JPH0216406B2 - - Google Patents

Info

Publication number
JPH0216406B2
JPH0216406B2 JP57003670A JP367082A JPH0216406B2 JP H0216406 B2 JPH0216406 B2 JP H0216406B2 JP 57003670 A JP57003670 A JP 57003670A JP 367082 A JP367082 A JP 367082A JP H0216406 B2 JPH0216406 B2 JP H0216406B2
Authority
JP
Japan
Prior art keywords
girder
construction
erected
weight
superstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57003670A
Other languages
Japanese (ja)
Other versions
JPS58120904A (en
Inventor
Motoyoshi Takita
Shigetaka Mitsufuji
Yasumitsu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP57003670A priority Critical patent/JPS58120904A/en
Publication of JPS58120904A publication Critical patent/JPS58120904A/en
Publication of JPH0216406B2 publication Critical patent/JPH0216406B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】 本発明は、プレストレストコンクリート橋梁、
即ちPC橋梁架設工事に使用される架設桁に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a prestressed concrete bridge,
That is, it relates to construction girders used in PC bridge construction work.

PC橋梁の架設工法の一つにP&Z工法がある
が、このP&Z工法は、第1図に示すように橋梁
上部工上に設けた架設桁から型枠装置を懸吊し、
橋脚の両側に上部工を順次張出し分割施工する工
法である。この工法において使用される架設桁に
は、打設される1ブロツク分のコンクリート重
量、吊り枠、型枠の重量および架設桁自身の自重
などが荷重として作用する。
One of the construction methods for PC bridges is the P&Z construction method, which involves suspending formwork from construction girders installed on the bridge superstructure, as shown in Figure 1.
This is a construction method in which the superstructure is sequentially extended and constructed in sections on both sides of the pier. The weight of concrete for one block to be cast, the weight of the hanging frames and formwork, and the dead weight of the girder itself act as loads on the girder used in this construction method.

ところで、架設桁の構造、断面強度は、次の2
つのいずれかの状態で決定される。
By the way, the structure and cross-sectional strength of the construction girder are as follows:
determined by one of the following conditions:

(1) 架設桁先端の補助支柱が次橋脚に到達する直
前の状態(第2図A) (2) 橋脚の両側へ、第1ブロツクまたは第2ブロ
ツクを張出し施工している状態(第2図B) (1)の状態にあつては、架設桁の自重によつての
み決まり、(2)の状態でも架設桁の自重が大きな要
素となつている。したがつて、架設桁の自重を減
ずることは、架設桁に作用する荷重を小さくする
ことにもなり、このことが架設桁の断面を小さく
できることにもなり、その結果、架設桁の自重を
さらに小さくすることができ、相乗的に架設桁の
自重を軽減できて、架設桁の自重が上部工や下部
工に与える影響を減らし、上部工や下部工の断面
を小さくすることが可能となる。しかし、上部工
の径間が長くなると、架設桁の支間も長くなり、
その結果、架設桁の自重が重くなるという欠点が
あつた。
(1) The state immediately before the auxiliary column at the tip of the erected girder reaches the next pier (Fig. 2 A) (2) The state in which the first block or the second block is extended and constructed on both sides of the pier (Fig. 2) B) In the condition (1), it is determined only by the self-weight of the erected girder, and even in the condition (2), the self-weight of the erected girder is a major factor. Therefore, reducing the self-weight of the erected girder also reduces the load acting on the erected girder, which in turn allows the cross section of the erected girder to be made smaller, and as a result, the self-weight of the erected girder can be further reduced. This can synergistically reduce the weight of the erected girder, reduce the influence of the erected girder's own weight on the superstructure and substructure, and make it possible to reduce the cross section of the superstructure and substructure. However, as the span of the superstructure becomes longer, the span of the erection girder also becomes longer.
As a result, there was a drawback that the self-weight of the erection girder became heavy.

本願発明は、上記の如き実情に鑑み創案された
ものであつて、その目的とするところは、上部工
の径間が長い場合に使用される架設桁の自重を軽
減することができる斜引張ケーブルを併用した架
設桁を提供しようとするものである。
The present invention was devised in view of the above-mentioned circumstances, and its purpose is to provide a diagonal tension cable that can reduce the weight of an erection girder used when the span of a superstructure is long. The aim is to provide an erection girder that uses both.

本発明の構成を第3図以下の図面に示された一
実施例について説明する。1は橋脚2上に施工さ
れた既設橋(PC橋梁)であつて、上部工を構成
するものである。なお、橋脚2は下部工を構成す
る。上記既設橋1の上方には、架台3に直接支承
された架設桁4が載置されている。該架設桁4に
は、曲げモーメントが最大になる位置、即ち、架
設桁4が既設橋1の張出し部の先端に位置する架
台3aから最大に突出したときの架台3a上の位
置に、第5図に示すように、架設桁4の方向から
見て二等辺三角形の形状からなる支柱5が装着さ
れている。この支柱5はその両基端部5aが上記
架設桁4の両側板4aの上縁部に突出して設けら
れた反力受ブラケツトに6に、架設桁4の桁軸方
向に起伏回動可能に装着されている。
The structure of the present invention will be explained with reference to one embodiment shown in the drawings from FIG. 3 onwards. 1 is an existing bridge (PC bridge) constructed on piers 2 and constitutes a superstructure. Note that the pier 2 constitutes a substructure. Above the existing bridge 1, an erection girder 4 directly supported by a pedestal 3 is placed. The construction girder 4 has a fifth section located on the pedestal 3a at the position where the bending moment is maximum, that is, when the construction girder 4 protrudes to the maximum from the pedestal 3a located at the tip of the overhanging part of the existing bridge 1. As shown in the figure, struts 5 having an isosceles triangular shape when viewed from the direction of the construction girder 4 are attached. Both base ends 5a of this support column 5 are attached to reaction force receiving brackets 6 provided protruding from the upper edges of both side plates 4a of the construction girder 4, so that the pillar 5 can be raised and rotated in the direction of the girder axis of the construction girder 4. It is installed.

7は架設桁4の桁軸方向に張架されるケーブル
であつて、該ケーブル7は上記支柱5の両側で、
架設桁4の両側板4aの上縁部に等距離離れて設
けられたケーブル取付部4bに両端を固定し、上
記支柱5の先端部に桁軸方向に開設した孔5b内
を挿通して、両側に傾斜して張設されている。こ
のケーブル取付部4bの一方は、上記架設桁4が
前記架台3aから最大に突出したとき、突出部の
架設桁4の自重の重心位置または重心付近位置で
ある。
7 is a cable stretched in the direction of the girder axis of the construction girder 4, and the cable 7 is on both sides of the support column 5,
Both ends are fixed to cable attachment parts 4b provided equidistantly apart on the upper edges of both side plates 4a of the construction girder 4, and the cables are inserted through holes 5b opened in the tip of the support column 5 in the direction of the girder axis. It is slanted on both sides. One of the cable attachment parts 4b is located at or near the center of gravity of the construction girder 4 as a protruding part when the construction girder 4 protrudes to the maximum from the frame 3a.

8は前記反力受けブラケツト6の近傍の架設桁
4の両側板4aに取付けられた油圧ジヤツキであ
つて、該油圧ジヤツキ8の先端は前記支柱5の基
端部5a近傍に連結されており、この油圧ジヤツ
キ8の伸縮操作によつて支柱5を起伏回動するこ
とができる。
Reference numeral 8 denotes a hydraulic jack attached to both side plates 4a of the construction girder 4 near the reaction force receiving bracket 6, and the tip of the hydraulic jack 8 is connected to the vicinity of the base end 5a of the support column 5. By extending and contracting the hydraulic jack 8, the support column 5 can be raised and rotated.

なお、本実施例では支柱5を二等辺三角形の形
状としたが、この形状に限定されるものではな
い。
In this embodiment, the support column 5 has an isosceles triangular shape, but is not limited to this shape.

次に叙上の如く構成した本発明の作用について
説明する。第1図に示すように、橋脚2の両側に
コンクリートを打設して上部工を順次張出し、一
方の張出し部を既設橋1の張出し部と閉合させた
後、次橋脚2a上に架設桁4を移動させるに際
し、移動に先だち、油圧ジヤツキ8の伸張操作に
よつて、支柱5を起立させる。支柱5の起立にし
たがい、支柱5の先端の孔5b内を挿通している
ケーブル7は支柱5の両側で三角形の辺を形成し
ていき、支柱5が完全に直立したとき、支柱5の
先端の孔5bと支柱5の両側の架設桁4上のケー
ブル取付部4bとの間で、下方傾斜して張架され
たケーブル7が形成される。しかる後、架設桁4
の移動を開始する。そして、架設桁4の移動が完
了した時点で、上部工の施工の際、邪魔にならな
いように、支柱5を倒伏させる。この操作は伸張
していた油圧ジヤツキ8を縮めることにより行な
われる。
Next, the operation of the present invention constructed as described above will be explained. As shown in Fig. 1, concrete is poured on both sides of the pier 2 and the superstructure is extended one after another, and after one overhang is closed with the overhang of the existing bridge 1, a girder 4 is placed on the next pier 2a. When moving the support column 5, the support column 5 is erected by extending the hydraulic jack 8 prior to the movement. As the column 5 stands up, the cable 7 inserted through the hole 5b at the tip of the column 5 forms triangular sides on both sides of the column 5, and when the column 5 stands completely upright, the cable 7 passes through the hole 5b at the tip of the column 5. A cable 7 is formed between the hole 5b and the cable attachment part 4b on the construction girder 4 on both sides of the support column 5, and is stretched downwardly. After that, the erection girder 4
start moving. When the movement of the construction girder 4 is completed, the support column 5 is lowered so as not to get in the way during construction of the superstructure. This operation is performed by retracting the extended hydraulic jack 8.

ところで、架設桁4の移動中に、前記架台3a
からの突出部の架設桁の自重によつて生じる曲げ
モーメントは、下方傾斜して張架されたケーブル
7によつて分坦され、支柱5を介して上記架台3
aに伝達されるので、従来の架設桁と異なり架設
桁自体の負坦分を軽減でき、したがつて、荷重と
して作用する突出部の架設桁4の自重に対して、
低抗できるように架設桁4の断面を小さくするこ
とができ、架設桁4自体の自重を軽減することが
できる。
By the way, during the movement of the construction girder 4, the mount 3a
The bending moment caused by the weight of the construction girder of the protruding part from above is divided by the cable 7 which is stretched downwardly, and is transferred to the above-mentioned frame 3 via the support column 5.
Unlike conventional construction girders, the negative weight of the construction girder itself can be reduced.
The cross section of the construction girder 4 can be made small so that the resistance can be reduced, and the weight of the construction girder 4 itself can be reduced.

しかし、一方では支柱5及びケーブル7を新た
に使用するため、その分、自重が増すが、一般に
架設桁4の突出部の長さが大きくなると支柱5及
びケーブル7による自重の増す量より、架設桁4
の自重の減る量が上まわるため、本発明は従来の
ものに比べ、架設桁4全体の自重を軽減すること
ができる。
However, on the other hand, since the struts 5 and cables 7 are newly used, the dead weight increases accordingly, but generally speaking, when the length of the protruding part of the erection girder 4 increases, the increase in dead weight due to the struts 5 and cables 7 is outweighed by the increase in dead weight. digit 4
Since the amount by which the dead weight of the construction girder 4 is reduced is greater than that of the construction girder 4, the present invention can reduce the dead weight of the entire construction girder 4 compared to the conventional one.

これを要するに、本発明は、あらかじめ建造さ
れた橋脚間に、プレストレスト・コンクリート橋
梁を区分ごとに構築する工法に使用される移動式
の架設桁において、既設の橋梁上部工の先端に設
けた架台によつて支持される架設桁の上部に、上
記架設桁が最大に突出したときの架台の上方に位
置して、支柱を起伏回動自在に装着し、回動起立
させた支柱の頂部から桁軸方向に下方傾斜して張
架される索条の先端を上記架設桁に取付けたか
ら、上部工の径間が長くなればなる程、従来の架
設桁に比べ、架設桁全体の自重の軽減を図ること
ができ、しかも、支柱で支持されて軽減される荷
重は、すべてその直下の架台を通じて、既設の上
部工で支持されるから、既存の架設桁をより大き
なスパンに適用する場合の補強改造策として有力
である。そして、架設桁全体の自重が軽減される
ことにより、架設桁の移動作業が容易になると共
に、架設桁全体の自重が上部工及び下部工に与え
る影響を小さくできるから、上部工及び下部工の
断面を小さくすることができる。その上、支柱及
び索条は必要な場合のみ使用して、不用の場合に
は架設桁に収納できるので、上部工の施工の際に
邪魔になる惧れが全くない等、極めて新規的効果
を奏するものである。
In short, the present invention is a movable construction girder used in a method of constructing a prestressed concrete bridge section by section between piers that have been constructed in advance. At the top of the erected girder supported by the erected girder, a column is attached so as to be able to raise and lower freely, and is positioned above the frame when the erected girder is protruded to its maximum extent, and the girder shaft is attached from the top of the erected column. Since the tips of the cables that are stretched downward in the direction are attached to the above-mentioned construction girder, the longer the span of the superstructure, the more the dead weight of the entire construction girder is reduced compared to conventional construction girders. Moreover, the load that is supported by the columns and reduced is all supported by the existing superstructure through the trestle directly below them, making it possible to strengthen and modify existing girders when applying them to larger spans. It is a powerful idea. By reducing the weight of the entire erected girder, it becomes easier to move the erected girder, and the influence of the weight of the entire erected girder on the superstructure and substructure can be reduced, so The cross section can be made smaller. In addition, the supports and cables can be used only when necessary and stored in the construction girder when not needed, so there is no risk of them getting in the way during the construction of the superstructure, resulting in extremely novel effects. It is something to play.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る斜引張ケーブルを併用した
架設桁の一実施例を示すものであつて、第1図は
P&Z工法施工図、第2図A,Bは架設桁の断面
強度が決定される状態を示す図、第3図は全体側
面図、第4図は要部の側面図、第5図は第4図の
A−A矢視図である。 図中、3は架台、3aは先端の架台、4は架設
桁、5は支柱、7はケーブルである。
The drawings show an example of an erected girder using diagonal tension cables according to the present invention, in which Fig. 1 is a construction drawing of the P&Z construction method, and Fig. 2 A and B show the cross-sectional strength of the erected girder determined. 3 is an overall side view, FIG. 4 is a side view of essential parts, and FIG. 5 is a view taken along the line A--A in FIG. 4. In the figure, 3 is a frame, 3a is a frame at the tip, 4 is an erection girder, 5 is a column, and 7 is a cable.

Claims (1)

【特許請求の範囲】[Claims] 1 あらかじめ建造された橋脚間に、プレストレ
スト・コンクリート橋梁を区分ごとに構築する工
法に使用される移動式の架設桁において、既設の
橋梁上部工の先端に設けた架台によつて支持され
る架設桁の上部に、上記架設桁が最大に突出した
ときの架台の上方に位置して、支柱を起伏回動自
在に装着し、回動起立させた支柱の頂部から桁軸
方向に下方傾斜して張架される索条の先端を上記
架設桁に取付けて、架設桁の重量を軽減するよう
に構成してあることを特徴とする斜引張ケーブル
を併用した架設桁。
1. A movable construction girder used in the method of constructing a prestressed concrete bridge section by section between pre-built piers, which is supported by a frame installed at the tip of an existing bridge superstructure. At the top of the erected girder, a strut is attached so that it can be raised and rotated freely, and the strut is placed above the frame when the girder protrudes to its maximum extent. An erection girder using diagonal tension cables, characterized in that the tips of the cables to be strung are attached to the erection girder to reduce the weight of the erection girder.
JP57003670A 1982-01-13 1982-01-13 Constructed beam using obliquely tensioned cable together Granted JPS58120904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003670A JPS58120904A (en) 1982-01-13 1982-01-13 Constructed beam using obliquely tensioned cable together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003670A JPS58120904A (en) 1982-01-13 1982-01-13 Constructed beam using obliquely tensioned cable together

Publications (2)

Publication Number Publication Date
JPS58120904A JPS58120904A (en) 1983-07-19
JPH0216406B2 true JPH0216406B2 (en) 1990-04-17

Family

ID=11563858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003670A Granted JPS58120904A (en) 1982-01-13 1982-01-13 Constructed beam using obliquely tensioned cable together

Country Status (1)

Country Link
JP (1) JPS58120904A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611096B2 (en) * 1992-08-04 1997-05-21 株式会社アマダメトレックス Press brake upper die mounting device
JP4889774B2 (en) * 2009-09-28 2012-03-07 日本車輌製造株式会社 Bridge girder delivery method and bridge girder horizontal method
JP6025544B2 (en) * 2012-12-14 2016-11-16 株式会社Ihiインフラシステム How to build a bridge
JP6794235B2 (en) * 2016-12-06 2020-12-02 三井住友建設株式会社 How to erection a bridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100124A (en) * 1978-01-24 1979-08-07 Kajima Corp Method of continuously building oblique bridge
JPS55108505A (en) * 1979-02-09 1980-08-20 Hitachi Shipbuilding Eng Co Method of building bridge over water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100124A (en) * 1978-01-24 1979-08-07 Kajima Corp Method of continuously building oblique bridge
JPS55108505A (en) * 1979-02-09 1980-08-20 Hitachi Shipbuilding Eng Co Method of building bridge over water

Also Published As

Publication number Publication date
JPS58120904A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
JP5047680B2 (en) Construction method of continuous viaduct
CN105839536A (en) Construction method of cable-stayed bridge pylon
CN211772901U (en) Space abnormal shape steel case arch rib installation device
JPS59501465A (en) Split casting equipment for prestressed concrete bridges using cantilever construction method
CN114781026A (en) Construction control method for single leaning tower cable-stayed bridge
CN112160246B (en) Method for installing composite beam
CN207032062U (en) Tower with suspended cable available for Large-span Steel Box Beam construction
JP4104910B2 (en) How to build arch ribs for concrete arch bridges
JP2005299111A (en) Temporary strut and its erection method
JPH0216406B2 (en)
JPH0959932A (en) Construction method of column head of overhanging erection girder bridge
JPH07233508A (en) Pier, and pier-constructing method by means of self-climbing form installation
CN215925692U (en) Overlength multispan assembly type integrated multifunctional bridge girder erection machine
CN212356206U (en) A trolley for girder steel bridging machine
JP2539150B2 (en) Bridge erection equipment
CN212052371U (en) Hanging basket device for variable width concrete box girder suspension casting construction
CN112554075A (en) Integrated prefabricated pier stud installation adjustment cast-in-place device and construction method
JPS6340609Y2 (en)
JPS6041164B2 (en) Cable-stayed bridge construction method
CN218596931U (en) Cantilever support mechanism for vertical variable cross section
CN215714679U (en) Steel purlin arched bridge side span unstressed construction equipment
CN214656392U (en) Cast-in-place device of prefabricated pier stud installation adjustment of integral type
JPH09137506A (en) Construction method of building
KR19980083704A (en) Temporary device of mobile scaffolding
JPH036283B2 (en)