JPH0216427B2 - - Google Patents

Info

Publication number
JPH0216427B2
JPH0216427B2 JP57098959A JP9895982A JPH0216427B2 JP H0216427 B2 JPH0216427 B2 JP H0216427B2 JP 57098959 A JP57098959 A JP 57098959A JP 9895982 A JP9895982 A JP 9895982A JP H0216427 B2 JPH0216427 B2 JP H0216427B2
Authority
JP
Japan
Prior art keywords
fiber
porosity
fibers
water
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57098959A
Other languages
Japanese (ja)
Other versions
JPS58218542A (en
Inventor
Shigenori Fukuoka
Kazuyoshi Tsuchida
Takashi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9895982A priority Critical patent/JPS58218542A/en
Publication of JPS58218542A publication Critical patent/JPS58218542A/en
Publication of JPH0216427B2 publication Critical patent/JPH0216427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】 本発明は、建物、特に地下室の壁装材に関する
ものであり、更にくわしくは室内において発生す
る水蒸気を透湿により室外に除去するとともに、
室外が高湿の際には、室内へ向う水蒸気を壁の内
部で結露させ、毛細管現象により地上へ排出する
ことにより、室内への水蒸気流入を防ぐ効果を有
する壁装材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wall covering material for a building, especially a basement, and more specifically, it removes water vapor generated indoors to the outside through moisture permeation, and
The present invention relates to a wall covering material that has the effect of preventing water vapor from flowing indoors when the humidity is high outdoors by condensing the water vapor heading indoors inside the wall and discharging it to the ground through capillary action.

従来、水蒸気透過性のない地下構造の室内では
生活環境下で多くの熱・水蒸気が発生している。
例えば、冬期、石油ストーブなどで暖を採つたの
ち、夜間、石油ストーブの加熱をとめて室内を密
封しておくと、室内温度が低下し、ついには壁面
温度が露点以下になり結露を起す。結露がたび重
なると、カビが発生し、美観上あるいは健康上好
ましくない。
Conventionally, indoor rooms with underground structures that are not permeable to water vapor generate a lot of heat and water vapor in the living environment.
For example, in the winter, if you use a kerosene stove to warm yourself, then turn off the kerosene heater and seal the room at night, the indoor temperature will drop, and eventually the wall surface temperature will drop below the dew point, causing condensation. Frequent condensation can lead to mold growth, which is undesirable from an aesthetic or health standpoint.

一方、水蒸気透過性のある繊維集合体よりなる
壁装材、例えば、ガラス繊維100%よりなる壁で
は、室外の水蒸気圧が高い場合、室内への水蒸気
の流入や水の流入が起り、これは、室内壁として
は不適当である。
On the other hand, with wall covering materials made of fiber aggregates that are permeable to water vapor, such as walls made of 100% glass fiber, when the outdoor water vapor pressure is high, water vapor and water will flow into the room. , unsuitable for indoor walls.

本発明者らは、建物、特に地下室の壁装材に関
し、鋭意検討の結果、結露を防止し、且つ、室内
へ水蒸気や水の流入を防止する壁装材を見い出し
た。
The present inventors have conducted intensive studies regarding wall covering materials for buildings, especially basements, and have discovered a wall covering material that prevents dew condensation and prevents water vapor and water from flowing into the room.

即ち、本発明は、繊維集合体の厚さ方向の中間
層に、表面親水性繊維層が配されており、しかも
前記繊維集合体の少なくとも室内側に撥水性多孔
質膜が配されてなる壁装材である。
That is, the present invention provides a wall in which a surface hydrophilic fiber layer is arranged as an intermediate layer in the thickness direction of a fiber assembly, and a water-repellent porous membrane is arranged at least on the indoor side of the fiber assembly. It is a dressing material.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

繊維集合体とは、無機、有機を問わず、繊維状
物の集合体を意味し、集合体形成の方法として
は、不繊布状(ニードルパンチの如く接着剤のな
いボンド方式や接着剤のあるボンド方式を含む)、
編繊物状など集合成形された形態をいう。また、
ガラス繊維ウエブの如く、単に繊維が並べられた
後、針金などで形態保持されているものでもよ
い。
Fiber aggregate refers to an aggregate of fibrous materials, whether inorganic or organic, and methods of forming aggregates include nonwoven fabrics (bond methods without adhesives such as needle punching, bond methods with adhesives, etc.). (including bond method),
Refers to a form that is assembled and formed, such as a knitted fiber shape. Also,
It may be a glass fiber web in which the fibers are simply arranged and then held in shape with a wire or the like.

該繊維集合体の厚さ方向の中間層に配される表
面親水性繊維層の繊維とは、内径10mmのガラス管
に多孔度率(後述する)70%になるように繊維を
充填し、ガラス管の下端10mmを水に浸漬した時、
浸漬から5分後で毛細管現象によるガラス管内の
水面上昇が水浸漬面から30mm以上示す繊維をい
う。例えば、アクリロニトリル繊維、レーヨン、
木綿、親水性の改良された改質ポリエステル繊維
などが含まれる。本発明においては、該表面親水
性繊維が繊維集合体の厚さ方向の中間層に配して
即ち、壁面に平行に配して充填されることが必要
である。これは、表面親水性繊維層を壁面に平行
に位置することにより、毛細管現象の効果をより
以上に発揮させ、吸水したり結露した水を地下室
上部へ運び、壁外へ除去するためである。この
時、表面親水性繊維層の多孔度率が小さい程、毛
細管上昇の速度は早くなるので、室外側に位置す
る繊維集合体の多孔度率が表面親水性繊維層のそ
れよりも大きいことが好ましい。表面親水性繊維
層の多孔度率を80%以下、好ましくは65%以下に
するのが望ましい。
The fibers of the surface hydrophilic fiber layer arranged in the intermediate layer in the thickness direction of the fiber aggregate are made by filling a glass tube with an inner diameter of 10 mm with fibers so that the porosity ratio (described later) is 70%. When the lower end of the tube 10mm is immersed in water,
Fibers whose water level within the glass tube rises 30 mm or more from the water immersion surface due to capillary action after 5 minutes of immersion. For example, acrylonitrile fiber, rayon,
These include cotton and modified polyester fibers with improved hydrophilicity. In the present invention, it is necessary that the surface hydrophilic fibers be arranged in the intermediate layer in the thickness direction of the fiber assembly, that is, arranged and filled in parallel to the wall surface. This is because by locating the surface hydrophilic fiber layer parallel to the wall surface, the effect of capillary action is enhanced, and absorbed or condensed water is transported to the upper part of the basement and removed outside the wall. At this time, the smaller the porosity of the surface hydrophilic fiber layer, the faster the rate of capillary rise, so it is likely that the porosity of the fiber aggregate located on the outdoor side is larger than that of the surface hydrophilic fiber layer. preferable. It is desirable that the porosity of the surface hydrophilic fiber layer be 80% or less, preferably 65% or less.

繊維集合体の多孔度率置としては多孔度率が小
さい場合、即ち、繊維の密な場合で30〜35%、多
孔度率が大きい場合、即ち、繊維の疎な場合で80
〜85%が壁装材を形成し得る限界である。
The porosity of the fiber aggregate is 30 to 35% when the porosity is small, that is, when the fibers are dense, and 80% when the porosity is large, that is, when the fibers are sparse.
~85% is the limit for forming wall coverings.

ここで、多孔度率とは一定容積中に充填される
繊維量で定まり、次式で表わされる。
Here, the porosity is determined by the amount of fibers filled in a certain volume, and is expressed by the following formula.

P=(V−M/S)/V×100(%) 但し、 V:繊維集合体が占める全容積 M:充填されている繊維の重量 S:繊維の比重 したがつて、多孔度大とは上式からも明らかな
ように、一定容積に詰められている繊維重量が少
ないことを意味し、多孔度小とは逆に一定容積に
つめられている繊維重量が多いことを意味する。
繊維集合体の厚み方向に多孔度率の変化をもたせ
るには、例えば、不繊布などで同一面積に於て同
一重量の繊維を用い、その積層厚みを変えること
によつて得られるし、また、繊維太さを変化させ
ることによつても多孔度率を変化させることがで
きる。不繊布などにおいて、その繊維間の結合は
ニードルパンチまたは熱押圧による成型などの接
着剤なしの結合であつてもよいし、また、接着剤
による結合であつてもよい。しかし、後者の場
合、繊維間隙を接着剤で完全に埋めてしまうのは
好ましくない。
P=(V-M/S)/V×100(%) However, V: Total volume occupied by the fiber aggregate M: Weight of filled fibers S: Specific gravity of fibers Therefore, what is high porosity? As is clear from the above equation, it means that the weight of fibers packed into a given volume is small, and conversely to low porosity it means that the weight of fibers packed into a given volume is large.
The porosity can be varied in the thickness direction of the fiber aggregate by, for example, using fibers of the same weight in the same area with nonwoven fabric, and by changing the laminated thickness. The porosity can also be changed by changing the fiber thickness. In nonwoven fabrics, the bond between fibers may be bonded without an adhesive, such as by needle punching or hot pressing, or may be bonded with an adhesive. However, in the latter case, it is not preferable to completely fill the fiber gaps with adhesive.

また、室内側に位置する繊維集合体の多孔度率
は、特に限定されないが、好ましくは、上記の繊
維集合体の効果を達成させるために、表面親水性
繊維層の多孔度率よりも小さい方が好ましい。
In addition, the porosity of the fiber aggregate located on the indoor side is not particularly limited, but preferably is smaller than the porosity of the surface hydrophilic fiber layer in order to achieve the above effect of the fiber aggregate. is preferred.

繊維集合体および表面親水性繊維層の総厚みは
保温効果を考慮して2mm以上必要であり、特に好
ましくは5〜15mmである。また、繊維集合体と表
面親水性繊維層の厚み比は4:1ぐらいが適当で
ある。
The total thickness of the fiber aggregate and the surface hydrophilic fiber layer must be 2 mm or more in consideration of the heat retention effect, and is particularly preferably 5 to 15 mm. Further, the appropriate thickness ratio between the fiber aggregate and the surface hydrophilic fiber layer is about 4:1.

本発明は、また、上記繊維集合体の少なくとも
室内側に撥水性多孔質膜を配したものである。
The present invention also provides a water-repellent porous membrane at least on the indoor side of the fiber aggregate.

撥水性多孔質膜とは、水は通過させず、水蒸気
状態の時は通過できる孔を多数有するシート状物
であり、例えば、ポリエチレン、ポリスチレン、
テフロンなどの製膜時に特定の熱処理やテンショ
ンをかけることにより製造される。その孔径は
0.5〜100μmであり、水蒸気透過量と耐水圧のバ
ランスから0.5〜50μmが好ましい。ここで、撥水
性とは、JIS L1000−1976に定められたスプレー
テストで70点以上を示す状態をいう。該多孔質膜
は、補強材としての通常の有機、無機繊維よりな
る繊物などで補強されてもよい。
A water-repellent porous membrane is a sheet-like material that does not allow water to pass through, but has many pores that allow it to pass through when it is in a water vapor state.
It is manufactured by applying specific heat treatment and tension when forming a film such as Teflon. The pore size is
The thickness is 0.5 to 100 μm, and preferably 0.5 to 50 μm in view of the balance between water vapor permeation and water pressure resistance. Here, water repellency refers to a state showing a score of 70 or more in the spray test specified in JIS L1000-1976. The porous membrane may be reinforced with ordinary fibers made of organic or inorganic fibers as a reinforcing material.

該膜は、水蒸気透過性はあるが1000mm以上の耐
水圧をも示すために、室内からの水蒸気透過は行
えるが、屋外からの水の流入を防ぐ効果を有する
ものである。該膜は、繊維集合体の少なくとも一
側に配されることが必要であるが、両側に配され
ていてもよい。多孔質膜と繊維集合体とは接着に
より接合されるが、その場合、全面接着しないで
点状、線状、網目状に接着されていることが好ま
しい。本発明の壁装材は多孔質膜側を室内側に配
して用いられる。
Although this membrane is permeable to water vapor, it also has a water pressure resistance of 1000 mm or more, and therefore allows water vapor to pass through from indoors, but has the effect of preventing water from entering from outdoors. The membrane needs to be placed on at least one side of the fiber assembly, but may be placed on both sides. The porous membrane and the fiber aggregate are bonded together by adhesion, but in that case, it is preferable that they are bonded in dots, lines, or mesh shapes without being bonded over the entire surface. The wall covering material of the present invention is used with the porous membrane side facing the indoor side.

次に本発明の効果について説明する。 Next, the effects of the present invention will be explained.

地下室内が室外に比べて水蒸気圧の高い時は、
(この時は、温度も室内が高くなつている)室内
外の水蒸気圧差、温度差により水蒸気は多孔質膜
を通つて室外へ出てゆく。このために、室内の湿
度の上昇は押えられ、たとえ温度が少し下つても
結露することはない。
When the water vapor pressure inside the basement is higher than outside,
(At this time, the temperature inside the room is also high.) Due to the difference in water vapor pressure and temperature between the indoor and outdoor areas, water vapor exits the room through the porous membrane. This suppresses the rise in indoor humidity and prevents condensation even if the temperature drops slightly.

一方、室外の湿度が高い場合、壁装材の外面か
ら内面へ水蒸気の浸入が考えられるが、この際、
室外側の繊維集合体の多孔度率が表面親水性繊維
層のそれよりも低いために水蒸気の拡散が一時妨
げられ、この部分での水蒸気圧の上昇と温度の低
下により表面親水性繊維層において結露する。一
旦結露が始まると、前記繊維層での水蒸気透過性
は更に低下し、ますます結露水の発生が多くな
る。この間に、結露水は表面親水性繊維層の毛細
管現象により地下室壁面の上部へ移動してゆき、
この壁の上端でこの水を空気中へ放散させるか小
溝を設けて除去するなどすればよい。
On the other hand, if the humidity outside is high, water vapor may infiltrate from the outer surface of the wall covering material to the inner surface, but in this case,
Since the porosity of the fiber aggregate on the outdoor side is lower than that of the surface hydrophilic fiber layer, the diffusion of water vapor is temporarily hindered, and due to the increase in water vapor pressure and the decrease in temperature in this area, the porosity in the surface hydrophilic fiber layer increases. Condensation occurs. Once condensation begins, the water vapor permeability of the fiber layer further decreases, and more and more condensed water is generated. During this time, the condensed water moves to the upper part of the basement wall due to the capillary action of the surface hydrophilic fiber layer.
At the upper end of this wall, this water can be dissipated into the air or removed by creating a small groove.

以下、図面に記載した実施例について説明す
る。
The embodiments shown in the drawings will be described below.

実施例 厚さ3mmのガラス繊維シート(多孔度率60%)
2、単繊維繊度3デニールのアクリロニトリル繊
維をニードルパンチし、その後、熱加圧した厚さ
2mmのシート(多孔度率65%)3、厚さ5mmのガ
ラス繊維シート(多孔度率80%)4を積層し、パ
ンチングメタルで保持し、シート2側に水蒸気透
過性が6800gm2/24hrであつて、最多孔径が0.5μ
m、気孔率が82%(気孔率とは全面積に対する孔
面積のしめる割合をいう)であるテフロンフイル
ムの多孔質膜1を配して、壁装材Aを形成し、多
孔質膜1側を地下室内側に配し、第2図に示すよ
うに、コンクリート壁5より約15mm離して設置し
た。床面および天井面は、蒸気透過性のないよう
にアクリル塗装した鉄板を用いた。該地下室内
で、石油ストーブを燃焼させ、室内を20℃に加温
した。この時の湿度は55%であつた。その後、石
油ストーブを止めて室内を密封しておき、コンク
リート壁と本発明壁装材の空間層6に冷気を入れ
て室内温を5℃まで下げた。
Example: Glass fiber sheet with a thickness of 3 mm (porosity rate 60%)
2. Needle-punched acrylonitrile fiber with a single fiber fineness of 3 denier, then heat-pressed to create a 2 mm thick sheet (65% porosity) 3. 5 mm thick glass fiber sheet (80% porosity) 4 are laminated and held by punching metal, and the sheet 2 side has a water vapor permeability of 6800gm 2 /24hr and a maximum pore diameter of 0.5μ.
m, a porous membrane 1 made of Teflon film with a porosity of 82% (porosity refers to the ratio of the pore area to the total area) is arranged to form the wall covering material A, and the porous membrane 1 side is was placed on the inside of the basement, and was installed approximately 15 mm away from the concrete wall 5, as shown in Figure 2. The floor and ceiling surfaces were made of iron plates coated with acrylic to prevent vapor permeability. A kerosene stove was fired in the basement to heat the room to 20°C. The humidity at this time was 55%. Thereafter, the kerosene stove was turned off, the room was sealed, and cold air was introduced into the concrete wall and the space layer 6 of the wall covering material of the present invention to lower the room temperature to 5°C.

しかし、壁装材Aの室内側の壁面には結露は生
じなかつた。ここにおいて、水蒸気透過性は
ASTM E96−66E法によつて測定した。
However, no condensation occurred on the indoor wall surface of wall covering material A. Here, water vapor permeability is
Measured by ASTM E96-66E method.

なお、この時、壁装材Aを詳細に調べたとこ
ろ、シート3の部分に結露が多く見られたが、該
結露は毛細管現象により上方へ移動し、ついには
上部より屋外へ除去されていることがわかつた。
At this time, when wall covering material A was examined in detail, it was found that there was a lot of dew condensation on the sheet 3 part, but the condensation moved upward due to capillary action and was finally removed from the top to the outside. I found out.

比較例 実施例1の壁装材の表面にアクリル塗装した鉄
板を用いて、実施例1と同様に室内条件でテスト
を行なつたところ、鉄板の壁面には多くの結露が
見られた。
Comparative Example When a test was conducted under the same indoor conditions as in Example 1 using an iron plate coated with acrylic on the surface of the wall covering material of Example 1, a large amount of dew condensation was observed on the wall surface of the iron plate.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の壁装材の実施例を示すもので、
第1図は巾方向の縦断面図、第2図は本願の壁装
材を地下室に用いた場合の模式図である。 A:壁装材。
The drawings show examples of the wall covering material of the present invention.
FIG. 1 is a longitudinal sectional view in the width direction, and FIG. 2 is a schematic diagram when the wall covering material of the present invention is used in a basement. A: Wall covering material.

Claims (1)

【特許請求の範囲】 1 繊維集合体の厚さ方向の中間層に表面親水性
繊維層が配されており、しかも前記繊維集合体の
少なくとも室内側に撥水性多孔質膜を配したこと
を特徴とする透湿性を有する壁装材。 2 室外側に位置する繊維集合体の多孔度率が表
面親水性繊維層のそれよりも大きいものである特
許請求の範囲第1項に記載した透湿性を有する壁
装材。 ここで、 多孔度率P(%)=(V−M/S)/V×100 但し、 V:繊維集合体が占める全容積 M:充填されている繊維の重量 S:繊維の比重
[Scope of Claims] 1. A surface hydrophilic fiber layer is arranged as an intermediate layer in the thickness direction of the fiber assembly, and a water-repellent porous membrane is arranged at least on the indoor side of the fiber assembly. Wall covering material with moisture permeability. 2. The wall covering material having moisture permeability as set forth in claim 1, wherein the porosity of the fiber aggregate located on the outdoor side is larger than that of the surface hydrophilic fiber layer. Here, porosity P (%) = (V-M/S)/V x 100 However, V: Total volume occupied by the fiber aggregate M: Weight of filled fibers S: Specific gravity of fibers
JP9895982A 1982-06-08 1982-06-08 Wall material having water permeability Granted JPS58218542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895982A JPS58218542A (en) 1982-06-08 1982-06-08 Wall material having water permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895982A JPS58218542A (en) 1982-06-08 1982-06-08 Wall material having water permeability

Publications (2)

Publication Number Publication Date
JPS58218542A JPS58218542A (en) 1983-12-19
JPH0216427B2 true JPH0216427B2 (en) 1990-04-17

Family

ID=14233611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895982A Granted JPS58218542A (en) 1982-06-08 1982-06-08 Wall material having water permeability

Country Status (1)

Country Link
JP (1) JPS58218542A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438614A (en) * 1977-09-01 1979-03-23 Taiho Kogyo Co Ltd Method of adjusting interior humidity of building and preventing dewing on wall
JPS5741732B2 (en) * 1977-11-24 1982-09-04

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145907U (en) * 1978-03-27 1979-10-11
JPS6134114Y2 (en) * 1980-08-21 1986-10-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438614A (en) * 1977-09-01 1979-03-23 Taiho Kogyo Co Ltd Method of adjusting interior humidity of building and preventing dewing on wall
JPS5741732B2 (en) * 1977-11-24 1982-09-04

Also Published As

Publication number Publication date
JPS58218542A (en) 1983-12-19

Similar Documents

Publication Publication Date Title
CN101072919A (en) Firewall insulation
CA2379679A1 (en) Metal building insulation assembly
US11851871B2 (en) Multifunctional system for passive heat and water management
CN206916991U (en) A kind of New-type heat insulating walling structure
KR101604071B1 (en) floor structures and construction method using hemp and ocher
JP3002100B2 (en) Laminated pulverized coal sheet cloth for concrete walls in buildings
JPH0216427B2 (en)
JP4272311B2 (en) Roof insulation and waterproof structure
JPH0216426B2 (en)
JP2002172739A (en) Moisture permeable waterproof sheet and wall structure
JPH08188486A (en) Curing of concrete and curing sheet using the same
JP2000352130A (en) Thermal insulating material
EP1489056B1 (en) Render system for a mineral wall
JP6842390B2 (en) Fiber base material for placing concrete, etc.
JPH0644961Y2 (en) Sheet material for construction
EP3337922B1 (en) Composite, greening system and device for thermal insulation
US20090158683A1 (en) Multiple sheet building wrap for use in external wall assemblies having wet-applied facades
CN205369561U (en) Thin external thermal insulation system that plasters of rock wool
CN217782408U (en) Indoor dampproofing structure of basement
WO2008085477A1 (en) Multiple sheet building wrap for use in external wall assemblies havin wet-applied facades and method of installation
DE202004021414U1 (en) Surface plaster for a heat storable wall
JPH04261940A (en) Interior finish structure for basement
JP4060284B2 (en) Artificial soil sheet for wall greening
JPS6023153Y2 (en) sound absorbing foam glass plate
DE69917992D1 (en) Insulating and sound absorbing roof