JPH02162717A - Formation of quantum fine wire - Google Patents

Formation of quantum fine wire

Info

Publication number
JPH02162717A
JPH02162717A JP31882488A JP31882488A JPH02162717A JP H02162717 A JPH02162717 A JP H02162717A JP 31882488 A JP31882488 A JP 31882488A JP 31882488 A JP31882488 A JP 31882488A JP H02162717 A JPH02162717 A JP H02162717A
Authority
JP
Japan
Prior art keywords
semiconductor
face
layer
quantum
stepping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31882488A
Other languages
Japanese (ja)
Inventor
Kunihiko Kodama
邦彦 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31882488A priority Critical patent/JPH02162717A/en
Publication of JPH02162717A publication Critical patent/JPH02162717A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form the arrangement of a quantum fine wire, having the width of several atomic layers in the same thickness as the stepping of crystal face, in a highly precise manner by a method wherein a quantum well semiconductor layer, which is epitaxially grown, is formed by controlling its thickness and width smaller than the de Broglie wavelength. CONSTITUTION:The crystal face of a substrate is formed into a face (111)B which is inclined in orientation <110>. As a result, the substrate surface is turned to the face (111)B having a stepping periodically. The side face constituting the stepping is a face (110). In the first atomic layer epitaxy, a semiconductor layer having a wide forbidden band width, which becomes the barrier of quantum well, is deposited. As it is an isotropic qrawing method, the stepping on the substrate crystal surface is in the state as it is. When a semiconductor, which becomes a confinement layer, is coated thereon using an anisotropic crystal growth method, no crystal growth progresses on the face (111)B, and crystal growth progresses only on the face (110) of the stepped part. As a result, a confinement layer, having the controlled atomic column number in lateral direction, is formed in the thickness same as the stepping. In the subsequently conducted atomic layer epitaxy, the barrier layer of a quantum well is formed enveloping the formed carrier confinement layer, and a quantum fine line is formed.

Description

【発明の詳細な説明】 〔概 要〕 本発明は半導体のエネルギ・バンド構造を利用して、キ
ャリヤを閉じ込める量子井戸構造の形成方法に関し、 キャリヤを2次元方向に閉じ込める量子細線を精度良(
形成する方法を提供することを目的とし、結晶面の段差
を有する半導体基板表面に、等方性の原子層エピタキシ
ーによって、より広い禁制帯幅の第1の半導体層を形成
する工程、上記処理を施した半導体基板表面に存在する
結晶面段差部に、異方性の原子層エピタキシーによって
、より狭い禁制帯幅の第2の半導体をド・ブロイ波長よ
り小である幅だけ被着する工程、及び前記第2の半導体
を被着した基板表面に、等方性の原子層エピタキシーに
よって、前記第1の半導体層を形成する工程を包含して
構成される。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for forming a quantum well structure that confines carriers by utilizing the energy band structure of a semiconductor.
The purpose of the present invention is to provide a method for forming a first semiconductor layer having a wider forbidden band width by isotropic atomic layer epitaxy on the surface of a semiconductor substrate having a step in the crystal plane, and the above process. a step of depositing a second semiconductor having a narrower forbidden band width by anisotropic atomic layer epitaxy on the crystal plane step portion existing on the surface of the semiconductor substrate subjected to the step; The method includes the step of forming the first semiconductor layer by isotropic atomic layer epitaxy on the surface of the substrate on which the second semiconductor is deposited.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体のエネルギ・バンド構造を利用して、キ
ャリヤを閉じ込める量子井戸に関わるものであり、特に
キャリヤを2次元方向に閉じ込める量子井戸構造である
量子細線の形成方法に関わるものである。
The present invention relates to a quantum well that confines carriers by utilizing the energy band structure of a semiconductor, and particularly relates to a method for forming a quantum wire, which is a quantum well structure that confines carriers in two dimensions.

量子井戸の形状は禁制帯幅の広い半導体層で禁制帯幅の
狭い半導体層を挟んだ、一種の超格子構造構造であり、
禁制帯幅の狭い半導体層の厚さはキャリヤのド・ブロイ
波長よりも小である。更に、量子井戸を能動素子に利用
する場合には、キャリヤ閉じ込め障壁となる禁制帯幅の
広い半導体層の厚さも、キャリヤのトンネリング確率が
有意の値となる程度とすることがある。
The shape of a quantum well is a type of superlattice structure in which a semiconductor layer with a narrow bandgap is sandwiched between semiconductor layers with a wide bandgap.
The thickness of the narrow bandgap semiconductor layer is smaller than the de Broglie wavelength of carriers. Furthermore, when a quantum well is used in an active element, the thickness of a semiconductor layer with a wide forbidden band that serves as a carrier confinement barrier may be set to such a level that the carrier tunneling probability becomes a significant value.

一般的に知られている1次元閉じ込め型の量子井戸は、
キャリヤの運動を1次元方向だけ抑制するものであるが
、これを2次元方向に抑制する構造は量子細線と呼ばれ
ており、更に、3次元方向に抑制する構造は量子箱と呼
ばれている。
The commonly known one-dimensional confinement quantum well is
The structure that suppresses carrier motion in one dimension only is called a quantum wire, and the structure that suppresses it in two dimensions is called a quantum box. .

1次元の閉じ込め構造では、閉じ込め層の厚さだけを数
原子層に制御すれば良かったのに対し、量子ta線では
その幅も同程度の値とすることが要求される。
In a one-dimensional confinement structure, it is only necessary to control the thickness of the confinement layer to a few atomic layers, whereas in the case of quantum TA lines, the width is also required to be of a similar value.

量子井戸構造を利用した能動素子には種々のものがある
が、例えば半導体レーザの再結合による発振が行われる
活性層を量子井戸構造とすることによって量子変換効率
が大幅に向上することが知られており、この量子井戸構
造を1次元の閉じ込め構造から2次元の閉じ込め構造で
ある量子細線に変えることで、量子変換効率は更に向上
すると考えられている。
There are various types of active elements that utilize quantum well structures, but it is known that, for example, quantum conversion efficiency can be greatly improved by making the active layer of a semiconductor laser, where oscillation occurs through recombination, a quantum well structure. It is believed that the quantum conversion efficiency can be further improved by changing the quantum well structure from a one-dimensional confinement structure to a quantum wire, which is a two-dimensional confinement structure.

〔従来の技術と発明が解決しようとする課題〕1次元閉
じ込め型の量子井戸構造は、原子層エピタキシー(AL
E)により形成される。ALEは、典型的には、半導体
を構成する元素毎に1原子層ずつ基板に吸着させること
を繰り返し、それによって原子層単位でエピタキシャル
成長を行うもので、l原子層を越えて吸着を進行させな
いために、セルフリミティング効果を示す原料が用いら
れる。
[Prior art and problems to be solved by the invention] A one-dimensional confinement quantum well structure has been developed using atomic layer epitaxy (AL).
E) is formed. Typically, in ALE, each element constituting a semiconductor is repeatedly adsorbed onto a substrate one atomic layer at a time, resulting in epitaxial growth in atomic layer units, and the adsorption does not proceed beyond one atomic layer. Raw materials that exhibit self-limiting effects are used.

この方法では、量子井戸を構成する半導体層の厚さを原
子層数で示される程度に制御することは可能であるが、
幅や長さを同じ精度で制御するためには別な制御方法に
依らなければならない、従来知られている幅および長さ
を制御nする方法にはフォーカス・イオンビームを用い
るものがあるが、成長方向に直角な方向の閉じ込めは量
子サイズ効果が観測される程度であり、量子細線或いは
量子箱の寸法の制御は不十分である。
With this method, it is possible to control the thickness of the semiconductor layer constituting the quantum well to the extent indicated by the number of atomic layers;
In order to control the width and length with the same precision, a different control method must be used. Conventionally known methods for controlling the width and length include methods that use focused ion beams. Confinement in the direction perpendicular to the growth direction is such that a quantum size effect is observed, and control of the dimensions of the quantum wire or quantum box is insufficient.

本発明の目的はエピタキシャル成長させる量子井戸半導
体層を、その厚さと幅をド・ブロイ波長より小に制御し
て形成する処理方法を提供することであり、それによっ
て量子細線を精度良く形成する方法を提供することであ
る。
An object of the present invention is to provide a processing method for forming an epitaxially grown quantum well semiconductor layer by controlling its thickness and width to be smaller than the de Broglie wavelength, thereby providing a method for forming quantum wires with high precision. It is to provide.

(II!flを解決するための手段〕 上記目的を達成するため、本発明の量子細線形成法は <110>方向に傾けた(111)i面を主表面とする
半導体基板上に、成長速度が下地結晶方位に依存せず且
つ原子層単位で成長厚を制御し得る成長方法で第1の半
導体層を形成する工程、前記第1の半導体層を形成した
半導体基板面の主表面に存在する結晶面の段差部に、前
記第1の半導体よりも禁制帯幅の狭い第2の半導体を原
子列の数で示される量だけ被着する工程、および前記第
2の半導体を選択的に被着した半導体基板面に、成長速
度が下地結晶方位に依存せず且つ原子層単位で成長厚を
制御し得る成長方法で、前記第1の半導体層を形成する
工程とを包含する。
(Means for Solving II!fl) In order to achieve the above object, the quantum wire forming method of the present invention has a growth rate of is present on the main surface of the semiconductor substrate surface on which the first semiconductor layer is formed; A step of depositing a second semiconductor having a narrower forbidden band width than the first semiconductor in an amount indicated by the number of atomic columns on a step portion of a crystal plane, and selectively depositing the second semiconductor. forming the first semiconductor layer on the surface of the semiconductor substrate using a growth method in which the growth rate does not depend on the underlying crystal orientation and the growth thickness can be controlled on an atomic layer basis.

これは換言すれば、 結晶面の段差を有する半導体基板表面に、等方性の原子
層エピタキシーによって、より広い禁制帯幅の第1の半
導体層を形成する工程、上記処理を施した半導体基板表
面に存在する結晶面段差部に、より狭い禁制帯幅の第2
の半導体をド・ブロイ波長より小である幅だけ被着する
工程、および 前記第2の半導体を被着した基板表面に、等方性の原子
層エピタキシーによって、前記第1の半導体層を形成す
る工程を包含することである。
In other words, this is a step of forming a first semiconductor layer with a wider forbidden band width by isotropic atomic layer epitaxy on the surface of a semiconductor substrate having a step difference in crystal planes, and a step of forming a first semiconductor layer with a wider forbidden band width on the surface of a semiconductor substrate having steps in the crystal plane. A second band with a narrower forbidden band width exists in the crystal plane step part that exists in the
forming the first semiconductor layer on the surface of the substrate on which the second semiconductor is deposited by isotropic atomic layer epitaxy; It is to include the process.

上記諸工程により、量子井戸のバリヤとなる半導体層に
包まれ、結晶面の段差に相当する厚さと原子配列数で示
される程度の幅を持つキャリヤ閉じ込め層が形成される
ことになる。
Through the above steps, a carrier confinement layer is formed that is surrounded by a semiconductor layer that serves as a barrier for the quantum well and has a thickness corresponding to the step of the crystal plane and a width as indicated by the number of atoms arranged.

〔作 用] 基板結晶面を<110>方向に傾けた(111)3面と
することにより、基板面は周期的に段差を持つ(111
)s面となっている0段差を構成する側面は(110)
面である。
[Function] By making the substrate crystal plane three (111) planes tilted in the <110> direction, the substrate surface has periodic steps (111).
) The side surface that makes up the 0 step difference that is the s-plane is (110)
It is a surface.

上記工程の中、最初の原子層エピタキシーでは量子井戸
のバリヤとなる禁制帯幅の広い半導体層が堆積されるが
、等方性の成長法であるため基板結晶面の段差はそのま
まの形で受は継がれる。
In the first atomic layer epitaxy of the above steps, a semiconductor layer with a wide forbidden band width is deposited as a barrier for the quantum well, but since it is an isotropic growth method, the steps in the substrate crystal plane are accepted as they are. will be inherited.

これに異方性の結晶成長法によって、閉じ込め層となる
半導体を被着すると、(111)s面には結晶成長は進
行せず、段差部の(110)面だけに結晶成長が進行す
る結果、段差と同じ厚さで、横方向には制御された原子
列数を持つ閉じ込め層が形成される。
When a semiconductor to be used as a confinement layer is deposited on this using an anisotropic crystal growth method, crystal growth does not proceed on the (111) s plane, but only on the (110) plane at the stepped portion. , a confinement layer is formed with the same thickness as the step and a controlled number of atomic columns in the lateral direction.

続く原子層エピタキシーで、前工程で形成されたキャリ
ヤ閉じ込め層を包むように量子井戸のバリヤ層が形成さ
れ、量子細線が形成される。
In the subsequent atomic layer epitaxy, a quantum well barrier layer is formed to surround the carrier confinement layer formed in the previous step, and a quantum wire is formed.

以上処理によれば、キャリヤ閉じ込め層は結晶面の段さ
と同じ厚みで数原子層の幅を有する層として形成され、
さらにそれを包むバリヤ層も所定の厚さに形成される。
According to the above process, the carrier confinement layer is formed as a layer having the same thickness as the steps of the crystal plane and a width of several atomic layers,
Furthermore, a barrier layer surrounding it is also formed to a predetermined thickness.

〔実施例〕〔Example〕

第1図(萄〜(e)は本発明の実施例の工程を示す断面
模式図である。以下、該図面を参照しながら説明を行う
FIGS. 1-(e) are schematic cross-sectional views showing the steps of an embodiment of the present invention. Hereinafter, explanation will be given with reference to the drawings.

同図(a)はGaAs単結晶基板1の垂直断面を示すも
ので、表面は(111Lから<110>方向に4′傾け
た面である。この傾きであればはり40人毎に1個の密
度で原子面の段差7が存在し、基板表面は図示の如<(
111)lと(110)で構成される階段形状となって
いる。
Figure (a) shows a vertical cross section of the GaAs single crystal substrate 1, and the surface is a plane inclined 4' in the <110> direction from (111L).With this inclination, one beam is produced for every 40 people. There is a step 7 in the atomic plane due to the density, and the substrate surface is as shown in the figure.
It has a staircase shape composed of 111)l and (110).

この基板面にALEによりAj!GaAsを成長させる
。ALEでは結晶面には無関係に等方的な成長が進行す
るから、第1図Φ)の如(、基板の階段形状を受は継い
だ形でAffiGaAs層2が形成される。
Aj! on this board surface by ALE! Grow GaAs. In ALE, growth proceeds isotropically regardless of the crystal plane, so the AffiGaAs layer 2 is formed in a shape that continues the step shape of the substrate as shown in FIG. 1 (Φ).

これにMOVPEでCaAsを成長させる0M0VPE
は半導体を構成する元素のうち金属元素の原料として金
属の有機化合物を使用する結晶成長方法であるが、特定
の結晶面上には殆ど成長しない異方性のエピタキシャル
成長法である。
0M0VPE to grow CaAs on this using MOVPE
is a crystal growth method that uses a metal organic compound as a raw material for a metal element among the elements constituting a semiconductor, but it is an anisotropic epitaxial growth method that hardly grows on a specific crystal plane.

この実施例の場合、(111)s面上の成長速度は殆ど
零であり、(110)面のみに成長が進行することから
、基板表面の段差部だけに横方向の成長が進行し、第1
図(C)に示すように、GaAs層が形成される。原料
供給の速度や時間を制御することにより、同図にd、と
して示された幅を持つGaAs層3を形成する。
In the case of this example, the growth rate on the (111) s-plane is almost zero, and growth progresses only on the (110) plane, so lateral growth progresses only on the stepped portion of the substrate surface, and the growth rate on the (111) s-plane is almost zero. 1
As shown in Figure (C), a GaAs layer is formed. By controlling the rate and time of raw material supply, a GaAs layer 3 having a width shown as d in the figure is formed.

続いて、最初のA I G a A s N 2の形成
と同じ処理により、GaAs1ii3を覆うAl1Ga
A5j14をエピタキシャル成長させる。この工程を終
えたところで(111)面にはり近い基板面に配置され
た量子細線の平行な列が形成されたことになる。この状
態が第1図(d)に示されている。
Subsequently, Al1Ga covering GaAs1ii3 is formed by the same process as the initial A I Ga As N 2 formation.
A5j14 is grown epitaxially. When this step is completed, parallel rows of quantum wires are formed that are arranged on the substrate surface close to the (111) plane. This state is shown in FIG. 1(d).

更に必要な場合には、上記処理を繰り返し、第1図(e
)の如(量子細線の配列を多段に配置した構造を形成す
る。該図の5はlCaAsの量子細線、6はAj!Ga
Asである。
If necessary, the above process is repeated and the process shown in FIG. 1 (e
) (forms a structure in which quantum wires are arranged in multiple stages. In the figure, 5 is a quantum wire of lCaAs, and 6 is an Aj!Ga quantum wire.
It is As.

以上の方法で量子細線を形成し、それによって優れた機
能が実現する半導体素子としては、既に述べた如く半導
体レーザが挙げられる。該素子に於いて、再結合発振領
域である活性層を量子井戸構造とすることにより、量子
変換効率が高められることが知られており、この量子井
戸構造を1次元の閉じ込め構造から2次元の閉じ込め構
造である量子細線に変えることで、量子変換効率は更に
向上すると考えられている。
As already mentioned, a semiconductor laser is an example of a semiconductor device in which quantum wires are formed by the above method and excellent functions are realized thereby. It is known that quantum conversion efficiency can be increased by forming the active layer, which is the recombination oscillation region, into a quantum well structure. It is thought that quantum conversion efficiency can be further improved by changing to a quantum wire, which has a confinement structure.

その他、光学装置におけるファプリ・ベロ干渉計の如く
、量子井戸に於ける電子の波動関数の共振を利用して特
定エネルギの電子のみを透過させる素子でも、量子井戸
構造を1次元の閉じ込め構造から2次元の閉じ込め構造
とすることによって、透過率分布をより優れたものとす
ることが出来る。
In addition, devices such as Fabry-Bello interferometers in optical devices that utilize the resonance of the electron wave function in a quantum well to transmit only electrons with a specific energy can be used to change the quantum well structure from a one-dimensional confinement structure to a two-dimensional structure. By creating a dimensional confinement structure, it is possible to improve the transmittance distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、結晶面の段差と
同じ厚さで数原子層の幅を持つ量子細線の配列が精度良
く形成される。量子細線どうしの間隔は基板面の傾きに
よって調整することが出来る。
As explained above, according to the present invention, an array of quantum wires having the same thickness as the step of the crystal plane and the width of several atomic layers can be formed with high precision. The distance between the quantum wires can be adjusted by adjusting the inclination of the substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の工程を示す断面模式図であって、図に
於いて 1はGaAs基板、 2.4.6は等方性成長法で形成された第1の半導体層
であるAj!GaAs。 3.5は異方性成長法で形成された第2の半導体である
GaAs。 7は結晶面段差 である。 l GaAs基板 実施例の工程を示す断面模式図 第 1 図(そのl)
FIG. 1 is a schematic cross-sectional view showing the process of the example, in which 1 is a GaAs substrate, 2.4.6 is the first semiconductor layer formed by an isotropic growth method, Aj! GaAs. 3.5 is GaAs, which is a second semiconductor formed by an anisotropic growth method. 7 is a crystal plane step. l Schematic cross-sectional diagram showing the steps of the GaAs substrate example Figure 1 (Part 1)

Claims (1)

【特許請求の範囲】 〈110〉方向に傾けた(111)_s面を主表面とし
、該(111)_s面と(110)面で構成される段差
(7)を有する半導体基板(1)上に、成長速度が下地
結晶方位に依存せず且つ原子層単位で成長厚を制御し得
る成長方法で第1の半導体層を形成する工程、 前記第1の半導体層(2)を形成した半導体基板面の主
表面の前記段差(7)を形成する(110)面に、成長
速度が下地結晶方位に依存し且つ原子層単位で成長厚を
制御し得る成長方法で前記第1の半導体よりも禁制帯幅
の狭い第2の半導体(3)を原子列の数で示される量だ
け被着する工程、および前記第2の半導体を選択的に被
着した半導体基板面に、成長速度が下地結晶方位に依存
せず且つ原子層単位で成長厚を制御し得る成長方法で、
前記第1の半導体の層(4)を形成する工程とを包含す
ることを特徴とする量子細線の形成方法。
[Claims] A semiconductor substrate (1) having a (111)_s plane tilted in the <110> direction as its main surface and a step (7) formed by the (111)_s plane and the (110) plane. a step of forming a first semiconductor layer by a growth method in which the growth rate does not depend on the underlying crystal orientation and the growth thickness can be controlled on an atomic layer basis; a semiconductor substrate on which the first semiconductor layer (2) is formed; The (110) plane forming the step (7) on the main surface of the plane is grown using a growth method that has a growth rate that depends on the underlying crystal orientation and can control the growth thickness on an atomic layer basis, which is more prohibitive than the first semiconductor. A step of depositing a second semiconductor (3) having a narrow band width in an amount indicated by the number of atomic rows, and a step of depositing a second semiconductor (3) having a narrow band width in an amount indicated by the number of atomic rows, and a step of depositing a second semiconductor (3) having a narrow band width on the semiconductor substrate surface on which the second semiconductor is selectively deposited; A growth method that does not depend on
A method for forming a quantum wire, comprising the step of forming the first semiconductor layer (4).
JP31882488A 1988-12-15 1988-12-15 Formation of quantum fine wire Pending JPH02162717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31882488A JPH02162717A (en) 1988-12-15 1988-12-15 Formation of quantum fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31882488A JPH02162717A (en) 1988-12-15 1988-12-15 Formation of quantum fine wire

Publications (1)

Publication Number Publication Date
JPH02162717A true JPH02162717A (en) 1990-06-22

Family

ID=18103365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31882488A Pending JPH02162717A (en) 1988-12-15 1988-12-15 Formation of quantum fine wire

Country Status (1)

Country Link
JP (1) JPH02162717A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582986A2 (en) * 1992-08-10 1994-02-16 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
WO1994023445A1 (en) * 1993-04-07 1994-10-13 Hitachi, Ltd. Method and apparatus for forming fine structure
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
WO2010110888A1 (en) * 2009-03-23 2010-09-30 The Board Of Trustees Of The Leland Stanford Junior University Quantum confinement solar cell fabriacated by atomic layer deposition
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582986A2 (en) * 1992-08-10 1994-02-16 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
EP0582986A3 (en) * 1992-08-10 1994-03-23 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US5663592A (en) * 1992-08-10 1997-09-02 Canon Kabushiki Kaisha Semiconductor device having diffraction grating
WO1994023445A1 (en) * 1993-04-07 1994-10-13 Hitachi, Ltd. Method and apparatus for forming fine structure
US5746826A (en) * 1993-04-07 1998-05-05 Hitachi, Ltd. Method and apparatus for forming microstructure body
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
WO2010110888A1 (en) * 2009-03-23 2010-09-30 The Board Of Trustees Of The Leland Stanford Junior University Quantum confinement solar cell fabriacated by atomic layer deposition

Similar Documents

Publication Publication Date Title
US5313484A (en) Quantum box or quantum wire semiconductor structure and methods of producing same
JP2744711B2 (en) Quantum wire structure and manufacturing method thereof
JP2854607B2 (en) Semiconductor device and semiconductor laser device
JPH02162717A (en) Formation of quantum fine wire
JP4066002B2 (en) Manufacturing method of semiconductor quantum dots
JPH04349622A (en) Manufacture of quantum device
JPS61222216A (en) Manufacture of superlattice semiconductor device
JPH11112102A (en) Fabrication of optical semiconductor device
US20020081825A1 (en) Method for reproducibly forming a predetermined quantum dot structure and device produced using same
JP3443803B2 (en) Semiconductor structure and method of manufacturing the same
JPH02163928A (en) Formation of quantum fine wire or quantum box
JPH04137521A (en) Semiconductor super lattice and its manufacture
JPS62273791A (en) Manufacture of semiconductor quantum well laser
JP2556271B2 (en) Molecular beam epitaxial growth method
JPH0334594A (en) Manufacture of quantum well structure
JP3146457B2 (en) Method for manufacturing quantum wire structure
JP3082444B2 (en) Manufacturing method of semiconductor laser
JPS6179281A (en) Manufacture of semiconductor laser
JPH04282825A (en) Manufacture of strain control superlattice structure
JPH02122682A (en) Superlattice element and manufacture thereof
JPS63240090A (en) Semiconductor superlattice
JPH09283737A (en) Quantum dot array structure
JPH02146722A (en) Manufacture of quantum fine line
JPH04192584A (en) Manufacture of semiconductor quantum well box
JPH0423471A (en) Manufacture of vertical superplattice element