果、使
用する亜鉛原料に極めて大きい要因のあることを確認し
た。更に詳細には、従来の如く亜鉛金属溶湯や、還元亜
鉛、亜鉛化合物からの金属亜鉛等を使用しての焼成雰囲
気条件の選定は従来の微小結晶体中での大小形状制御は
可能であるが、巨大テトラボッド状ウィスカーの発現は
不可能であり、これを達成させるには、従来と異なり亜
鉛金属粉末、更には上記亜鉛金属溶射により得た亜鉛粉
末を使用することが必須であることを確認した。即ち溶
射により得られた亜鉛粉末は前述の如く、酸化皮膜が表
面に形成されている。この皮膜は高い密封度を有してお
り、部分的に酸化物が付着したものや、酸化皮膜を有し
ない粉末等に比し、より高温域で一気に亜鉛煙。
The present inventors have discovered a giant tetrabod-like whisker, which has never been realized before, and has needle-shaped parts that are thin and short as described above, and are dramatically larger than conventional crystals with attached secondary growth parts. As a result of various experimental studies to achieve this, we have confirmed that the zinc raw material used is an extremely important factor. More specifically, it is possible to control the size and shape of microcrystals by selecting the firing atmosphere conditions using molten zinc metal, reduced zinc, metal zinc from zinc compounds, etc. as in the past. It was confirmed that it was impossible to produce giant tetrabod-like whiskers, and that in order to achieve this, it was necessary to use zinc metal powder, unlike conventional methods, and moreover, use zinc powder obtained by the above-mentioned zinc metal spraying. . That is, as mentioned above, the zinc powder obtained by thermal spraying has an oxide film formed on its surface. This film has a high degree of sealing, and compared to powders with partially attached oxides or powders that do not have an oxide film, zinc smoke is produced at a higher temperature.

蒸気の高濃度の発生、酸化が起こり、巨大テトラボッド
状ウィスカーが発現する。又この酸化皮膜の別の効果の
1つは、亜鉛粉末の内部亜鉛金属部が互いに溶解、溶湯
化することなく、その結果高濃度亜鉛煙蒸気の発生を促
すのである。
A high concentration of steam is generated, oxidation occurs, and giant tetrabod-like whiskers appear. Another effect of this oxide film is that the internal zinc metal parts of the zinc powder do not melt or become molten metal, thereby promoting the generation of highly concentrated zinc smoke vapor.

第3に皮膜の酸化亜鉛部がウィスカー成長の基板的役割
を担・っていることも同時に確認した。
Thirdly, we also confirmed that the zinc oxide part of the film plays the role of a substrate for whisker growth.

上述の密封度とは亜鉛煙、蒸気を高温域まで放出せずに
密封保持する度合を言う。これは酸化皮膜の厚み、組織
、金属部と酸化皮膜部の体積比等に依存する。特に酸化
皮膜の厚み、組織は金属粉末の製造時に達成されること
が多く、本発明に用いる溶射粉末は溶融亜鉛粉末が空気
中に打ち出される場合が多く、特に別の制御をしない限
り、厚くてやや多孔質な嘴化皮膜が得られる。又粉末の
表面は液状のだめ滑らかであり、膜厚は均等に得られる
か又膜厚が厚く成長しすぎだ場合には、表面部がぜい弱
となり、クラックや欠陥を生じることもある。次にこれ
らの皮膜の欠陥1割れ等密封性の劣化を改修したり、膜
厚を増大させたりするためには襠潰、熟成処理を行う。
The degree of sealing mentioned above refers to the degree to which zinc smoke and steam are kept sealed without being released to a high temperature range. This depends on the thickness of the oxide film, its structure, the volume ratio of the metal part to the oxide film part, etc. In particular, the thickness and structure of the oxide film are often achieved during the production of metal powder, and the thermal spray powder used in the present invention is often made of molten zinc powder that is ejected into the air. A somewhat porous beaked film is obtained. The surface of the powder is liquid and smooth, and the film thickness may be uniform. If the film grows too thick, the surface may become brittle and cracks or defects may occur. Next, in order to correct deterioration in sealing performance such as defects or cracks in these films or to increase the film thickness, crushing and aging treatments are performed.

これらの処理によって選択的に皮膜欠陥部に酸化物をた
い積させることかできる。
By these treatments, oxides can be selectively deposited on film defects.

次に本発明に使用する金属亜鉛粉末について詳記する。Next, the metallic zinc powder used in the present invention will be described in detail.

これらの粒子径は0.1〜500μmのものが使用可能
であり、なかでも1〜300μmのものが最良の結果と
なる。この粉末は前述の如く亜鉛の溶射によシ製造する
ことができる。従来、亜鉛の溶射にはガス溶射法、ガス
粉末法、ガス溶棒法、プラズマジェット法があるが、亜
鉛粉末、亜鉛棒を酸素−燃料ガスの燃焼炎、空気、アル
ゴン、水素、ヘリウム等のプラズマ等により、溶解させ
空気中の被着体へ溶射するのが通常である。そして、被
着体に付着する前に表面に酸化皮膜が形成しない条件下
で溶射皮膜を形成するのが普通でもある。しかるに本発
明に使用する亜鉛粉末は従来、被着体部以外に飛散して
いた分野の粉末と同様に表面に酸化皮膜が形成されてい
るものであシ、被着体を設けずに空気中に打ち出すこと
により得られる。又、溶射打出し部の雰囲気を空気から
窒素酸素混合ガス雰囲気にして行って皮膜の厚みを増大
させることができる。
These particles can have a diameter of 0.1 to 500 .mu.m, with the best result being 1 to 300 .mu.m. This powder can be produced by thermal spraying of zinc as described above. Conventionally, there are gas spraying methods, gas powder methods, gas molten rod methods, and plasma jet methods for thermal spraying zinc. Usually, it is melted using plasma or the like and sprayed onto an adherend in the air. It is also common to form a thermal spray coating under conditions that do not form an oxide film on the surface before adhering to the adherend. However, the zinc powder used in the present invention has an oxide film formed on its surface, similar to powders used in the field that have conventionally been scattered to areas other than adherends, and is It can be obtained by launching the Furthermore, the thickness of the coating can be increased by changing the atmosphere of the thermal spraying part from air to a nitrogen-oxygen mixed gas atmosphere.

即ち本発明に使用する場合には、酸化皮膜が形成されれ
ば有効となるため、水中、高湿度、高温(但し亜鉛の融
点以下の温度)中へ溶射を行い酸化皮膜を有する亜鉛粉
末とする場合を含む。
That is, when used in the present invention, it is effective if an oxide film is formed, so the zinc powder is sprayed into water, high humidity, and high temperature (however, at a temperature below the melting point of zinc) to produce zinc powder with an oxide film. Including cases.

更に、上記の酸化皮膜助成法を採っても酸化皮膜形成が
不充分な場合には以下に示す好ましい方法がとられる。
Furthermore, if the formation of an oxide film is insufficient even after using the above-mentioned oxide film-assisting method, the following preferred method is used.

まず、水共存下での機械的処理として乳鉢式橿潰機、ロ
ール等で処理を行い粒子に機械的圧力を加える。更にこ
れを水中に24時間以上なかでも72時間ならば如何な
る粒子径のものでも完全な結果を与える。又、放置熟成
温度は20℃以上に保つことが好ましい。酸化皮膜の形
成は、上記メカノケミカル反応によらなくても熟成等に
よるケミカル反応だけでも形成できるが、通常、後者の
場合は時間がかかりすぎる。
First, the particles are mechanically treated in the presence of water using a mortar-type crusher, rolls, etc., and mechanical pressure is applied to the particles. Further, if it is kept in water for 24 hours or more, especially 72 hours, it will give perfect results regardless of the particle size. Further, it is preferable to keep the aging temperature at 20° C. or higher. Although the oxide film can be formed by chemical reaction such as aging without using the mechanochemical reaction described above, the latter method usually takes too much time.

この様に酸化皮膜形成、成長の要因は多岐にわたるが、
総括すると■ 機械的圧力の付加、■水中ないし高湿度
下での酸化反応、■ ■、■の相剰効果(メカノケミカ
ル反応)、■ 酸素濃度効果、■ 温度効果等が関係す
る。生成するウィスカーの寸法、特に針状部の長さから
評定すると上記■による時間が大きく影響を与える。た
だし短時間で効果は大である。
As described above, there are various factors that cause oxide film formation and growth.
To summarize, the following factors are involved: ■ Addition of mechanical pressure, ■ Oxidation reaction in water or under high humidity, ■ Reciprocal effect of ■ and ■ (mechanochemical reaction), ■ Oxygen concentration effect, ■ Temperature effect, etc. Judging from the dimensions of the generated whiskers, especially the length of the needle-like portions, the time given in (2) above has a large influence. However, the effect is great in a short period of time.

水との共存下での襠潰時間が長くなれば上記寸法も増大
する傾向にある。粉体上の酸化皮膜は焼成時その内部の
金属亜鉛部からの亜鉛の放出を抑制するし、又内部への
酸素の移行を抑制すると考えられる。このため単結晶成
長時に十分な時間が与えられ、結晶は寸法的に大きく成
長し、通常の気相法のものとかけ離れた巨大テトラボッ
ド状酸化亜鉛ウィスカーが発現するものと思われる。
The above-mentioned dimensions tend to increase as the crushing time in the coexistence with water increases. It is thought that the oxide film on the powder suppresses the release of zinc from the metallic zinc part inside the powder during firing, and also suppresses the migration of oxygen into the powder. For this reason, sufficient time is given during single crystal growth, and the crystal grows to a large size, and it is thought that giant tetrabod-shaped zinc oxide whiskers, which are far different from those of the normal gas phase method, are developed.

次に、放置後乾燥する。この乾燥は粉末表面の水分除去
が目的であり、次に焼成工程の高温中へ移行した当初の
前書が防がれるように、即ち、水分によるルツボ割れ、
粉の飛び散りがなくなる程度に乾燥すれば良好である。
Next, leave it to dry. The purpose of this drying is to remove moisture from the surface of the powder, and to prevent cracking of the crucible due to moisture, which occurs at the beginning of the transition to the high temperature of the firing process.
It is good if it dries to the extent that there is no scattering of powder.

このだめ風乾ないし亜鉛粉末が溶融しない高温迄の温度
範囲で行うことができる。
This drying can be carried out in a temperature range from air drying to high temperatures at which the zinc powder does not melt.

次に乾燥した粉末は耐熱容器、通常はアルミナ等のルツ
ボに入れ、酸素を含む雰囲気中で700〜1300℃、
中でも900〜11oo℃で加熱するのが、いかなる粒
子径でも良好な結果を与える。父上記温度域の炉内に前
記ルツボを保持しておき、調整した粉末を投入して焼成
しても好ましい結果を与える。焼成時間は、700〜1
300℃においては120〜10分間、900〜110
0℃においては90〜10分a1が適当である。前記加
熱焼成は通常空気中で行えば良いが、窒素と酸素の混合
比を調整したガスを用いても良結果となる。
Next, the dried powder is placed in a heat-resistant container, usually a crucible made of alumina, and heated to 700-1300°C in an oxygen-containing atmosphere.
Among these, heating at 900 to 110° C. gives good results regardless of the particle size. Even if the crucible is held in a furnace in the above temperature range and the prepared powder is charged and fired, a favorable result is obtained. Baking time is 700~1
900-110 for 120-10 minutes at 300°C
At 0°C, 90 to 10 minutes a1 is appropriate. The heating and baking process may normally be carried out in air, but good results can also be obtained by using a gas in which the mixing ratio of nitrogen and oxygen is adjusted.

金属亜鉛粉末は前記の様に粉末製造方法やその条件制御
により好ましい酸化皮膜を発現できるし、更に水共存下
での熟成処理により、完全化される。
Metallic zinc powder can develop a preferable oxide film by controlling the powder manufacturing method and its conditions as described above, and can be further perfected by aging treatment in the coexistence of water.

この事実はX線回折、電子顕微確観察によシ確認した。This fact was confirmed by X-ray diffraction and electron microscopic observation.

この様に形成された酸化皮膜又はこれらの処理では、ウ
ィスカーが発現する焼成工程に特別な効果を与える。即
ち、亜鉛粉末が酸化を受けない良好な方法で製造された
直後のもので、酸化皮膜の形成のないもの、あるいはX
線回折法では全く検出できない極めて薄くぜい弱な膜し
か有さないものでは、前記条件下の焼成時に不均一焼成
となシ、温度、酸素濃度等を調整しても、種々の色調の
団塊状酸化亜鉛と未燃焼の金属亜鉛が共存した系が生成
し、巨大ウィスカーは生成しない。一方、上記の成長し
た好ましい酸化皮膜を有する亜鉛粉末では、高温焼成が
均一かつ完全に進行して、金属亜鉛部は完全に酸化され
て、極めて高収率に巨大テトラボッド状ウィスカーに成
長する。一方、皮膜部の酸化物は層状に団塊状酸化亜鉛
となり生成する。
The oxide film formed in this way or these treatments has a special effect on the firing process in which whiskers develop. In other words, the zinc powder has just been produced using a good method that does not undergo oxidation, and there is no formation of an oxide film, or
If the film has an extremely thin and fragile film that cannot be detected at all by the linear diffraction method, it will not be baked uniformly under the above conditions, and even if the temperature, oxygen concentration, etc. A system in which zinc and unburned metallic zinc coexist is formed, and no giant whiskers are formed. On the other hand, in the case of the zinc powder having the preferable grown oxide film, the high-temperature firing progresses uniformly and completely, the metallic zinc part is completely oxidized, and the giant tetrabod-like whiskers grow in extremely high yield. On the other hand, the oxide in the film part forms a layered block of zinc oxide.

この様に亜鉛粉末が酸化皮膜により完全に覆われて、い
る場合にはテトラボッド状ウィスカーは完全に成長し、
形状的には二次的成長部や板状晶が極めて少なくなり巨
大化する。このため製造時に酸化皮膜が形成され、更に
上記の捕潰、熟成による皮膜形成を促した系では、形状
、大きさ共に良好なウィスカーを得ることができる。し
かるに皮膜の良否は前述の如く膜厚のみで一義的には決
定できなく、特に大きさ9寸法に関しては膜の組織、金
属部の体積比(粒径に依存)等により変化する。このた
め局部的に酸化皮膜が形成されている場合でもテトラボ
ッド状ウィスカーを得ることは可能であるが、形状、収
率はかなり低位となる。
In this way, when the zinc powder is completely covered with an oxide film, the tetrabod-like whiskers grow completely,
In terms of shape, there are extremely few secondary growth parts and plate-like crystals, making it huge. Therefore, in a system in which an oxide film is formed during production and further film formation is promoted by the above-mentioned crushing and ripening, whiskers with good shape and size can be obtained. However, as mentioned above, the quality of the film cannot be determined uniquely by the film thickness alone, and in particular, the nine dimensions vary depending on the structure of the film, the volume ratio of the metal part (depending on the particle size), etc. Therefore, even if an oxide film is locally formed, it is possible to obtain tetrabod-like whiskers, but the shape and yield will be quite low.

又焼成製造時に、加工調整された粉末のみかけ体積に比
し、ウィスカー生成系は急激に体積を増大するが、完全
気相法でソース部外へのウィスカの付着発現、成長のタ
イプではなく、基本的に大部分のものは原料設置部分に
連続的に生成成長する体積増加型のものである。
In addition, during firing production, the volume of the whisker generation system increases rapidly compared to the apparent volume of the processed powder, but in the complete vapor phase method, whiskers do not adhere to the outside of the source area or grow. Basically, most of them are of the volume-increasing type that continuously generate and grow in the raw material installation area.

実施例 以下に本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 純度99゜99% の純亜鉛線をガス溶解式溶射で溶射
した。上記亜鉛線の直径は1.5酎で、酸素−液化天然
ガスの燃焼炎で、亜鉛線系をガス化して湿度eo%RH
の空気中に打ち出した。溶射速度は6kg/hrとした
。この粉末を回収して、24時間湿度5oRH中で放置
して、120℃で3時間乾燥後この粉末をアルミナ磁器
製のルツボに入れ、予め970℃に保たれた電気炉内に
前記ルツボを配置させて、26分間焼成処理を行った。
Example 1 A pure zinc wire with a purity of 99°99% was thermally sprayed by gas melt spraying. The diameter of the above zinc wire is 1.5 mm, and the zinc wire system is gasified with oxygen-liquefied natural gas combustion flame to achieve a humidity of eo%RH.
launched into the air. The spraying speed was 6 kg/hr. This powder was collected, left in a humidity of 5oRH for 24 hours, dried at 120°C for 3 hours, then placed in an alumina porcelain crucible, and the crucible was placed in an electric furnace previously maintained at 970°C. Then, firing treatment was performed for 26 minutes.

この結果上記ルツボ内の下層部には団塊状酸化亜鉛が生
成され、上層部にはみかけ嵩比重0.11の巨大テトラ
ボッド状酸化亜鉛ウィスカー集合体が生成された。生成
酸化亜鉛中の上記ウィスカー集合体の割合は87wt%
であった。
As a result, nodular zinc oxide was produced in the lower layer of the crucible, and a giant tetrabod-shaped zinc oxide whisker aggregate with an apparent bulk specific gravity of 0.11 was produced in the upper layer. The proportion of the whisker aggregates in the produced zinc oxide is 87 wt%
Met.

得られた酸化亜鉛ウィスカーの電子顕微鏡写真を第1図
に示す。核部とこの核部から異なる4軸方向に伸びた針
状結晶部からなるテトラボッド状の結晶体が明確に認め
られる。針状結晶部が3軸或は2軸のものも認められる
が、これらは基本形4軸のものの一部が互いに接続して
生長時あるいは生長後に折損したものと思われる。又板
状晶のものも多小認められた。いずれにしても上記の方
法によるとテトラボッド状のものが90%以上を占める
An electron micrograph of the obtained zinc oxide whiskers is shown in FIG. A tetrabod-like crystal body consisting of a core and needle-shaped crystal parts extending from the core in four different axial directions is clearly recognized. Although some crystals with needle-like crystals have three or two axes, it is thought that some of the basic four-axes were connected to each other and broke during or after growth. A small number of plate crystals were also observed. In any case, according to the above method, more than 90% of the particles are in the form of tetrabods.

第2図は上記酸化亜鉛ウィスカーのX線回折図を示す。FIG. 2 shows an X-ray diffraction pattern of the zinc oxide whiskers.

全2酸化亜鉛のピークを示し、電子線回折の結果も転移
格子欠陥の少ない単結晶性を示しだ。また、不純物含有
量も少なく、原子吸光分析の結果、酸化亜鉛が99.9
7%であった。
It showed a total zinc dioxide peak, and electron diffraction results also showed single crystallinity with few dislocation lattice defects. In addition, the content of impurities is low, and as a result of atomic absorption spectrometry, zinc oxide content is 99.9%.
It was 7%.

実施例2 純度99.91 %の亜鉛線を実施例1と同様に溶射し
、その粉末を回収して、温度31℃、湿度75SRH中
に10日間放置した。これをイオン交換水soog中に
亜鉛粉末700gの割合で投入し、乳鉢型抽潰機で25
分間撹拌処理した。次に温度30℃の水中に72時間放
置熟成した。水量は粉体層から約1crnの水位を保っ
て大気中で保管した。この水中放置後150℃で1時間
の乾燥を行うことにより、水分を除去し、その後実施例
1と同様に焼成した。なお、焼成温度は96C)℃で3
o分間とした。
Example 2 Zinc wire with a purity of 99.91% was thermally sprayed in the same manner as in Example 1, and the powder was collected and left at a temperature of 31° C. and a humidity of 75 SRH for 10 days. This was added to 700g of zinc powder in ion-exchange water soog, and crushed with a mortar-type extractor for 25
The mixture was stirred for a minute. Next, it was left to mature in water at a temperature of 30° C. for 72 hours. The amount of water was kept at about 1 crn from the powder layer and stored in the atmosphere. After being left in the water, it was dried at 150° C. for 1 hour to remove moisture, and then fired in the same manner as in Example 1. The firing temperature was 96C) ℃.
o minutes.

こうして、みかけ嵩比重0.13の酸化亜鉛ウィスカー
81wt%を得た。他は団塊状酸化亜鉛で下層部に得ら
れた。このウィスカーの電子顕微鏡写真を第3図に示す
。得られたウィスカー中4軸テトラボッド状のものが9
2係であった。X線回折、電子線回折の結果は実施例1
と同様であっ九原子吸光分析では酸化亜鉛が99.96
%であった。
In this way, 81 wt % of zinc oxide whiskers with an apparent bulk specific gravity of 0.13 were obtained. The rest was nodular zinc oxide obtained in the lower layer. An electron micrograph of this whisker is shown in FIG. Among the resulting whiskers, 4-axis tetrabod-like ones were 9
I was in charge 2. The results of X-ray diffraction and electron beam diffraction are shown in Example 1.
Similarly, zinc oxide is 99.96 in nine atomic absorption spectrometry.
%Met.

実施例3 純度99.6%の亜鉛粉末を用いてガス粉末式で溶射し
た。酸素−液化天然ガスの燃焼炎で亜鉛粉末をガス化し
て湿度RHes%の空気中に打ち出した。溶射速度は4
に2/時間で行った。この粉末を回収して3日間湿度7
04RH中に放置した。
Example 3 Zinc powder with a purity of 99.6% was used for thermal spraying using a gas powder method. Zinc powder was gasified with an oxygen-liquefied natural gas combustion flame and launched into air with a humidity of RHes%. Spraying speed is 4
I went there in 2/hours. Collect this powder and keep the humidity at 7 for 3 days.
It was left in 04RH.

160’Cで12時間乾燥して、実施例1と同様な方法
で焼成した。焼成温度は950℃で40分間とした。ル
ツボの下層部には団塊状酸化亜鉛が生成され、上層部に
はみかけ嵩比重0.12の巨大テトラボッド状酸化亜鉛
ウィスカー集合体が生成された。生成酸化亜鉛中の上記
ウィスカー集合体の割合は81wtチ であった。
It was dried at 160'C for 12 hours and fired in the same manner as in Example 1. The firing temperature was 950°C for 40 minutes. Nodular zinc oxide was produced in the lower part of the crucible, and giant tetrabod-shaped zinc oxide whisker aggregates with an apparent bulk specific gravity of 0.12 were produced in the upper part. The ratio of the whisker aggregates in the produced zinc oxide was 81 wt.

得られた酸化亜鉛ウィスカーの電子顕微鏡写真を第4図
に示す。得られたウィスカー中4軸テトラボッド状のも
のが91チであった。X線、電子線回折の結果は実施例
1と同様であった。原子吸光分析では酸化亜鉛が99.
97%であった。
An electron micrograph of the obtained zinc oxide whiskers is shown in FIG. The number of four-axis tetrabod-like whiskers thus obtained was 91 inches. The results of X-ray and electron diffraction were the same as in Example 1. Atomic absorption spectrometry showed that zinc oxide was 99.
It was 97%.

実施例4 純度99.2%の亜鉛粉末を用いてガス粉末式で溶射を
行った。溶射条件は実施例3と同じとした。この粉末を
回収して、温度27℃、湿度76%RH中に12日間放
置した。これをイオン交換水4009に亜鉛粉末600
gの割合で投入し、乳鉢型捕潰機で10分間撹拌処理し
た。次にこれを温度30℃の水中に79時間放置熟成し
た。水量は粉体層から約1crnの水位を保って大気中
で保管した。この水中放置後160℃で4時間の乾燥を
行って水分を除去し、実施例1と同様に焼成した。但し
焼成温度は990℃で30分間とした。
Example 4 Thermal spraying was performed using a gas powder method using zinc powder with a purity of 99.2%. The thermal spraying conditions were the same as in Example 3. This powder was collected and left for 12 days at a temperature of 27° C. and a humidity of 76% RH. Add this to 4009 parts of ion exchange water and 600 parts of zinc powder.
g, and stirred for 10 minutes using a mortar-type crusher. Next, this was left to mature in water at a temperature of 30° C. for 79 hours. The amount of water was kept at about 1 crn from the powder layer and stored in the atmosphere. After being left in the water, it was dried at 160° C. for 4 hours to remove moisture, and fired in the same manner as in Example 1. However, the firing temperature was 990°C for 30 minutes.

こうしてみかけの嵩比重0.11の巨大酸化亜鉛ウィス
カー82wt%を得れ。他に団塊状酸化亜鉛がルツボ下
層部に得られた。
In this way, 82 wt % of giant zinc oxide whiskers with an apparent bulk specific gravity of 0.11 were obtained. In addition, nodular zinc oxide was obtained in the lower layer of the crucible.

このウィスカーの電子顕微鏡写真を第6図に示す。ウィ
スカー中の4軸テトラボツド状のものは94チであった
。X線回折、電子線回折の結果は実施例1と同様であっ
た。原子吸光分析では、酸化亜鉛が99.97チであっ
た。
An electron micrograph of this whisker is shown in FIG. The number of four-axis tetrabot-like whiskers was 94. The results of X-ray diffraction and electron beam diffraction were the same as in Example 1. Atomic absorption spectrometry showed that zinc oxide was 99.97%.

実り山側5 純度99.95%の亜鉛粉末を用いてプラズマジェット
式の溶射を行った。ヘリウムのプラズマ炎で亜鉛粉末を
ガス化して湿度RH67%RHの空気中に打ち出した。
Fruitful mountain side 5 Plasma jet thermal spraying was performed using zinc powder with a purity of 99.95%. Zinc powder was gasified with a helium plasma flame and launched into air with a humidity of 67% RH.

溶射速度は4に9/時間であった。この粉末を回収して
10日間温度es%RHの空気中に放置した。150℃
で12時間乾燥して実施例1と同様な方法で焼成した。
The spray rate was 4 to 9/hour. This powder was collected and left in air at a temperature of es%RH for 10 days. 150℃
It was dried for 12 hours and fired in the same manner as in Example 1.

焼成温度は960℃で20分間とした。ルツボの下層部
にはた 団塊状酸化亜鉛が生成さに上層部にはみかけ嵩比重0.
11の巨大テトラボッド状酸化亜鉛ウィスカー集合体が
生成された。生成酸化亜鉛中の上記ウィスカー集合体の
割合は86チであった。4られた酸化亜鉛ウィスカーの
電子顕微鏡写真を第6図に示す。ウィスカー中4軸テト
ラボッド状のものが92チであったX線、電子線回折の
結果は実施例1と同様であった。原子吸光分析では酸化
亜鉛が99.97チであった。
The firing temperature was 960°C for 20 minutes. Nodular zinc oxide is formed in the lower part of the crucible, while the upper part has an apparent bulk specific gravity of 0.
Eleven giant tetrabod-like zinc oxide whisker aggregates were produced. The ratio of the whisker aggregates in the produced zinc oxide was 86%. FIG. 6 shows an electron micrograph of the dissolved zinc oxide whiskers. The results of X-ray and electron diffraction were the same as in Example 1, in which the number of 4-axis tetrabod-shaped whiskers was 92. Atomic absorption spectrometry showed that zinc oxide was 99.97%.

実施例6 実施例5と同じ条件で溶射を行って粉末を回収した。温
度32℃湿度71%RH中で1Q日間放置した。この粉
末をイオン交換水600gに亜鉛粉末I TOO9の割
合で投入して、乳鉢型tlffi機で20分間撹拌処理
し、温度31℃の水中に、77時間放置熟成した。水量
は粉体層から約1tMの水位を保って大気中で保管した
。この水中放置後150℃で7時間乾燥した。次に実施
例1と同様に焼成した。但し焼成温度は986℃で35
分間とした。
Example 6 Thermal spraying was performed under the same conditions as in Example 5, and powder was recovered. It was left for 1Q at a temperature of 32° C. and a humidity of 71% RH. This powder was added to 600 g of ion-exchanged water at a ratio of 9 parts zinc powder, stirred in a mortar-type tlffi machine for 20 minutes, and left to mature in water at a temperature of 31° C. for 77 hours. The amount of water was kept at a level of about 1 tM from the powder layer and stored in the atmosphere. After being left in this water, it was dried at 150°C for 7 hours. Next, it was fired in the same manner as in Example 1. However, the firing temperature is 986℃ and 35℃.
It was set as 1 minute.

こうして、みかけの嵩比重0.09の巨大テトラボッド
状ウィスカー80%を得た。他に団塊状酸化亜鉛がルツ
ボ下層部に得られた。
In this way, 80% of giant tetrabod-like whiskers with an apparent bulk specific gravity of 0.09 were obtained. In addition, nodular zinc oxide was obtained in the lower layer of the crucible.

このウィスカーの電子顕微鏡写真を第5図に示す。ウィ
スカーの4軸テトラボツド状のものは94チであった。
An electron micrograph of this whisker is shown in FIG. The number of four-axis tetrabot-like whiskers was 94.

X線回折、電子線回折の結果は実施例1と同様であった
。電子吸光分析では酸化亜鉛が99.99%であった。
The results of X-ray diffraction and electron beam diffraction were the same as in Example 1. Electron absorption analysis showed that zinc oxide was 99.99%.

上記実施例を法衣にまとめる。The above embodiments are summarized in a robe.

駐米のウィスカー寸法の中の長さとはテトラボッド状構
造の針状結果部の基部から先端までの長さを示し、太さ
とは同針状部の基部の径を示す。数値は代表値である。
In the US whisker dimensions, the length refers to the length from the base to the tip of the needle-like resultant portion of the tetrabod-like structure, and the thickness refers to the diameter of the base of the needle-like portion. The numerical values are representative values.

発明の効果 本発明の製造方法によると新規な巨大テトラボッド状の
酸化亜鉛ウィスカーが得られる。又製造方法として、金
属亜鉛粉末の調整、水共存下での機械的捕潰処理、水中
での熟成、乾燥、焼成工程を採った場合、これらの工程
条件の設定で上記テトラボッド状酸化亜鉛ウィスカーの
各種の大きさのものが得られる。
Effects of the Invention According to the production method of the present invention, novel giant tetrabod-shaped zinc oxide whiskers can be obtained. In addition, when the manufacturing method includes preparation of metallic zinc powder, mechanical crushing treatment in the coexistence of water, aging in water, drying, and firing steps, the above-mentioned tetrabod-shaped zinc oxide whiskers can be produced by setting these process conditions. Various sizes are available.

本発明で得られるウィスカーは形状的には異方性がない
立体構造を有し、単結晶性のため、各種材料の強化材と
して用いる場合や、電子材料として用いる場合にも機械
的、電気的特性に異方性を生じさせない。又従来の酸化
亜鉛の微細針状結晶に比べて寸法面でも飛躍的に大きく
、金属や樹脂。
The whiskers obtained by the present invention have a three-dimensional structure with no anisotropy in terms of shape, and are single-crystalline, so they can be used as reinforcing materials for various materials or as electronic materials. Does not cause anisotropy in properties. In addition, it is significantly larger in size than the conventional fine needle-shaped zinc oxide crystals, making it suitable for metals and resins.

セラミックと複合させて、それらの機械的強度を強化で
きる等の効果の他の同種目的の炭化硅素や窒化硅素等に
比べて安価に製造できる利点を有しており、工兼的にも
経済的にも極めて大きな効果を奏するものである。
It has the advantage of being able to be manufactured at a lower cost than silicon carbide, silicon nitride, etc., which are used for similar purposes, and can be combined with ceramics to strengthen their mechanical strength. It also has an extremely large effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図〜第7図は本発明による巨大酸化亜
鉛ウィスカーの結晶構造を示す電子顕微鏡写真、第2図
はX線回折図である。 第1図 代理人の氏名 弁理士 粟 野 重 孝 ほか1名IO
例尻 劃 鰹 10←X 覧 図 第 図 1θOit淵 / 第 図 第 ア
1 and 3 to 7 are electron micrographs showing the crystal structure of giant zinc oxide whiskers according to the present invention, and FIG. 2 is an X-ray diffraction diagram. Figure 1 Name of agent Patent attorney Shigetaka Awano and one other IO
Example: Shiribonito 10 ←

Claims (3)

【特許請求の範囲】[Claims] (1)ガス溶解式溶射より得た亜鉛粉末を酸素を含む雰
囲気下で加熱処理して酸化亜鉛を生成させることを特徴
とする酸化亜鉛ウィスカーの製造法。
(1) A method for producing zinc oxide whiskers, which is characterized in that zinc powder obtained by gas-dissolved thermal spraying is heat-treated in an oxygen-containing atmosphere to produce zinc oxide.
(2)プラズマジェット式溶射より得た亜鉛粉末を酸素
を含む雰囲気下で加熱処理して酸化亜鉛を生成させるこ
とを特徴とする酸化亜鉛ウィスカーの製造法。
(2) A method for producing zinc oxide whiskers, which comprises heating zinc powder obtained by plasma jet spraying in an oxygen-containing atmosphere to produce zinc oxide.
(3)前記溶射より得た亜鉛粉末を水と共存下で擂潰し
、熟成させた後に水分を乾燥させる工程を付加した請求
項1または2記載の酸化亜鉛ウィスカーの製造法。
(3) The method for producing zinc oxide whiskers according to claim 1 or 2, further comprising the step of crushing the zinc powder obtained by the thermal spraying in the coexistence of water, aging it, and then drying the water.
JP63319020A 1988-12-16 1988-12-16 Manufacturing method of zinc oxide whiskers Expired - Fee Related JP2563544B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63319020A JP2563544B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zinc oxide whiskers
DE68924646T DE68924646T2 (en) 1988-12-16 1989-12-13 METHOD FOR PRODUCING ZINCOXIDE WHISKERS.
EP90900992A EP0407601B1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
PCT/JP1989/001246 WO1990007022A1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
KR1019900701787A KR930007857B1 (en) 1988-12-16 1989-12-13 Production method of zinc-oxide whisker
US07/566,475 US5158643A (en) 1988-12-16 1989-12-13 Method for manufacturing zinc oxide whiskers
CA002005737A CA2005737C (en) 1988-12-16 1989-12-15 Manufacturing method of zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319020A JP2563544B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zinc oxide whiskers

Publications (2)

Publication Number Publication Date
JPH02164795A true JPH02164795A (en) 1990-06-25
JP2563544B2 JP2563544B2 (en) 1996-12-11

Family

ID=18105610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319020A Expired - Fee Related JP2563544B2 (en) 1988-12-16 1988-12-16 Manufacturing method of zinc oxide whiskers

Country Status (1)

Country Link
JP (1) JP2563544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074666A (en) * 2006-09-21 2008-04-03 Tohoku Univ Zinc oxide fiber exhibiting visible light responsive photocatalytic function and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074666A (en) * 2006-09-21 2008-04-03 Tohoku Univ Zinc oxide fiber exhibiting visible light responsive photocatalytic function and preparation method

Also Published As

Publication number Publication date
JP2563544B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
KR920009567B1 (en) Zinc oxide whiskers having a tetrapod crystalline form and method for making the same
Hou et al. Effect of Surface‐Applied Reactive Element Oxide on the Oxidation of Binary Alloys Containing Cr
CN110315075B (en) Synchronous laser heat treatment method for manufacturing nickel-based high-temperature alloy through laser additive
CN109369312B (en) Core-shell structure thermite and preparation method thereof
CN115536386B (en) High fracture toughness, CMAS corrosion resistance and ultra-high temperature sintering thermal barrier coating material, preparation and application thereof, and thermal barrier coating
JPH03115535A (en) Method for decreasing oxygen in rare earth metal
JPS63260856A (en) Semitransparent ceramic material, manufacture of products therefrom and high voltage discharge lamp
JP2600762B2 (en) Method for producing zinc oxide whiskers
JPH08253389A (en) Ceramic composite material
KR930007857B1 (en) Production method of zinc-oxide whisker
JP2697431B2 (en) Zinc oxide crystal and method for producing the same
JPH02164795A (en) Production of zinc oxide whisker
JPH08253390A (en) Ceramic composite material
US4853204A (en) Method for production of oxidation-resistant silicon nitride material
JP4253855B2 (en) Vapor deposition material
CN114315348A (en) Preparation method of fully-stable square YSZ target and ultra-long-life EB-PVD coating
JP2605847B2 (en) Manufacturing method of zinc oxide whiskers
CN108002389B (en) The method and silicon powder of zinc bismuth alloy coated Si magnesium granules preparation foam-like silicon powder
JP2584032B2 (en) Manufacturing method of zinc oxide whiskers
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JP2584035B2 (en) Method for producing zinc oxide whiskers
JPH09208306A (en) Zirconia member and its production
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP2764318B2 (en) Method for producing titanium carbide having acicular particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees