JPH02162754A - Network heat transfer device - Google Patents

Network heat transfer device

Info

Publication number
JPH02162754A
JPH02162754A JP31610188A JP31610188A JPH02162754A JP H02162754 A JPH02162754 A JP H02162754A JP 31610188 A JP31610188 A JP 31610188A JP 31610188 A JP31610188 A JP 31610188A JP H02162754 A JPH02162754 A JP H02162754A
Authority
JP
Japan
Prior art keywords
heat
equipment
equipments
heat transfer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31610188A
Other languages
Japanese (ja)
Inventor
Akihiro Miyasaka
明宏 宮坂
Katsuhiko Nakajima
克彦 中島
Hiroaki Tsunoda
角田 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31610188A priority Critical patent/JPH02162754A/en
Publication of JPH02162754A publication Critical patent/JPH02162754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thermally control heat releasing equipments which are irregularly arranged so as to keep them at the same temperature by a method wherein a heat transfer element is attached to parts of high heat releasing density respectively, and the heat transfer elements are connected with each other in network keeping the insides of the above parts connected. CONSTITUTION:A heat absorbing section 11 of a heat transfer device is attached to only a part 4 of high heat releasing density inside a heat releasing equipment 2 and made to absorb heat, and two or more heat absorbing sections 11 are connected with each other. A heat transfer section 12 serving only as a path of heat transferring vapor is formed of organic material or the like, whereby it is flexible and able to easily connect the heat transfer elements with each other in network even if the equipments are dispersedly arranged, so that the heat control of the equipments can be made and the dense mounting of the equipments 2 on an equipment mounting board 1 can be attained. And, as the heat absorbed from the heat releasing equipments 2 can be transferred to the heat absorbing sections 11 of lower temperature or optional parts of the equipment mounting board, if the heat absorbing part 11 is attached to an equipment or a part which is apt to become too low in temperature, not only the equipment or the part is prevented from being over-cooled but also the whole equipment mounting board 1 can be made uniform in temperature and the heat dissipation can be realized taking advantage of the whole mounting face.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、熱を伝達するための熱輸送装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a heat transport device for transmitting heat.

(従来の技術〕 第4図は板上に配置された電子機器等の発熱機器を熱制
御するときの従来例を示す図であり、1は機器取付は板
、2は発熱機器、3−1は熱輸送を行うための直線型ヒ
ートバイブ、3−2は前記直線型ヒートバイブ3−1間
を相互に接続するためのU字型ヒートパイプ、4は前記
発熱機器2内で局所的に発熱量が大きい高発熱密度部分
、5は放熱板であり、熱輸送装置は3−1.3−2で構
成されている。
(Prior Art) Fig. 4 is a diagram showing a conventional example of thermally controlling heat-generating devices such as electronic devices arranged on a board, in which 1 indicates the device is mounted on the board, 2 indicates the heat-generating device, and 3-1 3-2 is a U-shaped heat pipe for mutually connecting the linear heat vibrators 3-1, and 4 is for locally generating heat within the heat generating device 2. A high heat generation density part with a large amount, 5, is a heat sink, and the heat transport device is composed of 3-1, 3-2.

第5図は直線型およびU字型ヒートバイブ3−1.3−
2の断面形状を示した図である。発熱機器2の温度が著
しく高くなる部分は、小さな面積で大きな発熱をしてい
る高発熱密度部分4であるため、従来の熱制御では、機
器内の高発熱密度部分4に直線型ヒートバイブ3−1を
接触させて発熱量を吸収し、直線型ヒートバイブ3−1
とυ字型ヒートバイブ3−2とを管壁で接着することに
より全発熱機器2の温度を均一化していた。また、機器
からの発熱は機器取付は板1表面全体を利用して放熱す
るか、機器の発熱量が大きい時には放熱板5を取付けて
各ヒートバイブ3−1.3−2により放熱板5まで熱輸
送していた。
Figure 5 shows linear and U-shaped heat vibrators 3-1.3-
FIG. 2 is a diagram showing the cross-sectional shape of No. 2; The part where the temperature of the heat generating device 2 becomes extremely high is the high heat generating density part 4 which generates a large amount of heat in a small area. -1 to absorb the heat generated by contacting the linear heat vibrator 3-1.
By bonding the υ-shaped heat vibrator 3-2 with the tube wall, the temperature of all the heat generating devices 2 was made uniform. In addition, the heat generated from the equipment can be radiated by using the entire surface of the board 1 when the equipment is installed, or if the amount of heat generated by the equipment is large, a heat sink 5 is attached and each heat vibrator 3-1, 3-2 is used to radiate the heat to the heat sink 5. It was transporting heat.

(発明が解決しようとする課題〕 ところで、−船釣に機器の配置は電気的な特性によって
決定される場合が多く、また、一定の面積内に所要個数
の機器を配置する場合は面積を有効利用することから、
機器の向きを一定にすることが困難になる。そのため、
機器配置、すなわち高発熱密度部分4の位置も不規則と
なり、−本のヒートバイブだけでは複数の機器内の高発
熱密度部分4に接触できなくなり、−本当たりの熱輸送
能力は余裕があるにもかかわらず、複数本のヒートバイ
ブを用いなければならなかった。また、これらの直線型
ヒートバイブ3−1間とU字型ヒートバイブ3−2を用
いて接続する場合、接触部における接触熱抵抗は大きく
、ヒートバイブ間で熱交換が良くないために各ヒートバ
イブ3−1と3−2問および発熱機器2間の温度差が増
大するという欠点があった。さらに、U字型ヒートバイ
ブ3−2は直線型ヒートバイブ3−1の曲げ加工により
製作せざるを得ないため、液をヒートバイブの吸熱部ま
で帰還させる装置である溝型ウィックがつぶれないよう
に曲率を大きくとる必要がある。したがって、小型化お
よび高密度実装された機器を熱制御するときには、機器
配置に合わせて直線型ヒートパイプ3−1の配置間隔を
狭くしなければならないが、直線型ヒートバイブ3−1
をU字型ヒートバイブ3−2で接続することができなく
なり、各ヒートバイブ3−1.3−2間での熱交換がで
きなくなるという欠点があった。また、ヒートバイブを
高熱密度部分4に必ず接触させようとすると、機器の取
付はネジの位置がヒートバイブ真上にならないように、
または他の機器と接触しないように機器ごとにケースの
設計を変えなければならないという欠点があった。
(Problem to be solved by the invention) By the way, - The arrangement of equipment in boat fishing is often determined by electrical characteristics, and when arranging the required number of equipment within a certain area, the effective area From using
It becomes difficult to maintain the same orientation of the device. Therefore,
The equipment arrangement, that is, the position of the high heat generation density parts 4, is also irregular, - one heat vibrator alone cannot contact the high heat generation density parts 4 in multiple devices, and - although each heat vibrator has sufficient heat transport capacity. However, multiple heat vibrators had to be used. In addition, when connecting these linear heat vibes 3-1 and U-shaped heat vibes 3-2, the contact thermal resistance at the contact part is large, and the heat exchange between the heat vibes is not good, so each heat There was a drawback that the temperature difference between the vibrators 3-1 and 3-2 and the heat generating device 2 increased. Furthermore, since the U-shaped heat vibe 3-2 has to be manufactured by bending the linear heat vibe 3-1, the groove-shaped wick, which is the device that returns the liquid to the heat absorption part of the heat vibe, should not be crushed. It is necessary to have a large curvature. Therefore, when controlling the heat of devices that are miniaturized and packed with high density, the spacing between the linear heat pipes 3-1 must be narrowed according to the device arrangement; however, the linear heat pipes 3-1
There was a drawback that it became impossible to connect the U-shaped heat vibes 3-2 with each other, and heat exchange between the heat vibes 3-1 and 3-2 became impossible. Also, if you want to make sure that the heat vibrator comes into contact with the high heat density part 4, when installing the device, make sure that the screw position is not directly above the heat vibrator.
Another disadvantage is that the design of the case must be changed for each device to prevent contact with other devices.

この発明の目的は、複数の発熱機器が存在するとき、発
熱密度の高い部分に熱輸送素子を取付け、内部空間がつ
ながっている状態で、ネットワーク状につなげることに
より、不規則に配置された各発熱機器が同一温度となる
ような熱制御を可能とする熱輸送装置を提供することに
ある。
The purpose of this invention is to attach heat transport elements to parts with high heat generation density when there are multiple heat generating devices, and to connect them in a network with the internal spaces connected, so that each of the irregularly arranged An object of the present invention is to provide a heat transport device that enables heat control such that heat generating devices are at the same temperature.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るネットワーク熱輸送装置は、高温の部分
から低温の部分へ熱を輸送する装置であって、発熱機器
に取付ける高熱伝達率材料からなる吸熱部と、可とう性
材料からなり内部を空間にし、この空間に熱輸送用の液
体を封入した熱輸送部と、低温の部分に接続される高熱
伝達率材料の凝縮部とで熱輸送素子を構成し、この熱輸
送素子を複数本、内部空間が連通した状態で接続したも
のである。
The network heat transport device according to the present invention is a device that transports heat from a high temperature part to a low temperature part, and includes a heat absorbing part made of a high heat transfer coefficient material attached to a heat generating device, and an internal space made of a flexible material. A heat transport element is constructed by a heat transport part in which a liquid for heat transport is sealed in this space, and a condensation part made of a high heat transfer coefficient material connected to the low temperature part. They are connected so that the spaces are connected.

〔作用〕[Effect]

この発明においては、複数の熱輸送素子の内部空間を連
通ずることにより、熱輸送装置内の熱抵抗は小さくなり
、高温部から低温部へ熱輸送が効率良く行われる。
In this invention, by communicating the internal spaces of a plurality of heat transport elements, the thermal resistance within the heat transport device is reduced, and heat is efficiently transported from a high temperature section to a low temperature section.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す斜視図で、11は機
器からの発熱を取る吸熱部であり、12は熱輸送部、1
3は輸送された蒸気が凝縮する凝縮部、5は第4図と同
様の放熱板である。
FIG. 1 is a perspective view showing an embodiment of the present invention, in which 11 is a heat absorbing part that takes heat from the equipment, 12 is a heat transport part, and 1
3 is a condensing section where the transported steam is condensed, and 5 is a heat sink similar to that shown in FIG.

また、第2図は熱輸送部12の断面形状の一例を示して
いる。液(図示せず)は第2図における中央の狭隘部分
12aに溜まり、凝縮された場所の液圧力によりも低い
液圧力となっている吸熱部11へ帰還する。第1図に示
したように熱輸送素子をネットワーク状につなげること
により、機器の発熱量に応じた分量の液が蒸発し、少し
でも低温の部分へと潜熱を持つ蒸気が8勤する。そして
、低温部の温度に応じた量の蒸気が凝縮され、液となる
ときに排熱が行われる。すなわち、吸熱部11は機器の
発熱量が大きく他の部分より温度が高い場合は、熱輸送
装置内部に封入された液の蒸発部となり、逆に機器の発
熱量が小さく温度が低い場合には他の吸熱部で発生した
蒸気の凝縮部となる。したがって、各発熱機器からの熱
は各機器が同一温度となるように蒸気潜熱によって移動
が行われるために、熱輸送素子間の熱抵抗は無視できる
ほど小さくなり、熱輸送素子間および発熱機器間の温度
差は従来の技術を適応した場合と比較して非常に小さく
できる。
Further, FIG. 2 shows an example of the cross-sectional shape of the heat transport section 12. The liquid (not shown) accumulates in the central narrow portion 12a in FIG. 2, and returns to the heat absorption section 11, where the liquid pressure is lower than the liquid pressure at the place where it is condensed. By connecting heat transport elements in a network as shown in Figure 1, a quantity of liquid corresponding to the amount of heat generated by the device evaporates, and steam with latent heat is transferred to the lowest temperature area. Then, when the amount of steam corresponding to the temperature of the low temperature section is condensed and becomes liquid, heat is exhausted. In other words, when the heat generation amount of the device is large and the temperature is higher than other parts, the heat absorption section 11 becomes an evaporation section for the liquid sealed inside the heat transport device, and conversely, when the heat generation amount of the device is small and the temperature is low, the heat absorption section 11 becomes an evaporation section of the liquid sealed inside the heat transport device. It becomes a condensation part for the steam generated in other heat absorption parts. Therefore, heat from each heat generating device is transferred by vapor latent heat so that each device has the same temperature, so the thermal resistance between heat transport elements becomes negligibly small, and between heat transport devices and heat generating devices. The temperature difference can be made very small compared to when conventional technology is applied.

なお、吸熱部11.凝縮部13には、例えばアルミニウ
ム等を用い、熱輸送部12には、例えばポリエステル繊
維を用い、さらに、熱輸送部12内の液として、例えば
アンモニア液を用いる。もちろん他の材質のものでもよ
い。
Note that the heat absorption part 11. The condensing section 13 is made of, for example, aluminum, the heat transporting section 12 is made of, for example, polyester fiber, and the liquid in the heat transporting section 12 is, for example, an ammonia solution. Of course, other materials may also be used.

第3図はこの発明を適応した一例であり、第4図と同じ
く1は機器取付は板、2は発熱機器、4は高発熱密度部
分、5は放熱板であり、11は熱輸送装置の吸熱部、1
2は熱輸送部、13は熱輸送装置の凝縮部である。
FIG. 3 shows an example to which this invention is applied, and as in FIG. 4, 1 is a board for mounting equipment, 2 is a heat generating device, 4 is a high heat generation density part, 5 is a heat sink, and 11 is a heat transport device. Heat absorption part, 1
2 is a heat transport section, and 13 is a condensation section of the heat transport device.

第3図に示すように、発熱機器2内の高発熱密度部分4
のみに熱輸送装置の吸熱部11を取付は熱を吸収させ、
複数個の吸熱部11間を接続する構成要素であって、単
に熱輸送を行う蒸気の通路となる熱輸送部12は、例え
ば有機材料等で製作することにより、可とう的な動作が
できるため、機器配置にばらつきがある場合でも熱輸送
素子を容易にネットワーク状に接続して熱制御を行うこ
とができ、機器取付は板1内で機器の高密度実装が可能
となる。また、発熱機器2から取った熱量をより温度の
低い吸熱部11や機器取付は板1の任意の位置へも輸送
することができるため、低温となりすぎる機器や場所に
吸熱部11を取付ければ、冷えすぎの防止も可能となる
と同時に、機器取付は板1全体の温度を均一化し、取付
は面全体を利用した放熱も可能となる。
As shown in FIG.
Attaching the heat absorption part 11 of the heat transport device only absorbs heat,
The heat transport part 12, which is a component that connects a plurality of heat absorption parts 11 and simply serves as a passage for steam that transports heat, can operate flexibly by being made of, for example, an organic material. Even if there are variations in equipment arrangement, heat transport elements can be easily connected in a network to perform thermal control, and equipment can be mounted in high density within the board 1. In addition, the amount of heat taken from the heat generating device 2 can be transported to the lower temperature heat absorbing section 11 or any position on the board 1, so if the heat absorbing section 11 is attached to a device or a place where the temperature becomes too low, At the same time, it is possible to prevent excessive cooling, and at the same time, the temperature of the entire board 1 can be made uniform by mounting the equipment, and heat dissipation can be achieved using the entire mounting surface.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、発熱機器に取付ける高
熱伝達率材料からなる吸熱部と、可とう性材料からなり
内部を空間にし、この空間に熱輸送用の液体を封入した
熱輸送部と、低温の部分に接続される高熱伝達率材料の
凝縮部とで熱輸送素子を構成し、この熱輸送素子を複数
本、内部空間が連通した状態で接続したので、可とう性
のある熱輸送部を持つ熱輸送素子をネットワーク状に接
続することが可能となり、不規則に配置された発熱機器
を同一温度に制御することができる利点がある。
As explained above, the present invention includes: a heat absorbing part made of a material with high heat transfer coefficient that is attached to a heat generating device; a heat transporting part made of a flexible material and having a space inside, and a liquid for heat transport being sealed in this space; A heat transport element is formed by a condensing part made of a high heat transfer coefficient material connected to a low temperature part, and multiple heat transport elements are connected with their internal spaces communicating, so a flexible heat transport part is formed. This makes it possible to connect heat transport elements with 200 mm in a network, and has the advantage that irregularly arranged heat generating devices can be controlled to the same temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明であるネットワーク型熱輸送装置の一
実施例を示す斜視図、第2図はこの発明である熱輸送装
置の熱輸送部の断面形状の一例を示すものであり、第3
図はこの発明のネットワーク型輸送装置を機器に適応し
た状態を示す平面図、第4図は発熱機器の熱制御方法に
関する従来の例を示す平面図であり、第5図は、第4図
に示した従来例に使用されるヒートバイブの断面形状の
一例を示す図である。 図中、1は機器取付は板、2は発熱機器、3−1は直線
型ヒートバイブ、3−2はU字型ヒートバイブ、4は高
発熱密度部分、5は放熱板、11は高発熱密度部分へ取
付ける熱輸送装置の吸熱部、12は熱輸送部、13は熱
輸送装置の凝縮部である。 第1図 第 図 第 図 第 図 第 図
FIG. 1 is a perspective view showing one embodiment of the network type heat transport device according to the present invention, FIG. 2 shows an example of the cross-sectional shape of the heat transport section of the heat transport device according to the present invention, and
4 is a plan view showing a state in which the network type transportation device of the present invention is applied to equipment, FIG. 4 is a plan view showing a conventional example of a heat control method for heat generating equipment, and FIG. It is a figure which shows an example of the cross-sectional shape of the heat vibe used for the conventional example shown. In the figure, 1 is a board for equipment mounting, 2 is a heat generating device, 3-1 is a linear heat vibrator, 3-2 is a U-shaped heat vibrator, 4 is a high heat generation density part, 5 is a heat sink, 11 is a high heat generation The heat absorption part of the heat transport device attached to the density part, 12 is the heat transport part, and 13 is the condensation part of the heat transport device. Figure 1 Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims]  高温の部分から低温の部分へ熱を輸送する装置であっ
て、発熱機器に取付ける高熱伝達率材料からなる吸熱部
と、可とう性材料からなり内部を空間にし、この空間に
熱輸送用の液体を封入した熱輸送部と、前記低温の部分
に接続される高熱伝達率材料の凝縮部とで熱輸送素子を
構成し、この熱輸送素子を複数本、内部空間が連通した
状態で接続したことを特徴とする熱輸送装置。
A device that transports heat from a high-temperature part to a low-temperature part, and includes a heat absorbing part made of a material with high heat transfer coefficient that is attached to a heat generating device, and a space made of a flexible material, in which a liquid for heat transport is placed. A heat transport element is constituted by a heat transport part enclosing the heat transport part and a condensation part made of a high heat transfer coefficient material connected to the low temperature part, and a plurality of these heat transport elements are connected with their internal spaces communicating with each other. A heat transport device featuring:
JP31610188A 1988-12-16 1988-12-16 Network heat transfer device Pending JPH02162754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31610188A JPH02162754A (en) 1988-12-16 1988-12-16 Network heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31610188A JPH02162754A (en) 1988-12-16 1988-12-16 Network heat transfer device

Publications (1)

Publication Number Publication Date
JPH02162754A true JPH02162754A (en) 1990-06-22

Family

ID=18073252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31610188A Pending JPH02162754A (en) 1988-12-16 1988-12-16 Network heat transfer device

Country Status (1)

Country Link
JP (1) JPH02162754A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206922A (en) * 1989-02-07 1990-08-16 Natl Space Dev Agency Japan<Nasda> Radiator
EP0619604A3 (en) * 1993-04-05 1995-03-22 Tokyo Shibaura Electric Co Heat sink for a semiconductor device.
US20160021791A1 (en) * 2014-07-18 2016-01-21 Intel Corporation Server thermal management with heat pipes
CN106017171A (en) * 2016-06-05 2016-10-12 山东商业职业技术学院 Cool storage system based on heat conduction of three-dimensional (3D) heat pipe network
US11606880B2 (en) 2016-03-03 2023-03-14 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Self-organizing thermodynamic system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199476A (en) * 1975-02-28 1976-09-02 Hitachi Ltd HONETSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199476A (en) * 1975-02-28 1976-09-02 Hitachi Ltd HONETSUSOCHI

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206922A (en) * 1989-02-07 1990-08-16 Natl Space Dev Agency Japan<Nasda> Radiator
EP0619604A3 (en) * 1993-04-05 1995-03-22 Tokyo Shibaura Electric Co Heat sink for a semiconductor device.
US5548161A (en) * 1993-04-05 1996-08-20 Kabushiki Kaisha Toshiba Semiconductor apparatus capable of cooling a semiconductor element with low radiation efficiency
US20160021791A1 (en) * 2014-07-18 2016-01-21 Intel Corporation Server thermal management with heat pipes
US10365046B2 (en) * 2014-07-18 2019-07-30 Intel Corporation Server thermal management with heat pipes
US11606880B2 (en) 2016-03-03 2023-03-14 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Self-organizing thermodynamic system
CN106017171A (en) * 2016-06-05 2016-10-12 山东商业职业技术学院 Cool storage system based on heat conduction of three-dimensional (3D) heat pipe network

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US4951740A (en) Bellows heat pipe for thermal control of electronic components
US6530420B1 (en) Heat carrier
KR100442888B1 (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US20060146496A1 (en) Cooling apparatus, system, and associated method
US8792238B2 (en) Heat-dissipating module having loop-type vapor chamber
US5343940A (en) Flexible heat transfer device
US4880050A (en) Thermal management system
US5162974A (en) Heat sink assembly for cooling electronic components
EP0821468A2 (en) Temperature control of electronic components
US4880053A (en) Two-phase cooling apparatus for electronic equipment and the like
US5506032A (en) Structural panel having integral heat pipe network
JPS63294328A (en) Heat energy transmitter and seal jaw for packaging machine with said device
JPH02162754A (en) Network heat transfer device
WO2012161002A1 (en) Flat plate cooling device, and method for using same
JP4069301B2 (en) Composite plate heat pipe
US7239514B2 (en) Heat transfer structure for electronic devices
JP2002289962A (en) Optical element module provided with heat transfer medium utilizing phase change
JP2915468B2 (en) PCB cooling structure
JPH10103884A (en) Plate type heat pipe
WO2023189070A1 (en) Heat sink
JP2541939Y2 (en) Heat pipes for cooling integrated circuits
JPH02146498A (en) Small heat transport device
JPH0510210Y2 (en)
JPH06213584A (en) Plate state heat pipe