JPH02162798A - Door of magnetically shielding room - Google Patents

Door of magnetically shielding room

Info

Publication number
JPH02162798A
JPH02162798A JP63316197A JP31619788A JPH02162798A JP H02162798 A JPH02162798 A JP H02162798A JP 63316197 A JP63316197 A JP 63316197A JP 31619788 A JP31619788 A JP 31619788A JP H02162798 A JPH02162798 A JP H02162798A
Authority
JP
Japan
Prior art keywords
door
plate
magnetic
stainless steel
hollow part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63316197A
Other languages
Japanese (ja)
Other versions
JPH0632426B2 (en
Inventor
Toshifumi Niino
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP63316197A priority Critical patent/JPH0632426B2/en
Publication of JPH02162798A publication Critical patent/JPH02162798A/en
Publication of JPH0632426B2 publication Critical patent/JPH0632426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic shield to the door of an MRI room and to easily open the door by a method wherein a superconductive plate is provided on the inside of the door and properly cooled down by a coolant to its critical temperature or lower. CONSTITUTION:A high magnetic permeability material 5 such as amorphous or the like is provided along a stainless steel frame 4, and a finger contact 6 is provided between the stainless steel frame 4 and a door 2 to electrically and magnetically shield the periphery of the door 2. The door 2 is formed of a non-magnetic stainless steel plate and has a cavity 9, and a non-magnetic stainless steel plate 7 is provided on the inside and the outside of the door 2 separating from the inner and the outer face by a certain space respectively. The spaces between the plates 7 and the door 2 are made to serve as vacuum heat insulating layers 8. A superconductive plate 10 almost the same as the door 2 in planar shape is provided to the thicknesswise center of the cavity 9. The superconductive plate 10 is formed in such a manner that a superconductive thin film 10b is made to adhere to the peripheral face of a non- magnetic stainless steel plate 10a. Coolant such as liquid nitrogen or liquid helium is filled into the cavity on both the sides of the superconductive plate 10 to cool down the plate 10 to its critical temperature.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、磁気共鳴診断装置等のような強磁場発生装置
を設置する室の扉に関し、特に超電導板を利用して扉部
分から磁場が漏洩しないようにしたものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a door for a room in which a strong magnetic field generating device such as a magnetic resonance diagnostic device is installed, and in particular a superconducting plate is used to generate a magnetic field from the door. This is to prevent leakage.

「従来の技術」 最近、病院では磁気共鳴診断装置(以下MHIと記載す
る)を設置するようになっているが、病院ではペースメ
ーカを装着した患者が居るとともに、コンピュータ等の
ように磁気で悪影響を受ける機器が多数ある。そのため
第4図に示すようにMHIからの漏洩磁場を外部に漏ら
さない目的で、室の4面あるいは6面に純鉄のような強
磁性体による磁気シールドAを設けたり、外来電波によ
る影響を遮断する目的で室の6面に電波シールドBを設
けている。
"Prior Art" Recently, hospitals have begun to install magnetic resonance diagnostic equipment (hereinafter referred to as MHI), but in addition to patients with pacemakers, there are also devices such as computers that are adversely affected by magnetism. There are many devices available. Therefore, as shown in Figure 4, in order to prevent the leakage magnetic field from the MHI from leaking outside, a magnetic shield A made of ferromagnetic material such as pure iron is installed on the 4th or 6th side of the chamber, and the influence of external radio waves is prevented. Radio wave shields B are installed on six sides of the room for the purpose of blocking.

磁気シールドAや電波シールドBを設けた室でも、その
室の出入口の部分などに隙間があると両シールド効果は
著しく低下してしまう、そのためMHI等を設置した室
の隙間を全溶接、全ハング性は等により磁気漏洩の隙間
をな(すようにしている、また室の出入口等の開口部に
も、ステンレス板やシールドガラスやフィンガーコンタ
クト等により電波シールドを施している。
Even in a room where magnetic shield A and radio wave shield B are installed, if there is a gap at the entrance or exit of the room, the effectiveness of both shields will be significantly reduced. Therefore, all gaps in the room where MHI etc. are installed are welded and all hangs are installed. In addition, openings such as the entrance and exit of the room are also shielded from radio waves using stainless steel plates, shielding glass, finger contacts, etc.

しかし、磁気シールドに関しては重い磁性材を使うため
、出入口の扉部分を磁気シールド処理することが難しい
、MRI室の出入口は、患者を乗せたストレッチャーや
治療機器が出入するため、大きさが例えば幅1400■
I、高さ2100m+s程度になり、扉も大きなものが
必要にになる。このように大きな扉を磁性体で作ると磁
石により引っ張られて開閉が極めて困難になる。そのた
め、やむを得ず扉には磁気シールドを施さないのが実状
である。
However, since magnetic shielding uses heavy magnetic materials, it is difficult to magnetically shield the entrance/exit door.The entrance/exit of an MRI room is large, as stretchers carrying patients and treatment equipment enter and exit. Width 1400■
I, the height will be about 2100m+s, and a large door will be required. If such a large door is made of magnetic material, it will be pulled by the magnet and will be extremely difficult to open and close. Therefore, the reality is that it is unavoidable that magnetic shielding is not applied to the doors.

「発明が解決しようとする課題」 従来のMRI室のように扉に磁気シールドを施さない場
合には、その扉の部分で磁場の大きな漏洩が生じる。
``Problems to be Solved by the Invention'' When the door is not magnetically shielded as in a conventional MRI room, a large amount of magnetic field leaks at the door.

すなわち第4図に示すように、 1.5 T (テスラ
)のMHIを設置した場合、ペースメーカ装着者の立入
禁止の管理区域、かつコンピュータ設置の目安になる5
G(ガウス)ラインが扉部分から大きく拡がり、管理上
の問題が大きかった。
In other words, as shown in Figure 4, if a 1.5 T (Tesla) MHI is installed, it will be a controlled area where pacemaker wearers are prohibited from entering, and a 5.
The G (Gauss) line spread out from the door, posing a major management problem.

また扉部分をMHIからできるだけ離し、距離減衰を利
用して漏洩磁場を小さく抑えようとすると、扉の位置の
制約を受け、建築計画上の問題が生じる。さらにMRI
室の磁場分布に大きな歪が生じ、MHIの画像に歪を生
じさせないためのシムコイルによる調整が大変であった
Furthermore, if an attempt is made to keep the leakage magnetic field small by placing the door as far away from the MHI as possible and utilizing distance attenuation, problems will arise in terms of architectural planning due to constraints on the position of the door. Furthermore, MRI
Large distortions occurred in the magnetic field distribution in the chamber, and it was difficult to make adjustments using shim coils to prevent distortions from occurring in MHI images.

なお、MHIからの磁場発生を抑えるため、扉の開閉時
にはMHIへの供給電力を遮断することが考えられるが
、強磁場を発生する超電導タイプのMHIは超電導電磁
石を利用してそれに永久電流を流すため24時間フル作
動となり、MHIからの漏洩磁場を抑えることはできな
かった。
In addition, in order to suppress the generation of magnetic fields from the MHI, it is possible to cut off the power supplied to the MHI when opening and closing the door, but superconducting type MHIs that generate strong magnetic fields use superconducting electromagnets to flow a persistent current through them. Therefore, it was in full operation for 24 hours, and it was not possible to suppress the leakage magnetic field from the MHI.

そこで本発明は、MRI室の扉に磁気シールドを施すと
ともに、扉の開閉も容易に行えるようにすることを目的
とする。
Therefore, an object of the present invention is to provide a magnetic shield to the door of an MRI room and to enable the door to be opened and closed easily.

「課題を解決するための手段」 本発明の磁気シールドルーム用層は、扉を非磁性板によ
り中空状に形成し、扉の中空部内の厚さ方向中央部に扉
とほぼ同−平面形の超電導板を配置し、扉の中空部内に
超電導扱を臨界温度以下に冷却する冷媒を適宜、充填、
排出可能にした。
"Means for Solving the Problems" The layer for a magnetically shielded room of the present invention has a door formed in a hollow shape by a non-magnetic plate, and a layer approximately coplanar with the door in the center part in the thickness direction within the hollow part of the door. Place the superconducting plate and fill the hollow part of the door with a refrigerant that cools the superconducting material below the critical temperature.
Made possible to eject.

超電導扱け、非磁性ステンレス板の表面に超電導薄膜を
被着して形成することができる。また扉の中空部内に注
入する冷媒が外部の熱を受けないようにするためには、
中空部と扉の内外両面との間に真空断熱層を形成すれば
よい、扉の中空部内に適宜冷媒を充填、排出させるため
には、冷媒タンクと扉の中空部とを導管で連通して導管
途中にポンプを設け、扉の下部に開閉弁を有する排出口
を設ければよい。
It can be formed by depositing a superconducting thin film on the surface of a non-magnetic stainless steel plate that can be treated as a superconductor. In addition, in order to prevent the refrigerant injected into the hollow part of the door from receiving external heat,
It is sufficient to form a vacuum insulation layer between the hollow part and both the inside and outside surfaces of the door.In order to fill and discharge the refrigerant appropriately into the hollow part of the door, the refrigerant tank and the hollow part of the door are connected through a conduit. A pump may be provided in the middle of the conduit, and a discharge port with an on-off valve may be provided at the bottom of the door.

「作用」 上記手段の磁気シールドルーム用層において、扉が閉じ
たときには、ポンプを駆動して冷媒タンクから扉の中空
部に冷媒を充填させる。この冷媒により扉の中空部内の
超電導板は臨界温度以下に冷却され、超電導板は超電導
のマイスナー効果(完全反磁性)により、磁力線を中に
受は入れず排除する。このため扉部分を超電導板で磁気
シールドすることができ、室内のMHIの磁場を扉部分
から外部へ漏洩させることはない。
"Operation" In the magnetically shielded room layer of the above means, when the door is closed, the pump is driven to fill the hollow part of the door with refrigerant from the refrigerant tank. This refrigerant cools the superconducting plate in the hollow part of the door below the critical temperature, and the superconducting plate rejects magnetic lines of force without letting them in due to the Meissner effect (perfect diamagnetic) of superconductivity. Therefore, the door part can be magnetically shielded with a superconducting plate, and the magnetic field of the MHI inside the room will not leak from the door part to the outside.

扉を開ける場合には、扉下部の開閉弁を開いて排出口か
ら中空部内の冷媒を自重により外部に排出すれば、空温
により超電導板は臨界温度以上になり、それは常導体に
なって磁力線は内部を通り抜けるようになる。よって、
扉は軽くなりしかも強磁性を有さないので磁力で引っ張
られることもな(、扉は容易に開閉できる。
When opening the door, open the opening/closing valve at the bottom of the door and discharge the refrigerant inside the hollow part to the outside from the discharge port under its own weight.The air temperature will cause the superconducting plate to reach a critical temperature or higher, and it will become a normal conductor and cause magnetic field lines. begins to pass through the interior. Therefore,
The door is lighter, and since it is not ferromagnetic, it is not pulled by magnetic force (the door can be opened and closed easily).

ここで超電導体のマイナー効果を第3図により説明する
。第3図(A)は、超電導体が臨界温度以下に冷却され
た場合であり、その場合、超電導体となって磁力線は超
電導体を通り抜けることなく外周部を通るようになって
いる。よって超電導体で箱状に囲むと内部で磁力線の入
らない完全な磁気シールドができる。第3図(B)は、
超電導体が臨界温度以上になった場合であり、その場合
、超電導体は常導体になって磁力線は方向を変えること
な(そのまま通り抜ける。このような完全反磁性と常磁
性は、超電導体の臨界温度を境に突然起こるものであっ
て、可逆的である。
Here, the minor effects of superconductors will be explained with reference to FIG. FIG. 3(A) shows the case where the superconductor is cooled to below the critical temperature, in which case it becomes a superconductor and the lines of magnetic force pass through the outer periphery of the superconductor without passing through it. Therefore, if you surround it in a box shape with superconductors, you can create a complete magnetic shield with no magnetic lines of force inside. Figure 3 (B) is
This is the case when a superconductor reaches a temperature higher than its critical temperature. In that case, the superconductor becomes a normal conductor and the lines of magnetic field do not change direction (they pass through as they are. Such perfect diamagnetism and paramagnetism occur at the critical temperature of the superconductor. It occurs suddenly depending on the temperature and is reversible.

「実施例」 本発明の実施例を第1.2図により説明する。"Example" An embodiment of the present invention will be explained with reference to FIG. 1.2.

磁気共鳴診断装置(MHI)等のように強磁場を発生す
る装置を、磁気シールド壁Aと電波シールド壁Bとを設
けた室内に設置するため、室1の扉2を次の構成により
磁気シールドさせた。なお扉2を設ける室周壁の開口部
周縁に断熱材3を介してステンレス枠4を設け、さらに
ステンレス枠4に沿ってアモルファス等の高透磁率材5
を設けるとともに、ステンレス枠4と扉との間にフィン
ガーコンタクト6を設けて、扉周縁部が磁気シールド及
び電波シールドされる。
In order to install a device that generates a strong magnetic field, such as a magnetic resonance diagnostic instrument (MHI), in a room equipped with a magnetic shield wall A and a radio wave shield wall B, the door 2 of room 1 is magnetically shielded with the following configuration. I let it happen. A stainless steel frame 4 is provided around the opening of the peripheral wall of the chamber where the door 2 is provided, with a heat insulating material 3 interposed therebetween, and a high magnetic permeability material 5 such as amorphous is further installed along the stainless steel frame 4.
At the same time, a finger contact 6 is provided between the stainless steel frame 4 and the door, so that the peripheral edge of the door is magnetically shielded and radio wave shielded.

扉2は、非磁性のステンレス板により中空状に形成され
るとともに、さらに扉の室内側と室外側の両面の内側に
間隔をあけて非磁性ステンレス板7をそれぞれもう1枚
設ける。そして扉2のこれら両間隔内を真空にし、真空
断熱層8とした。ff12の中央中空部9の厚さ方向中
央部に、扉2とほぼ同一平面形の超電導板lOを配置し
た0本実施例では超電導板lOは、非磁性ステンレス板
lOaの外周面に超電導薄膜tabを付着させて形成さ
れる。そして超電導板IOの両側中空部に、液体窒素や
液体ヘリウム等の冷媒を充填して、超電導板lOを臨界
温度以下に冷却させて超電導状態にさせられるようにな
っている。
The door 2 is formed in a hollow shape by a non-magnetic stainless steel plate, and further non-magnetic stainless steel plates 7 are provided at intervals on both the indoor and outdoor sides of the door. Then, a vacuum was created between these two spaces of the door 2 to form a vacuum heat insulating layer 8. In this embodiment, the superconducting plate lO, which is substantially flush with the door 2, is arranged in the center in the thickness direction of the central hollow part 9 of the ff12. It is formed by attaching. The hollow portions on both sides of the superconducting plate IO are filled with a coolant such as liquid nitrogen or liquid helium, so that the superconducting plate IO is cooled to below a critical temperature and brought into a superconducting state.

扉2には、その中空部内に冷媒を充填させるため、中空
部9の上端2個所に注入口11が設けられ、また中空部
9内の冷媒を排出するために中空部9の下部に2つの排
出口12が設けられ、さらに扉2の上部に中空部9を外
気に連通ずる空気孔13が設けられる。なお、注入口1
1と排出口12とをそれぞれ2個設けたのは超電導板の
両側の中空部に冷媒を充填するとともに、冷媒を排出す
るためであり、また2つの排出口12にはそれぞれ開閉
弁12aが設けられている。
The door 2 is provided with two inlets 11 at the upper end of the hollow part 9 in order to fill the hollow part with refrigerant, and two inlets 11 in the lower part of the hollow part 9 to discharge the refrigerant in the hollow part 9. A discharge port 12 is provided, and an air hole 13 is further provided in the upper part of the door 2 to communicate the hollow part 9 with the outside air. In addition, injection port 1
The reason why two discharge ports 12 and two discharge ports 12 are provided is to fill the hollow portions on both sides of the superconducting plate with refrigerant and to discharge the refrigerant, and each of the two discharge ports 12 is provided with an on-off valve 12a. It is being

扉2の中空部9内に冷媒を充填させるため、第2図に示
すように冷媒タンク14が導管15を介して中空部の注
入口11に連通される。そして導管15の途中に設けた
電磁開閉弁16をマイコン17により開放させ、冷媒タ
ンク14の出口部に設けたポンプ18を駆動することに
より、中空部9に冷媒を注入できるようになっている。
In order to fill the hollow part 9 of the door 2 with refrigerant, a refrigerant tank 14 is connected to the injection port 11 of the hollow part through a conduit 15, as shown in FIG. Then, the microcomputer 17 opens the electromagnetic on-off valve 16 provided in the middle of the conduit 15 and drives the pump 18 provided at the outlet of the refrigerant tank 14, so that the refrigerant can be injected into the hollow portion 9.

扉2は開閉されるので、導管15と注入口11とは常に
連通されるものではなく、導管15の端部を扉2の外周
のステンレス枠4の部分に配置させる。そして導管15
の端部に伸縮管15a設けて、閉じた扉の中空部9内に
冷媒を注入するときに、伸縮管15aを伸長して注入口
11内に挿入させられるようになっている。なお、伸縮
管15aは、例えば油圧シリンダを伸縮させることによ
り伸縮させられるようになっている。
Since the door 2 is opened and closed, the conduit 15 and the injection port 11 are not always communicated with each other, and the end of the conduit 15 is placed in the stainless steel frame 4 on the outer periphery of the door 2. and conduit 15
A telescopic pipe 15a is provided at the end of the refrigerant, so that the telescopic pipe 15a can be extended and inserted into the injection port 11 when refrigerant is injected into the hollow part 9 of the closed door. Note that the telescopic pipe 15a can be expanded and contracted by, for example, expanding and contracting a hydraulic cylinder.

また扉2の下部の排出口12には、ステンレス枠4の部
分に一端が開口する導管19に連通されるようになって
おり、この導管19の端部にも前記と同様の伸縮管19
aが設けられ、扉が閉じた後に伸縮管19aが伸長して
排出口12に連通するようになっている。なお排出口か
ら排出された冷媒は、回収して再利用することも可能で
ある。
Further, the outlet 12 at the bottom of the door 2 is connected to a conduit 19 whose one end is opened in the stainless steel frame 4, and the end of this conduit 19 is also connected to a telescopic tube 19 similar to that described above.
a is provided, and after the door is closed, the telescopic tube 19a extends and communicates with the discharge port 12. Note that the refrigerant discharged from the discharge port can also be recovered and reused.

本発明における超電導板や扉外面部の断熱構造、あるい
は扉中空部内への冷媒の注入、排出装置等は前記実施例
に限るものではなく、公知の技術により変換してもよい
ものである。
In the present invention, the superconducting plate, the heat insulating structure of the outer surface of the door, the injection and discharge device for refrigerant into the hollow part of the door, etc. are not limited to the above-mentioned embodiments, and may be modified using known techniques.

「発明の効果」 本発明の磁気シールドルーム用層では、扉の内部に超電
導板を設けてそれを適宜、冷媒で臨界温度以下に冷却で
きるようにしたので、超電導のマイスナー効果により扉
部分からの漏洩磁場を大巾に小さくでき、しかも扉を開
閉するときには超電導体を常磁性にすることができるの
で、扉が磁力で引っ張られたり反発することがなく容易
に操作できる。
``Effects of the Invention'' In the magnetically shielded room layer of the present invention, a superconducting plate is provided inside the door and can be appropriately cooled to below the critical temperature with a refrigerant, so that the Meissner effect of superconductivity allows for leakage from the door part. The leakage magnetic field can be greatly reduced, and the superconductor can be made paramagnetic when opening and closing the door, so the door can be easily operated without being pulled or repelled by magnetic force.

また室の扉部分をも磁気シールドできることにより、M
HI等から生じる磁場の距離減衰をあまり考慮しなくて
よいので、MRI室の面積を小さく抑えることができ、
かつ室内の磁場の歪が小さくなるのでシムコイルによる
調整も容易である。
In addition, by magnetically shielding the door of the room, M
Since there is no need to take into account the distance attenuation of the magnetic field generated from HI etc., the area of the MRI room can be kept small.
In addition, since the distortion of the indoor magnetic field is reduced, adjustment using shim coils is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気シールドルーム用層の側面断面図
、第2図は磁気シールドルーム用扉内を冷却する冷媒の
通路を示す説明図、第3図は超電導体のマイスナー効果
を示す説明図、第4図は従来のMRI室の磁場状態を示
す説明図である。 2:扉       8:断熱層 10;超電導板   11:注入口 12:排出口    14:冷媒タンク18:ポンプ
Fig. 1 is a side cross-sectional view of the magnetically shielded room layer of the present invention, Fig. 2 is an explanatory diagram showing the path of a refrigerant that cools the inside of the magnetically shielded room door, and Fig. 3 is an explanatory diagram showing the Meissner effect of a superconductor. 4 are explanatory diagrams showing the magnetic field state of a conventional MRI room. 2: Door 8: Heat insulating layer 10; Superconducting plate 11: Inlet 12: Outlet 14: Refrigerant tank 18: Pump

Claims (4)

【特許請求の範囲】[Claims] (1)強磁場を発生する装置を設置する室の扉において
、扉を非磁性板により中空状に形成し、扉の中空部内の
厚さ方向中央部に扉とほぼ同一平面形の超電導板を配置
し、扉の中空部内に超電導板を臨界温度以下に冷却する
冷媒を適宜充填、排出可能に構成したことを特徴とする
磁気シールドルーム用扉。
(1) For the door of a room where a device that generates a strong magnetic field is installed, the door is formed into a hollow shape using a non-magnetic plate, and a superconducting plate that is almost flush with the door is placed in the center of the hollow part of the door in the thickness direction. A door for a magnetically shielded room, characterized in that the door is configured such that a refrigerant for cooling a superconducting plate below a critical temperature can be appropriately filled and discharged into a hollow part of the door.
(2)超電導板は、非磁性ステンレス板の表面に超電導
薄膜を被着して形成される請求項(1)の磁気シールド
ルーム用扉。
(2) The door for a magnetically shielded room according to claim (1), wherein the superconducting plate is formed by depositing a superconducting thin film on the surface of a non-magnetic stainless steel plate.
(3)扉の内外両面と中空部との間に間隔をあけて非磁
性板を配置して、中空部の両側に真空断熱層を形成した
請求項(1)又は(2)の磁気シールドルーム用扉。
(3) The magnetically shielded room according to claim (1) or (2), wherein a non-magnetic plate is arranged at a distance between the inner and outer surfaces of the door and the hollow part to form a vacuum insulation layer on both sides of the hollow part. door.
(4)冷媒タンクと扉の中空部とを導管で連通し、導管
途中にポンプを設けて適宜中空部内に冷媒を流入可能と
し、扉の中空部の下部に開閉弁を有する排出口を設けた
請求項(1)又は(2)又は(3)の磁気シールドルー
ム用扉。
(4) The refrigerant tank and the hollow part of the door are connected by a conduit, a pump is installed in the middle of the conduit to allow the refrigerant to flow into the hollow part as appropriate, and a discharge port with an on-off valve is provided at the bottom of the hollow part of the door. The magnetically shielded room door according to claim (1), (2), or (3).
JP63316197A 1988-12-16 1988-12-16 Magnetic shield room door Expired - Lifetime JPH0632426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316197A JPH0632426B2 (en) 1988-12-16 1988-12-16 Magnetic shield room door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316197A JPH0632426B2 (en) 1988-12-16 1988-12-16 Magnetic shield room door

Publications (2)

Publication Number Publication Date
JPH02162798A true JPH02162798A (en) 1990-06-22
JPH0632426B2 JPH0632426B2 (en) 1994-04-27

Family

ID=18074375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316197A Expired - Lifetime JPH0632426B2 (en) 1988-12-16 1988-12-16 Magnetic shield room door

Country Status (1)

Country Link
JP (1) JPH0632426B2 (en)

Also Published As

Publication number Publication date
JPH0632426B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US5517169A (en) Superconducting magnet with magnetic shielding
JPH01169907A (en) Magnet apparatus of superconducting neuclear magnetic resonance tomographer
JPH0669027A (en) Magnetic field generation device
WO2006067828A1 (en) Measuring structure of superconducting magnetic shield brain field measuring equipment
US4868707A (en) Superconducting electromagnet apparatus
JPH02162798A (en) Door of magnetically shielding room
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
JPH06188466A (en) Superconductor magnet cooling system
JPH0369785A (en) Door for magnetically shielded room
JPH02159596A (en) Door for magnetic shield room
JPS63278385A (en) Magnetic shielding device
JPH02186093A (en) Window for magnetic shielded room
JPH01283372A (en) Magnetron sputtering device
Oshiro et al. Structures and characteristics of planar transformers
JPH065412A (en) Magnet for magnetic resonance imaging device
JPH01245598A (en) High temperature superconductor zero magnetic field standard device
JP3767743B2 (en) Cryogenic refrigerator
JPH0722577B2 (en) Magnetic shield room door
JPS61176199A (en) Magnetic shield
JPH01253690A (en) Magnetic shielding apparatus
EP1452884A1 (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JP2002360537A (en) Super conductive magnet device and method for adjusting magnetic field uniformity of the same
JP2706631B2 (en) Open access magnetic resonance imaging system
KR100294922B1 (en) Main magnet structure for MRI and Apparatus and Method for generating main magnetic field in an MRI
JPH01213370A (en) Coating