JPH02163429A - Variable compression ratio controller for engine equipped with supercharger - Google Patents

Variable compression ratio controller for engine equipped with supercharger

Info

Publication number
JPH02163429A
JPH02163429A JP63318195A JP31819588A JPH02163429A JP H02163429 A JPH02163429 A JP H02163429A JP 63318195 A JP63318195 A JP 63318195A JP 31819588 A JP31819588 A JP 31819588A JP H02163429 A JPH02163429 A JP H02163429A
Authority
JP
Japan
Prior art keywords
compression ratio
low
acceleration
engine
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63318195A
Other languages
Japanese (ja)
Inventor
Kenji Kashiyama
謙二 樫山
Kazuaki Umezono
和明 梅園
Mitsuo Hitomi
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63318195A priority Critical patent/JPH02163429A/en
Publication of JPH02163429A publication Critical patent/JPH02163429A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve the acceleration performance by delaying the switching to the low compression ratio side of a variable compression ratio mechanism even if an engine shifts to a the low revolution high load region in acceleration, until the supercharge pressure reaches a prescribed value. CONSTITUTION:The number of engine revolution, engine load, catalyst temperature, and an acceleration signal are inputted into a control unit 15. When the prescribed acceleration state is detected, and the state on the start of acceleration is in the prescribed low revolution speed low load region, a high compression ratio is maintained for a certain time by a delay timer. In the state other than the acceleration state, if the catalyst temperature is over an activation temperature, the high compression ratio is maintained, while if the catalyst tempera ture is below the activation temperature, the low compression ratio state is maintained, and the exhaust gas temperature is raised to accelerate the activation of a catalyst. In the stationary operation, the compression ratio of the engine is controlled to the high compression ratio side in the low revolution speed low load region, while in the low revolution speed high load region, the compression ratio is controlled to the low compression ratio side. There fore, the delay in the increase of the supercharge pressure in the initial stage of acceleration is offset by the torque up due to the high compression ratio, and the acceleration response can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は過給機付エンジンにおける可変圧縮比機構の制
御に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to control of a variable compression ratio mechanism in a supercharged engine.

(従来技術) 過給機付エンジンにおいては、通常、排気タービンを迂
回するバイパス通路を設け、過給圧が設定値を越えると
このバイパス通路を開いて過給機の駆動力を減少させ過
給圧の上昇を抑えるようにした、いわゆるウェストゲー
ト方式等の過給圧制御手段を備えている。
(Prior art) In a supercharged engine, a bypass passage is usually provided to bypass the exhaust turbine, and when the boost pressure exceeds a set value, this bypass passage is opened to reduce the driving force of the supercharger and reduce supercharging. It is equipped with a supercharging pressure control means such as a so-called waste gate system that suppresses the rise in pressure.

ところで、これらウェストゲート方式等の過給圧制御手
段を備えるものにおいては、最高過給圧の設定を常時一
定に規制しようとすると、エンジンの加速時のように一
時的に高い出力か要求されるときに十分な出力性能が得
られないということから、例えば特開昭57−1460
23号公報に記載されているように、加速時にはウエス
トゲ一トバルブの開弁圧を実質的に高めて最高過給圧を
上昇させることでエンジン出力の向上を図るようにした
らのが知られている。ところが、例えば低回転低負荷状
態からの全開加速の場合には、こういった低回転低負荷
の領域では本来排気ガスのエネルギーが低いということ
や、排気ターボ自体の慣性モーメントが大きいことによ
る回転上昇の遅れ(いわゆるターボラグ)があるために
、過給圧が期待どおり上がらないという事情があり、し
たがって、上記のように最高過給圧の設定を上げること
によって十分な加速性能を得ることは難しい。
By the way, in these models equipped with a boost pressure control means such as the wastegate method, if the maximum boost pressure setting is always kept constant, a temporary high output is required, such as when the engine is accelerating. For example, Japanese Patent Application Laid-Open No. 57-1460
As described in Publication No. 23, it is known to improve engine output by substantially increasing the opening pressure of the wastegate valve during acceleration and increasing the maximum boost pressure. . However, for example, in the case of full-throttle acceleration from a low-speed, low-load state, the engine speed increases due to the fact that the energy of the exhaust gas is originally low in this low-speed, low-load region, and the moment of inertia of the exhaust turbo itself is large. Due to this delay (so-called turbo lag), the supercharging pressure does not rise as expected. Therefore, it is difficult to obtain sufficient acceleration performance by increasing the maximum supercharging pressure setting as described above.

そこで、このような過給圧の上がらない領域ではこれを
補うための手段を講することが要求される。そして、そ
の一つとして、例えば実開昭62−3952号公報に記
載された可変圧縮比機構の利用が考えられている。同公
報記載の可変圧縮比機構は、ピストンピンとコンロッド
との間に介装した偏心ベアリングにロックビン係合孔を
設け、コンロッド側に設けたロックビンを油圧によって
上記係合孔に対し係合・離脱させることでピストンのコ
ンロッドに対する相対位置を変えるよう構成されたもの
である。
Therefore, in such a region where the supercharging pressure does not increase, it is necessary to take measures to compensate for this. As one such method, the use of a variable compression ratio mechanism described in, for example, Japanese Utility Model Application Publication No. Sho 62-3952 is being considered. The variable compression ratio mechanism described in the publication has a lock bin engagement hole in an eccentric bearing interposed between a piston pin and a connecting rod, and engages and disengages the lock bin provided on the connecting rod side with the engagement hole using hydraulic pressure. This structure is designed to change the relative position of the piston with respect to the connecting rod.

しかしながら、上記可変圧縮比機構は、低回転低負荷の
領域では高圧縮比として燃費の改善を図り、低回転高負
荷の領域では低圧縮比としてノッキングを防止するよう
構成するのが普通であって、そのため、低回転低負荷域
からの全開加速時には低圧縮比側に切り換わってしまい
、過給圧の上昇遅れを補うよう機能させることができな
い。
However, the above-mentioned variable compression ratio mechanism is usually configured to have a high compression ratio in the low-speed, low-load region to improve fuel efficiency, and a low compression ratio in the low-speed, high-load region to prevent knocking. Therefore, during full-throttle acceleration from a low rotation and low load range, the compression ratio switches to the low compression ratio side, making it impossible to function to compensate for the delay in boost pressure rise.

(発明の目的) 本発明は上記問題点に鑑みてなされたものであって、低
回転低負荷域では高圧縮比として燃費を改善し、低回転
高負荷域では低圧縮比としてノッキングを防止すること
のできる可変圧縮比機構の機能を生かしつつ、その可変
圧縮比機構を利用して過給機付エンジンの加速初期の過
給圧上昇の遅れをhWい、加速性能を向上させることを
目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and it improves fuel efficiency by setting a high compression ratio in the low-speed, low-load range, and prevents knocking by setting a low compression ratio in the low-speed, high-load range. The aim is to improve acceleration performance by taking advantage of the variable compression ratio mechanism that can reduce the delay in boost pressure rise at the initial stage of acceleration of a supercharged engine. do.

(発明の構成) 本発明は、過給機付エンジンを低回転低負荷から全開加
速するような場合、過給機の回転上昇に遅れがあるため
、加速初期のエンジン出力は過給のない状態でのトルク
特性に沿ったものとなり、その後、過給機の回転上昇と
ともに徐々に定常過給状態でのトルク特性に移行してい
くという過渡特性を示すことに着目し、加速初期におい
ては可変圧縮比機構が直ちに低圧縮比側に切り変わらず
に高圧縮比側に保持されるよう制御系を構成することで
、高圧縮比によるトルクアップが実現できることを見い
だしたものであって、その構成は第1図に示すとおりで
ある。すなわち、本発明に係る過給機付エンジンの可変
圧縮比制御装置は、過給機付エンジンにおいて、可変圧
縮比機構と、当該エンジンが低回転低負荷域にあるか低
回転高負荷域にあるかを検出する負荷状部検出手段と、
当該エンジンが低回転低負荷域にあるとき上記可変圧縮
比機構を高圧縮比側に制御するための制御信号を発生す
る第!の制御信号発生手段と、当該エンジンが低回転高
負荷域にあるとき上記可変圧縮比機構を低圧縮比側に制
御するための制御信号を発生する第2の制御信号発生手
段と、これら二つの制御信号発生手段の出力を切り換え
上記可変圧縮比機構の制御信号として出力する切換制御
手段と、当該エンジンの加速状態を検出する加速検出手
段と、加速が検出されたとき上記切換制御手段による高
圧縮比側から低圧縮比側への制御信号の切り換えを過給
圧か所定値に達するまで遅延させる加速補正手段を備え
たことを特徴としている。
(Structure of the Invention) In the present invention, when a supercharged engine is fully accelerated from low rotation and low load, there is a delay in the increase in rotation of the supercharger, so the engine output at the beginning of acceleration is in a state without supercharging. Focusing on the fact that the torque characteristic is in line with the torque characteristic at It was discovered that by configuring the control system so that the ratio mechanism is held at the high compression ratio side without immediately switching to the low compression ratio side, it is possible to increase torque due to a high compression ratio. As shown in Figure 1. That is, the variable compression ratio control device for a supercharged engine according to the present invention includes a variable compression ratio mechanism in a supercharged engine, and a variable compression ratio mechanism in which the engine is in a low rotation and low load region or in a low rotation and high load region. loaded part detection means for detecting whether the
A control signal is generated to control the variable compression ratio mechanism to a high compression ratio side when the engine is in a low rotation and low load range! a second control signal generating means for generating a control signal for controlling the variable compression ratio mechanism to a low compression ratio side when the engine is in a low rotation high load range; switching control means for switching the output of the control signal generation means and outputting it as a control signal for the variable compression ratio mechanism; acceleration detection means for detecting the acceleration state of the engine; and high compression by the switching control means when acceleration is detected. The present invention is characterized in that it includes acceleration correction means that delays switching of the control signal from the ratio side to the low compression ratio side until the boost pressure reaches a predetermined value.

(作用) 可変圧縮比機構はエンジンが低回転低負荷域にあるとき
は高圧縮比側に制御され、定常状態で低回転高負荷域に
あるときは低圧縮比側に制御される。
(Operation) The variable compression ratio mechanism is controlled to a high compression ratio side when the engine is in a low rotation and low load range, and is controlled to a low compression ratio side when the engine is in a low rotation and high load range in a steady state.

また、加速時においては、エンジンが低回転高負荷域に
移行してし可変圧縮比機構は直ちには低圧縮比側に切り
換わらず、過給圧が所定値に達するまで遅延して低圧縮
比側に切り換イつる。
Also, during acceleration, when the engine shifts to a low-speed, high-load range, the variable compression ratio mechanism does not immediately switch to the low compression ratio side, but delays it until the boost pressure reaches a predetermined value and lowers the compression ratio. Switch to the side.

(実施例) 以下、実施例を図面に基づいて説明する。(Example) Examples will be described below based on the drawings.

第2図は本発明の第1の実施例である排気ターボ過給機
付エンジンにおける可変圧縮比機構の全休園である。こ
の実施例において、ピストンlのピンボス部2a、2b
にはピストンピン3が嵌着されている。ピストンピン3
は軸方向中央に偏心部3aを備え、該偏心部3aにコン
ロッド4が連結され、したがって、その軸心がコンロッ
ド小端部4aの中心に対し偏心した偏心ピストンピンと
なっている。上記コンロッド小端部4aの内周には、コ
ンロッド大端部4b側に開口するピンポール5が設けら
れ、それに対し、上記ピストンピン3の偏心部3a外周
には、コンロッド小端部4aの中心1なわち偏心部3a
の中心とピストンピン3の軸心とを結ぶ線上の両端に、
上記コンロッド小端部4a側のピンホール5に対応した
ピンホール6.7か開口している。そして、上記コンロ
ッド小端部4a内周側のピンホール5にはロックピン8
が遊嵌されている。該小端部4a側のピンホール5は上
記ロックピン8の長さ寸法より深いビン摺動部を有し、
底部にはコンロッド大端部4bのM1’iR9に連通す
る油圧通路10が開口している。
FIG. 2 shows the complete closure of the variable compression ratio mechanism in the engine with exhaust turbo supercharger according to the first embodiment of the present invention. In this embodiment, the pin boss portions 2a, 2b of the piston l
A piston pin 3 is fitted into the piston pin 3. piston pin 3
has an eccentric portion 3a in the center in the axial direction, and a connecting rod 4 is connected to the eccentric portion 3a, thus forming an eccentric piston pin whose axial center is eccentric with respect to the center of the connecting rod small end portion 4a. A pin pole 5 that opens toward the connecting rod large end 4b is provided on the inner periphery of the connecting rod small end 4a, and a pin pole 5 that opens toward the connecting rod large end 4b is provided on the outer periphery of the eccentric portion 3a of the piston pin 3. That is, the eccentric part 3a
At both ends of the line connecting the center of and the axis of piston pin 3,
A pinhole 6.7 corresponding to the pinhole 5 on the connecting rod small end 4a side is opened. A lock pin 8 is provided in the pin hole 5 on the inner peripheral side of the connecting rod small end 4a.
is loosely fitted. The pinhole 5 on the small end 4a side has a bottle sliding part deeper than the length of the lock pin 8,
A hydraulic passage 10 is opened at the bottom and communicates with M1'iR9 of the connecting rod large end 4b.

一方、偏心部3a外周側の二つのピンホール6゜7は上
記ロックピン8の長さ寸法より浅いビン摺動部を備えて
いる。ロックピン8は上記内周側ピンホール5内に完全
に収納可能であり、また、上記外周側ピンホール6.7
のいずれかと整合した状態で上向きの慣性力が作用する
と、これらいずれかの外周側ピンホール6.7と係合す
る。
On the other hand, the two pinholes 6.7 on the outer circumferential side of the eccentric portion 3a are provided with bottle sliding portions that are shallower than the length of the lock pin 8. The lock pin 8 can be completely housed in the inner pinhole 5, and the outer pinhole 6.7
When an upward inertial force is applied in a state aligned with either of these pin holes 6.7 on the outer peripheral side, the pin holes 6.7 are engaged with each other.

コンロッド大端部4bの上記油溝9は、クランク軸11
に形成された油圧通路!2を介して油圧供給通路13に
連通し、この油圧供給通路13にはソレノイド制御弁1
4が介設されている。この制御弁14によって油圧のオ
ン・オフが行われる。
The oil groove 9 of the connecting rod large end 4b is connected to the crankshaft 11.
Hydraulic passage formed in! 2 to a hydraulic pressure supply passage 13, and this hydraulic pressure supply passage 13 includes a solenoid control valve 1.
4 is interposed. This control valve 14 turns on and off the hydraulic pressure.

圧縮比の切り換えに際しては、ピストン下死点近傍にお
いて制御弁I4によりロックピン8に作用する油圧がオ
ン状態に切り換えられる。この時、ロックピン8の慣性
力は下向きに作用しているため、ロックピン8はそれ自
体の慣性力によって外周側ピンホール6.7から外れ内
周側ビンポール5内に完全に入り込む。これにより、ピ
ストンピン3はコンロッド4に対して回動力向にフリー
となる。そして、高圧縮比から低圧縮比への切り換えの
場合には、圧縮上死点近傍において油圧をオン状態に戻
すことにより、その間、ピストンピン3はピストンlの
下向きの慣性力と筒内圧力により低圧縮比位置から半回
転して低圧縮比位置となる。そして、その位置でロック
ピン8がそれ自体の−L向きの慣性力と油圧によって作
動し、一方のピンホール6に係合してピストンピン3を
低圧縮比位置に固定する。また1、低圧縮比から高圧縮
比への切り換えの場合には、同様にピストンピン3をフ
リーとした後、吸気上死点近傍において油圧をオンに戻
すと、その間にピストンピン3はピストンの上向きの慣
性力によって高圧縮比位置まで半回転し、その位置でロ
ックピン9がそれ自体の」−向きの慣性力と油圧によっ
てもう一方のピンホール7.8に係合しピストンピン3
を高圧縮比位置に固定する。
When switching the compression ratio, the hydraulic pressure acting on the lock pin 8 is switched on by the control valve I4 near the bottom dead center of the piston. At this time, since the inertia of the lock pin 8 is acting downward, the lock pin 8 is removed from the outer pin hole 6.7 and completely enters the inner pin pole 5 due to its own inertia. Thereby, the piston pin 3 becomes free in the rotational direction with respect to the connecting rod 4. In the case of switching from a high compression ratio to a low compression ratio, the hydraulic pressure is turned back on near the compression top dead center, and during that time the piston pin 3 is moved by the downward inertia of the piston l and the cylinder pressure. The low compression ratio position is reached after a half turn from the low compression ratio position. Then, at that position, the lock pin 8 is actuated by its own -L direction inertia force and oil pressure, and engages with one pinhole 6 to fix the piston pin 3 at the low compression ratio position. In addition, 1. When switching from a low compression ratio to a high compression ratio, after similarly setting the piston pin 3 free, turn the hydraulic pressure back on near the intake top dead center. The upward inertia force causes the lock pin 9 to rotate half a turn to the high compression ratio position, at which point the lock pin 9 engages with the other pin hole 7.8 by its own inertia force and hydraulic pressure, and the piston pin 3
is fixed at the high compression ratio position.

ソレノイド制御弁1 =1は、第3図に示すようにコン
トロールユニット15によって制御される。
The solenoid control valve 1 =1 is controlled by the control unit 15 as shown in FIG.

コントロールユニット15には、エンジン回転数エンジ
ン負荷(吸気管内圧力)、キャタリスト温度、加速信号
といった各情報が人力される。加速信号は、例えば、吸
入空気量変化、エンジン回転数変化、スロットル開度変
化等が用いられる。そして、所定の加速状@(全開加速
)が検出され、しから、その加速開始時の状態が第4図
にAで示す所定の低回転低負荷領域であるときは、デイ
レ−タイマによって一定時間高圧縮比を保持する。
The control unit 15 receives various information such as engine speed, engine load (intake pipe pressure), catalyst temperature, and acceleration signal. As the acceleration signal, for example, a change in intake air amount, a change in engine speed, a change in throttle opening, etc. are used. Then, when a predetermined acceleration state @ (full throttle acceleration) is detected and the state at the start of acceleration is in the predetermined low rotation and low load region shown by A in FIG. Maintain high compression ratio.

また、加速状態でないときは、キャタリスト温度が活性
化温度に達しているか達していないかにより、達してい
れば高圧縮比とするが、活性化温度に達していなければ
、低圧縮比状態に保持し排気ガス温度を上げてキャタリ
ストの活性化を早めるようにする。これにより、特に冷
間始動時のキャタリスト活性化の遅れが防止され、暖機
性能およびエミッション性能の向上と燃費改善の両立が
可能となる。なお、定常運転時においては、エンジンの
圧縮比は低回転低負荷域で高圧縮比側に制御され、低回
転高負荷域で低圧縮比側に制御される。
Also, when the catalyst temperature is not in the acceleration state, it depends on whether the catalyst temperature has reached the activation temperature or not. If it has reached the activation temperature, the compression ratio is set to high, but if it has not reached the activation temperature, the compression ratio is set to the low compression ratio state. This will increase the exhaust gas temperature and accelerate the activation of the catalyst. This prevents delays in catalyst activation, especially during cold starts, making it possible to improve both warm-up performance and emission performance as well as fuel efficiency. In addition, during steady operation, the compression ratio of the engine is controlled to the high compression ratio side in the low rotation and low load area, and is controlled to the low compression ratio side in the low rotation and high load area.

つぎに、この実施例の制御を第5図のフローチャートに
よって説明する。
Next, the control of this embodiment will be explained with reference to the flowchart of FIG.

スタートし、まず、加速判定を行い、所定の加速状態に
あるということであれば、つぎに、加速のイニシャル時
は第4図に示すA領域内であったかどうかを見る。
When the vehicle is started, an acceleration determination is first made, and if it is determined that the vehicle is in a predetermined acceleration state, then it is checked whether or not the initial acceleration was within region A shown in FIG.

そして、イニシャル時がA領域にあゲたということであ
れば、高圧縮比状態を一定時間保持し、一定時間が経て
ば低圧縮比状態に制御する。
If the initial state has exceeded the A range, the high compression ratio state is maintained for a certain period of time, and after the certain period of time has elapsed, the compression ratio state is controlled to be low.

また、加速状態であっても、加速のイニシャル時がA領
域内でなかったというときは、直ちに低圧縮比状態に制
御する。
Further, even if the engine is in an acceleration state, if the initial acceleration time is not within the A region, the compression ratio state is immediately controlled to a low compression ratio state.

加速状態でないというときは、ついで、キャタリスト温
度が活性化温度に達しているかどうかを見て、達してい
れば高圧縮比状態に制御し、達していなければ低圧縮比
状態に制御する。
If the acceleration state is not determined, then it is checked whether the catalyst temperature has reached the activation temperature, and if it has reached the activation temperature, the compression ratio is controlled to a high compression ratio state, and if it has not reached the activation temperature, the compression ratio state is controlled to a low compression ratio state.

上記実施例では、加速初期に高圧縮比から低圧縮比への
切り換えを遅延させるためにデイレ−タイマを用いてお
り、これによれば、過給圧が所定値に達するまでの加速
補正が簡単に行える。しかし、加速時に過給圧が所定値
に達したかどうかを直接見て、それにより圧縮比制御を
行うようにずれば、デイレ−タイマを用いたものに対し
てより精度の良いコントロールが可能であり、耐ノツク
性および加速性の両立をより十分なものとすることがで
きる。これを具体的にしたものが次に述べる第2の実施
例である。
In the above embodiment, a delay timer is used to delay switching from a high compression ratio to a low compression ratio at the beginning of acceleration, and this makes it easy to correct acceleration until the boost pressure reaches a predetermined value. can be done. However, if you directly check whether the boost pressure has reached a predetermined value during acceleration and control the compression ratio based on that, you can achieve more precise control than with a delay timer. This makes it possible to achieve both knock resistance and acceleration performance more satisfactorily. A concrete example of this is the second embodiment described below.

この第2の実施例において、可変圧縮比機構は第2図に
示す第1の実施例のものと同じである。
In this second embodiment, the variable compression ratio mechanism is the same as that of the first embodiment shown in FIG.

また、その制御系は第6図に示すとおりであって、ソレ
ノイド制御弁14を制御するコントロールユニット15
にはキャタリスト温度、過給圧、加速信号といった各情
報が入力される。そして、所定の加速状態が検出された
とき、過給圧が設定値に達するまでの間は高圧縮比状態
に保持する。また、過給圧が設定値に達すれば、低回転
高負荷ということで定常時と同様に低圧縮比状態に制御
する。
The control system is as shown in FIG. 6, with a control unit 15 controlling the solenoid control valve 14.
Information such as catalyst temperature, boost pressure, and acceleration signal is input to the . When a predetermined acceleration state is detected, the high compression ratio state is maintained until the boost pressure reaches the set value. Furthermore, when the boost pressure reaches the set value, the engine is controlled to a low compression ratio state as in the steady state, since the engine is at low rotation and high load.

この過給圧判定の設定値は、定常全開時の過給圧以下の
範囲で予めそれぞれの運転領域によって定められる。ま
た、加速でないときは、やはりキャタリスト温度が活性
化温度に達しているかどうかによって第1の実施例と同
様の制御を行う。
The set value for this supercharging pressure determination is determined in advance according to each operating region within a range below the supercharging pressure at the time of steady full opening. Furthermore, when the engine is not accelerating, the same control as in the first embodiment is performed depending on whether the catalyst temperature has reached the activation temperature.

第7図はこの実施例の制御を実行するフローチャートで
ある。
FIG. 7 is a flowchart for executing control in this embodiment.

スタートし、まず、加速状態にあるかどうかを判定する
。そして、加速状態にあるということであれば、つぎに
、過給圧が設定値に達しているかどうかを見て、過給圧
が設定値に達するまでは高圧縮比状態を保持し、設定値
に達したということであれば低圧縮比状態に制御する。
It starts and first determines whether it is in an acceleration state. If it is in the acceleration state, then check whether the boost pressure has reached the set value, maintain the high compression ratio state until the boost pressure reaches the set value, and then If the compression ratio has been reached, the compression ratio is controlled to be low.

また、加速状態でないというときは、キャタリスト温度
に達しているかどうかを見て、達していれば高圧縮比状
態に制御し、達していなければ低圧縮比状態に制御する
Also, when it is determined that the engine is not in an acceleration state, it is checked whether the catalyst temperature has been reached, and if it has reached the catalyst temperature, it is controlled to a high compression ratio state, and if it has not been reached, it is controlled to a low compression ratio state.

なお、本発明は、機械式過給機を備えたエンジンに対し
ても適用することができる。
Note that the present invention can also be applied to an engine equipped with a mechanical supercharger.

(発明の効果) 本発明は以上のように構成されているので、可変圧縮比
によって燃費および耐ノツク性能の改善を図りつつ、加
速初期の過給圧上昇の遅れを高圧縮比によるトルクアッ
プで補い加速レスポンスを向上さけることができる。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to improve fuel efficiency and anti-knock performance by using a variable compression ratio, and to compensate for the delay in boost pressure rise at the beginning of acceleration by increasing torque by using a high compression ratio. Supplementary acceleration response can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成図、第2図は本発明の第1の
実施例における可変圧縮比機構の全体図、第3図は同実
施例の制御システム図、第4図は同実施例の制御に係る
領域図、第5図は同実施例の制御を実行するフローチャ
ート、第6図は本発明の第2の実施例の制御システム図
、第7図は同実施例の制御を実行するフローチャートで
ある。 l:ピストン、3:ピストンピン、3a:偏心部、4:
コンロッド、8:ロックビン、10・油圧通路、14:
ソレノイド制御弁、15:コントロールユニット。
FIG. 1 is an overall configuration diagram of the present invention, FIG. 2 is an overall diagram of a variable compression ratio mechanism in a first embodiment of the present invention, FIG. 3 is a control system diagram of the same embodiment, and FIG. 4 is an implementation diagram of the same embodiment. FIG. 5 is a flowchart for executing the control of the example, FIG. 6 is a control system diagram of the second embodiment of the present invention, and FIG. 7 is a flowchart for executing the control of the example. This is a flowchart. l: piston, 3: piston pin, 3a: eccentric part, 4:
Connecting rod, 8: Lock bin, 10/hydraulic passage, 14:
Solenoid control valve, 15: Control unit.

Claims (1)

【特許請求の範囲】[Claims] (1)過給機付エンジンにおいて、可変圧縮比機構と、
当該エンジンが低回転低負荷域にあるか低回転高負荷域
にあるかを検出する負荷状態検出手段と、当該エンジン
が低回転低負荷域にあるとき上記可変圧縮比機構を高圧
縮比側に制御するための制御信号を発生する第1の制御
信号発生手段と、当該エンジンが低回転高負荷域にある
とき上記可変圧縮比機構を低圧縮比側に制御するための
制御信号を発生する第2の制御信号発生手段と、これら
二つの制御信号発生手段の出力を切り換え上記可変圧縮
比機構の制御信号として出力する切換制御手段と、当該
エンジンの加速状態を検出する加速検出手段と、加速が
検出されたとき上記切換制御手段による高圧縮比側から
低圧縮比側への制御信号の切り換えを過給圧が所定値に
達するまで遅延させる加速補正手段を備えたことを特徴
とする過給機付エンジンの可変圧縮比制御装置。
(1) In a supercharged engine, a variable compression ratio mechanism,
load state detection means for detecting whether the engine is in a low rotation, low load region or a low rotation, high load region; and when the engine is in a low rotation, low load region, the variable compression ratio mechanism is set to a high compression ratio side. a first control signal generating means for generating a control signal for controlling the engine; and a first control signal generating means for generating a control signal for controlling the variable compression ratio mechanism to a low compression ratio side when the engine is in a low rotation and high load range. a switching control means for switching the outputs of these two control signal generation means and outputting them as a control signal for the variable compression ratio mechanism; an acceleration detection means for detecting the acceleration state of the engine; A supercharger characterized by comprising an acceleration correction means that, when detected, delays the switching of the control signal from the high compression ratio side to the low compression ratio side by the switching control means until the supercharging pressure reaches a predetermined value. Variable compression ratio control device for the attached engine.
JP63318195A 1988-12-15 1988-12-15 Variable compression ratio controller for engine equipped with supercharger Pending JPH02163429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318195A JPH02163429A (en) 1988-12-15 1988-12-15 Variable compression ratio controller for engine equipped with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318195A JPH02163429A (en) 1988-12-15 1988-12-15 Variable compression ratio controller for engine equipped with supercharger

Publications (1)

Publication Number Publication Date
JPH02163429A true JPH02163429A (en) 1990-06-22

Family

ID=18096505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318195A Pending JPH02163429A (en) 1988-12-15 1988-12-15 Variable compression ratio controller for engine equipped with supercharger

Country Status (1)

Country Link
JP (1) JPH02163429A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112256A1 (en) * 2005-04-14 2006-10-26 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
US7527025B2 (en) * 2006-07-10 2009-05-05 Honda Motor Co., Ltd. Internal combustion engine variable compression ratio system
WO2009061005A1 (en) * 2007-11-08 2009-05-14 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
JP2010007574A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Control device for variable compression ratio internal combustion engine
US20110005207A1 (en) * 2007-11-07 2011-01-13 Toyota Jidosha Kabushiki Kaisha Control device
US8818693B2 (en) 2008-12-03 2014-08-26 Toyota Jidosha Kabushiki Kaisha Engine system control device
WO2016016194A1 (en) * 2014-07-29 2016-02-04 Fev Gmbh Control of the variable compression ratio of a reciprocating piston internal combustion engine
EP2775122A4 (en) * 2011-11-01 2016-06-01 Nissan Motor Internal-combustion engine control device and control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627417B2 (en) 2005-04-14 2009-12-01 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
WO2006112256A1 (en) * 2005-04-14 2006-10-26 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine
US7527025B2 (en) * 2006-07-10 2009-05-05 Honda Motor Co., Ltd. Internal combustion engine variable compression ratio system
US20110005207A1 (en) * 2007-11-07 2011-01-13 Toyota Jidosha Kabushiki Kaisha Control device
US8656701B2 (en) * 2007-11-07 2014-02-25 Toyota Jidosha Kabushiki Kaisha Control device
EP2206905A4 (en) * 2007-11-07 2015-10-21 Toyota Motor Co Ltd Control device
CN101796281A (en) * 2007-11-08 2010-08-04 丰田自动车株式会社 Spark ignition type internal combustion engine
WO2009061005A1 (en) * 2007-11-08 2009-05-14 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
US8392095B2 (en) 2007-11-08 2013-03-05 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
JP2010007574A (en) * 2008-06-27 2010-01-14 Toyota Motor Corp Control device for variable compression ratio internal combustion engine
US8818693B2 (en) 2008-12-03 2014-08-26 Toyota Jidosha Kabushiki Kaisha Engine system control device
EP2775122A4 (en) * 2011-11-01 2016-06-01 Nissan Motor Internal-combustion engine control device and control method
US10267239B2 (en) 2011-11-01 2019-04-23 Nissan Motor Co., Ltd. Internal-combustion engine control device and control method
WO2016016194A1 (en) * 2014-07-29 2016-02-04 Fev Gmbh Control of the variable compression ratio of a reciprocating piston internal combustion engine

Similar Documents

Publication Publication Date Title
US8662036B2 (en) Method for operating an internal combustion engine having a variable valve drive
JP4147065B2 (en) Method and apparatus for operating an internal combustion engine
US20050000217A1 (en) Method for operating an internal combustion engine
US4720977A (en) Method and device for operation of a supercharged internal combustion engine
JP2007218143A (en) Control device for internal combustion engine with supercharger
US10718275B2 (en) Miller cycle engine
US10697378B2 (en) Control system of miller cycle engine and method of controlling miller cycle engine
JP6816833B2 (en) Internal combustion engine and its control method
US7131408B2 (en) Method and arrangement for controlling an internal combustion engine
JP6380678B2 (en) Control method and control apparatus for internal combustion engine
JP2004245104A (en) Supercharging type engine
JPH02163429A (en) Variable compression ratio controller for engine equipped with supercharger
JP2000073798A (en) Variable valve system control device for internal combustion engine
JP2018159271A (en) Control method of internal combustion engine and control device of internal combustion engine
JP2017122393A (en) Internal combustion engine control device
JP3807473B2 (en) Internal combustion engine
JP2004100666A (en) Operation cycle switching control in variable cycle engine
JP2002070601A (en) Turbosupercharged internal combustion engine with variable compression ratio device
JP2000145524A (en) Internal combustion engine having variable turbo charger
JPS62276221A (en) Accelerator for turbo-charger
JPH03202636A (en) Engine with turbo-supercharger
JP7276589B2 (en) CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JPS6128716A (en) Internal-combustion engine with supercharger
CN110730861A (en) Method and device for controlling internal combustion engine
JP2004116446A (en) Switching control of combustion method in variable combustion method engine