JPH02162279A - Magnetoresistance element and preparation thereof - Google Patents

Magnetoresistance element and preparation thereof

Info

Publication number
JPH02162279A
JPH02162279A JP63316429A JP31642988A JPH02162279A JP H02162279 A JPH02162279 A JP H02162279A JP 63316429 A JP63316429 A JP 63316429A JP 31642988 A JP31642988 A JP 31642988A JP H02162279 A JPH02162279 A JP H02162279A
Authority
JP
Japan
Prior art keywords
substrate
film
thin film
magnetoresistive element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63316429A
Other languages
Japanese (ja)
Other versions
JP2572119B2 (en
Inventor
Yoshiyasu Sugimoto
杉本 善保
Ichiro Shibazaki
一郎 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63316429A priority Critical patent/JP2572119B2/en
Publication of JPH02162279A publication Critical patent/JPH02162279A/en
Application granted granted Critical
Publication of JP2572119B2 publication Critical patent/JP2572119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To use a reluctance element in element arrangement receiving no adverse effect due to the mold protrusion of a terminal part by allowing a sensor part composed of a thin film to protrude to the other part on a pellet constituting the element. CONSTITUTION:A sensor part is formed from an insulating substrate, a baked film 2 composed of an insulating material and a ferromagnetic thin film 3. Further, terminal electrode parts 4A-4C are provided and the thin film 3 containing the sensor part is covered with a protective film 5. It is necessary to bring the surface of the baked film 2 to a mirror surface state extremely reduced in unevenness and, pref., it is necessary to set said surface to surface roughness of 100Angstrom or less. Further, it is necessary that the difference in level of the substrate 1 with the surface of the baked film 2 is set to at least 20mum because output is extremely lowered when a molding surface protrudes by 100mum or less from the surface of the baked film 2 at the time of the application of molding to a terminal part. A material excellent in heat resistance is required as the substrate 1 and, when the temp. at the time of the formation of the baked film or at the time of welding is considered, a material stable up to at least 400 deg.C is pref.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高感度の強磁性体薄膜からなる磁気抵抗素子
およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive element made of a highly sensitive ferromagnetic thin film and a method for manufacturing the same.

[従来の技術] 本発明者らは既に、特開昭62−128578号公報。[Conventional technology] The present inventors have already published JP-A-62-128578.

特開昭62−131589号公報および特開昭[i3−
170981号公報において強磁性薄膜磁気抵抗素子の
技術を提案している。第9図(^)にその−例の上面図
を、第9図(B)にその^−A線に沿った断面図を示す
。この従来例は絶縁性基板1上に強磁性薄膜3で3端子
形のセンサ部を形成したものである。5は保護膜、7は
リード線、8は樹脂被覆層である。これら従来の技術に
おいては、第9図(^)および(B)に示されているよ
うに、リード7の取り出し部の電極すなわち端子部と、
磁界を検知するセンサエレメント部とが同一平面上に形
成されることを基本としている。このような構造を有す
る磁気抵抗素子は、それを直流モータの速度検出素子と
して利用する場合に、基本的には第10図に示されてい
るような配置で使用される。この場合着磁されたリング
11が磁気信号源となり、その磁界強度は着磁ピッチが
微細になるほど弱くなる。近年、モータの小型化、高精
度化が進みその着磁ピッチは微細になってきているため
、磁気信号源と素子13のセンサ部とのギャップを非常
に狭く、例えば100μI程度にする必要が生じる。し
かるに、第9図に示されているような従来の素子13で
は、リード取り出しのための端子部14は、通常ハンダ
付けまたは類似の方法でボンディングされており、かつ
補強のためそのボンディング部は樹脂によりモールドさ
れた構造となっている。すなわち、ボンディングおよび
モールド部がセンサ面よりも突出している。そのため従
来は、このモールド部を含めた素子全体を磁気信号源1
1に対向させると、第1θ図に示したごとく、センサ部
を磁気信号に充分に近付けることができず、そのため充
分な出力を得ることができないという問題があった。特
に小型のモータで精度のよい角速度検出をしようとする
とこの問題は大きかった。また、出力の低下を招かない
ようにするため、センサ部を磁気信号に近付けることが
できる・ように、端子部14をセンサ部に対して離れた
位置に形成するという方法があるが、第11図に示した
ように、この場合素子15の小型化が図れないとともに
、磁気信号源に素子を対向配置する際、信号源の厚みt
以上の空間を必要とし、その結果モータの小型化、薄型
化を図ることができない等の問題が生じていた。特に、
磁気抵抗素子の小型化は、素子コストを下げると共に、
それを含めたシステムの小型化につながる。そのため、
素子の小型化は長年の課題であった。
JP-A No. 62-131589 and JP-A-Sho [i3-
No. 170981 proposes a technology for a ferromagnetic thin film magnetoresistive element. FIG. 9(^) shows a top view of the example, and FIG. 9(B) shows a sectional view taken along line A--A. In this conventional example, a three-terminal sensor section is formed using a ferromagnetic thin film 3 on an insulating substrate 1. 5 is a protective film, 7 is a lead wire, and 8 is a resin coating layer. In these conventional techniques, as shown in FIGS. 9(^) and (B), the electrode of the lead 7, that is, the terminal part,
Basically, the sensor element section that detects the magnetic field is formed on the same plane. When a magnetoresistive element having such a structure is used as a speed detection element for a DC motor, it is basically used in an arrangement as shown in FIG. 10. In this case, the magnetized ring 11 becomes a magnetic signal source, and the magnetic field strength becomes weaker as the magnetized pitch becomes finer. In recent years, motors have become smaller and more precise, and their magnetization pitches have become finer. Therefore, it is necessary to make the gap between the magnetic signal source and the sensor section of the element 13 very narrow, for example, about 100 μI. . However, in the conventional device 13 as shown in FIG. 9, the terminal portion 14 for taking out the lead is usually bonded by soldering or a similar method, and the bonding portion is covered with resin for reinforcement. It has a molded structure. That is, the bonding and mold parts protrude beyond the sensor surface. Therefore, in the past, the entire element including this mold part was used as a magnetic signal source.
1, there was a problem in that the sensor section could not be brought sufficiently close to the magnetic signal as shown in FIG. 1, and therefore a sufficient output could not be obtained. This problem is especially serious when trying to detect angular velocity with high precision using a small motor. In addition, in order to prevent the output from decreasing, there is a method of forming the terminal part 14 at a position distant from the sensor part so that the sensor part can be brought close to the magnetic signal. As shown in the figure, in this case, it is not possible to reduce the size of the element 15, and when arranging the element to face the magnetic signal source, the thickness t of the signal source
As a result, problems such as the inability to reduce the size and thickness of the motor have arisen. especially,
Miniaturization of magnetoresistive elements not only reduces element cost, but also
This leads to the miniaturization of the system including this. Therefore,
Miniaturization of devices has been a long-standing challenge.

[発明が解決しようとする課題] 本発明の目的は、以上説明したような問題点を解消し、
端子部のモールド突出による弊害のない素子配置で使用
できる、すなわちリードの取り出し部が磁気信号の検出
に障害となり、または素子やモータの小型化に障害とな
ることのない構造の強磁性体薄膜よりなる磁気抵抗素子
とその製造方法を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems as explained above,
A ferromagnetic thin film with a structure that can be used in an element arrangement that does not have the adverse effects of mold protrusion on the terminal part, that is, the lead extraction part does not interfere with the detection of magnetic signals or become an obstacle to miniaturization of elements and motors. An object of the present invention is to provide a magnetoresistive element and a manufacturing method thereof.

[課題を解決するための手段] このような目的を達成するために、本発明は、強磁性体
材料の薄膜を磁気センサ部として利用する磁気抵抗素子
において、薄膜から成るセンサ部が、素子を構成するペ
レット上の他の部分に対して突出していることを特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a magnetoresistive element that uses a thin film of ferromagnetic material as a magnetic sensor part, in which the sensor part made of the thin film is It is characterized by protruding from other parts on the constituent pellets.

本発明方法は、高さが少なくとも20μmの突出部を1
力所以上有する絶縁性基板に強磁性体薄膜を被着させる
工程を含むことを特徴とする。
The method of the present invention allows for the formation of protrusions with a height of at least 20 μm.
The method is characterized in that it includes a step of depositing a ferromagnetic thin film on an insulating substrate having more than a force area.

[作 用] 本発明の磁気抵抗素子は、センサ部のみを素子基板面上
で突出させる構造をとり、リード取り出しのための端子
部をセンサ面よりも低い位置に形成する。従って、ボン
ディング部を補強する目的でモールドした際、そのモー
ルド表面をセンサ面と同一レベルに形成することもでき
る。また、従来の製造プロセスを大幅に変えることなく
、すなわちプロセスコストの上昇なく量産でき、かつ小
型化しても素子の基本特性が従来と比して同等である。
[Function] The magnetoresistive element of the present invention has a structure in which only the sensor portion protrudes above the element substrate surface, and the terminal portion for lead extraction is formed at a position lower than the sensor surface. Therefore, when molding is performed for the purpose of reinforcing the bonding portion, the mold surface can be formed at the same level as the sensor surface. Furthermore, the device can be mass-produced without significantly changing the conventional manufacturing process, that is, without increasing the process cost, and the basic characteristics of the device are the same as those of the conventional device even if the device is miniaturized.

さらに実使用上、従来よりもその特性を最大限に生かす
ことができる位置に配置することができる素子構造であ
る。
Furthermore, in actual use, the device structure allows the device to be placed in a position where its characteristics can be maximized compared to conventional devices.

本発明によれば、強磁性薄膜からなる磁気抵抗素子を小
型化することができ、小型化を図っても磁気信号源に対
して、使用上最適位置にて磁界検出することが可能であ
る。
According to the present invention, a magnetoresistive element made of a ferromagnetic thin film can be miniaturized, and even if the element is miniaturized, it is possible to detect a magnetic field at an optimal position for use with respect to a magnetic signal source.

[実施例] 以下に図面を参照して本発明を説明する。[Example] The present invention will be explained below with reference to the drawings.

第1図(^)は、本発明の磁気抵抗素子の実施例の上面
図、同図([I)は同図(A)の^−^線に沿った断面
図である。この例は、第9図に示した従来例と同じ3端
子の素子の例を示しである。
FIG. 1(^) is a top view of an embodiment of the magnetoresistive element of the present invention, and FIG. 1([I) is a sectional view taken along the line ^-^ of FIG. 1(A). This example shows an example of a three-terminal element, which is the same as the conventional example shown in FIG.

第1図(^)、(B)において1は絶縁性基板、2は絶
縁性の材料からなる焼成膜、3は強磁性体薄膜であり、
センサ部を形成している。4^、4B、4Cは外部接続
のための端子電極部である。センサ部を含む強磁性体薄
膜は保護膜5で覆われている。第1図では素子ベレット
の構成を示しており、リードおよびモールド樹脂の図示
は省略しである。
In FIGS. 1(^) and (B), 1 is an insulating substrate, 2 is a fired film made of an insulating material, and 3 is a ferromagnetic thin film.
It forms a sensor section. 4^, 4B, and 4C are terminal electrode portions for external connection. The ferromagnetic thin film including the sensor section is covered with a protective film 5. FIG. 1 shows the structure of the element pellet, and illustrations of leads and molding resin are omitted.

第2図は、本発明実施例において、端子電極4とリード
7とがハンダ6を介して接続されている場合の素子断面
図を示している。リード接続部近傍は樹脂8で覆われた
構造となっている。また、第3図は本発明実施例におい
て、端子電極4とリード7とをワイヤ9を介して接続し
た場合の断面構造を示しており、素子ベレットが樹脂8
で覆われた構造となっている。
FIG. 2 shows a cross-sectional view of the device in the embodiment of the present invention in which the terminal electrode 4 and the lead 7 are connected via the solder 6. The vicinity of the lead connection portion is covered with resin 8. Further, FIG. 3 shows a cross-sectional structure when the terminal electrode 4 and the lead 7 are connected via the wire 9 in the embodiment of the present invention, and the element pellet is connected to the resin 8.
The structure is covered with

通常、磁気抵抗素子は1000Å以下の非常に薄い薄膜
でセンサ部を形成するため、焼成11!20表面は凹凸
の極めて少ない鏡面状態が必要であり、好ましくは10
0Å以下の表面粗さにする必要がある。この焼成部の形
成は、ガラス粉末あるいはペーストをスクリーン印刷等
の方法により、所要の部位に塗布し焼結してもよく、所
要の部位にガラスチップを融着してもよい、焼成膜を平
坦にし、表面を鏡面にするため焼成した後に表面を研磨
する場合も・ある。基板1と焼成膜2の表面との段差は
、端子部にモールドを施した際、モールド面が焼成膜表
面よりも100μ履以上突出すると前述のごとく出力が
極端に低くなってしまうので、少なくとも20μmの段
差が必要であり、さらにその段差は好ましくは50μm
以上である。しかし段差が大きすぎると、その後のフォ
トリソグラフィ工程等が困難になるので段差は300μ
■以下が望ましい。また、基板1としては耐熱性の優れ
た材料が必要である。焼成膜形成時の温度または融着時
の温度等を考慮すると、少なくとも400℃までは安定
な材料が好ましい、従って、基板1は、一般に半導体素
子の基板等に使われている絶縁性の基板でよいが、特に
セラミック基板、ガラス基板、サファイア基板、酸化膜
付きシリコン基板等が好ましい材料である。
Normally, the sensor part of a magnetoresistive element is formed with a very thin film of 1000 Å or less, so the surface of the fired 11!20 must have a mirror-like state with very few irregularities, and preferably 1000 Å or less.
It is necessary to have a surface roughness of 0 Å or less. The fired part may be formed by applying glass powder or paste to the required area and sintering it by a method such as screen printing, or by fusing glass chips to the required area, or by flattening the fired film. In some cases, the surface is polished after firing to give it a mirror finish. The level difference between the surface of the substrate 1 and the fired film 2 should be at least 20 μm, because when molding the terminal part, if the mold surface protrudes more than 100 μm from the fired film surface, the output will be extremely low as described above. A height difference of 50 μm is required, and the height difference is preferably 50 μm.
That's all. However, if the step is too large, the subsequent photolithography process will be difficult, so the step should be 300 μm.
■The following are desirable. Further, the substrate 1 needs to be made of a material with excellent heat resistance. Considering the temperature at the time of forming the fired film or the temperature at the time of fusing, etc., it is preferable to use a material that is stable up to at least 400°C. Therefore, the substrate 1 is an insulating substrate that is generally used as a substrate for semiconductor elements. However, particularly preferred materials include a ceramic substrate, a glass substrate, a sapphire substrate, and a silicon substrate with an oxide film.

また、センサ部と端子部との間に段差を設ける手段とし
ては前述のような方法とは別に、機械的な加工により基
板に段差をつけたり、初めから段差のついた基板をプレ
ス、焼結して作るという方法も等しく用ル)られる、こ
の場合もセンサ部を形成する面は鏡面にする必要があり
、その目的でセンサ部が形成される部分、あるいは基板
全°面に5i02等をコーティングする場合もある。
In addition to the methods described above, methods for creating a step between the sensor section and the terminal section include adding a step to the board by mechanical processing, or pressing and sintering a board with a step from the beginning. In this case as well, the surface on which the sensor part is formed needs to be mirror-finished, and for that purpose, the part where the sensor part is formed or the entire surface of the substrate is coated with 5i02 or the like. In some cases.

第4図は、機械加工して段差を設けた基板lOを用いた
磁気抵抗素子の断面図を示した。
FIG. 4 shows a cross-sectional view of a magnetoresistive element using a substrate 1O with a step formed by machining.

第5図には、本発明素子12をリング状の磁気信号源1
1に対向させた場合のようすを示している。
In FIG. 5, the element 12 of the present invention is connected to a ring-shaped magnetic signal source 1.
This figure shows what it looks like when facing 1.

素子12はモールド面12^がセンサ面12Bとほぼ同
一の位置に形成しであるので、第10図に示した従来例
のようにセンサ部が磁気信号源と離れすぎたり、第11
図に示した従来例のように磁気信号源の下にモールド部
をもってくる必要もない、さらに素子を磁気信号源とな
るリングの厚みよりも薄くすることもできる。
Since the element 12 is formed so that the mold surface 12^ is located at almost the same position as the sensor surface 12B, the sensor section may be too far away from the magnetic signal source as in the conventional example shown in FIG.
Unlike the conventional example shown in the figure, there is no need to place a molded part under the magnetic signal source, and furthermore, the element can be made thinner than the thickness of the ring that serves as the magnetic signal source.

第1表に抵抗値および感度が同一となるように設計した
場合の素子ベレット形、状および3インチ角基板から採
れる素子数について従来例との比較を載せた。
Table 1 shows a comparison with the conventional example regarding the element pellet shape, shape, and number of elements that can be obtained from a 3-inch square substrate when designed to have the same resistance value and sensitivity.

第  1  表 本発明の素子は従来素子と抵抗および感度を同一になる
ように設計した場合、同じ基板面積で約3倍の採り数と
なる。
Table 1 When the element of the present invention is designed to have the same resistance and sensitivity as the conventional element, the number of elements can be approximately three times as large with the same substrate area.

次に本発明の磁気抵抗素子の製造法について、第6図、
第7図および第8図を参照してその一例を述べる。第6
図は工程図の一例、第7図は各工程における素子の上面
図、第8図は第7図におけるトB線に沿った断面図であ
る。
Next, regarding the manufacturing method of the magnetoresistive element of the present invention, FIG.
An example will be described with reference to FIGS. 7 and 8. 6th
The figure is an example of a process diagram, FIG. 7 is a top view of the element in each step, and FIG. 8 is a cross-sectional view taken along the line B in FIG. 7.

第6図におけるガラス融着工程は、この例の場合、絶縁
性の基板lにガラスチップ2を融着し基板の一部に突出
部を設ける工程である。この工程後の基板の状況を第7
図(^)および第8図(^)に示す。
In this example, the glass fusing step in FIG. 6 is a step of fusing the glass chip 2 to an insulating substrate 1 and providing a protrusion on a part of the substrate. The condition of the board after this process is shown in the seventh figure.
Shown in Figure (^) and Figure 8 (^).

次は、素子パターン形成工程である。これは強磁性体薄
11j3を基板に被着した後、エツチングにより素子パ
ターンを形成する工程である。この工程により、素子は
第7哩(B)および第8図(B)に示す状態となる。
Next is an element pattern forming step. This is a process in which a thin ferromagnetic material 11j3 is deposited on a substrate and then an element pattern is formed by etching. Through this step, the device becomes in the state shown in FIG. 7 (B) and FIG. 8 (B).

保護膜形成工程は素子の所要の部位に保護膜を付着形成
する工程である。その後端子電極形成工程が続く。
The protective film forming step is a step of depositing and forming a protective film on a required portion of the element. Thereafter, a terminal electrode forming step follows.

引続き、通常の半導体の電子部品等で行われているダイ
シングによる切断工程、ボンディングおよびモールド等
の工程が続いて行われ、本発明の磁気抵抗素子の製造は
完了する。
Subsequently, processes such as cutting by dicing, bonding, and molding, which are carried out in ordinary semiconductor electronic parts, are carried out, and the manufacture of the magnetoresistive element of the present invention is completed.

製造例1 3インチ角アルミナセラミック基板上のセンサ部を形成
する部位に、厚み0.25mm、1mll1x 1.5
mm角の表面が鏡面のガラスチップを550℃で融着し
た。次に、基板全体を300℃に加熱保持し、厚さ50
0人の81kNi−19XFe合金薄膜をスパッタによ
り形成した。次いでフォトレジストをエツチングマスク
とし、塩化第二銅系のエツチング液を用い、第7図(B
)に示した如ぎセンサパターンを形成した。次に基板全
面にPCVDにより、5in2膜を1μl付着させた8
次いで端子電極を形成するため、所要部位の5i02窓
明けを行い、窓明けした部分にへu膜を積層し、第1図
に示したような素子ベレットを3インチ角の基板上に、
約2000偏向時に形成した。
Manufacturing example 1 A 3-inch square alumina ceramic substrate with a thickness of 0.25 mm and a size of 1 ml 1 x 1.5 is placed on the part where the sensor part is formed.
Glass chips measuring mm square and having mirror surfaces were fused at 550°C. Next, the entire substrate was heated and held at 300°C, and the thickness was 50°C.
An 81kNi-19XFe alloy thin film was formed by sputtering. Next, using the photoresist as an etching mask and using a cupric chloride-based etching solution, the etching process shown in FIG.
) A sensor pattern was formed as shown in (). Next, 1 μl of 5in2 film was deposited on the entire surface of the substrate by PCVD.
Next, in order to form terminal electrodes, 5i02 windows were opened at the required locations, a U film was laminated on the opened areas, and an element pellet as shown in Figure 1 was placed on a 3 inch square substrate.
It was formed at about 2000 deflections.

この基板をダイシングソーにより、1.2++a+ x
l、1laa+の素子チップに切断した。その各素子チ
ップに3本のリード線をハンダボンディングした後、エ
ポキシ樹脂を塗布硬化し、第2図に示したようなセンサ
部とモールド上面がほぼ同一面上という断面構造をもつ
本発明の磁気抵抗素子を製作した。
This board was cut into 1.2++a+ x using a dicing saw.
It was cut into element chips of 1, 1 laa+. After solder-bonding three lead wires to each element chip, epoxy resin is applied and hardened to form the magnet of the present invention, which has a cross-sectional structure in which the sensor part and the upper surface of the mold are on the same plane as shown in FIG. A resistive element was manufactured.

その素子特性を第2表に示す。比較のため従来例の値を
同時に示したが、本実施例の素子は素子チップ面積が従
来のものの約173であるにもかかわらず同等の抵抗値
、感度が得られている。
Table 2 shows the device characteristics. For comparison, the values of the conventional example are shown at the same time, and although the element chip area of the present example is approximately 173 times larger than that of the conventional example, the same resistance value and sensitivity are obtained.

第  2  表 製造例2 3インチ角アルミナセラミック基板手に、スクリーン印
刷法によりガラスペーストを厚み0.05mm、1mm
x 1.5mm角のパターンに塗布し、約600℃で焼
成した。次いで、表面研磨を施し、ガラス焼成面の表面
粗さを100Å以下にした。次に、基板全体を300℃
に加熱保持し、厚さ500人の81!kNi−19*F
e合金薄膜をスパッタにより形成した。以降、製造例1
と同様の方法にて本発明の磁気抵抗素子を製作した。得
られた素子の特性は製造例1に示した素子と同様であっ
た。
Table 2 Manufacturing Example 2 Apply glass paste to a thickness of 0.05 mm and 1 mm by screen printing on a 3-inch square alumina ceramic substrate.
It was applied to a pattern of x 1.5 mm square and baked at about 600°C. Next, surface polishing was performed to reduce the surface roughness of the fired glass surface to 100 Å or less. Next, heat the entire board to 300°C.
Heated and held to 81 thickness of 500 people! kNi-19*F
An e-alloy thin film was formed by sputtering. Hereinafter, production example 1
A magnetoresistive element of the present invention was manufactured in the same manner as described above. The characteristics of the obtained device were similar to those of the device shown in Production Example 1.

製造例3 表面が鏡面の厚み0.6m+aの3インチ角ガラス基板
を、ダイヤモンドプレートを用いて、深さ0.2111
111の溝加工を施し、In+m x +、5aun角
の突出部を後にセンサ部を形成する部位に設けた。次に
、基板全体を300℃に加熱保持し、厚さ500人の8
3零Ni−17¥Fe合金薄膜をスパッタにより形成し
た。次いでフォトレジストをエツチングマスクとし、塩
化第二銅系のエツチング液を用い、製造例1と同様のセ
ンサパターンを形成した。次に基板全面にスパッタによ
り、s+o2膜を2μm付着させた。次いで端子電極を
形成するため、所要部位のSin、窓明けを行い、窓明
けした部分にAu膜を積層し、第4図に示したような断
面構造を有する素子ベレットを3インチ角の基板上に、
約2000測量時に形成した。
Production Example 3 A 3-inch square glass substrate with a mirror-like surface and a thickness of 0.6m+a was heated to a depth of 0.2111mm using a diamond plate.
A groove of 111 was processed, and a protruding portion of In+m x +, 5 aun angle was provided at a portion where a sensor portion would later be formed. Next, the entire substrate was heated and held at 300°C, and the thickness was 500 mm.
A 30Ni-17Fe alloy thin film was formed by sputtering. Next, a sensor pattern similar to Manufacturing Example 1 was formed using a photoresist as an etching mask and a cupric chloride-based etching solution. Next, a 2 μm thick s+o2 film was deposited on the entire surface of the substrate by sputtering. Next, in order to form a terminal electrode, a window is opened at the required part, an Au film is laminated on the opened part, and an element pellet having a cross-sectional structure as shown in Fig. 4 is placed on a 3-inch square substrate. To,
It was formed during the approximately 2000 survey.

この基板をダイシングソーにより、1.2mm xl、
8+nmの素子チップに切断した。その各素子チップと
リードとをワイヤーボンディングにて接続した後、エポ
キシ樹脂にて端子部のモールドをした。得られた素子の
特性を第3表に示す。製造例1と同等の抵抗値、感度が
得られている。
This board was cut into 1.2mm xl with a dicing saw.
It was cut into 8+nm device chips. After each element chip and the lead were connected by wire bonding, the terminal portion was molded with epoxy resin. Table 3 shows the characteristics of the obtained device. Resistance values and sensitivities equivalent to those of Production Example 1 were obtained.

第  3 表 製造例4 高さ0.1mm、1mm X 1.5II1m角の突出
部を有するアルミナセラミック基板を金型でプレスし、
焼結して形成した。次に、基板全面にPCVDによりS
t、2膜を3μm付着させ、センサ部を形成する突出部
の表面粗さを100Å以下にした。次いで、基板全体を
300℃に加熱保持し、厚さ500人の83零旧−17
JFe合金薄膜をスパッタにより形成した。以降、製造
例3と同様の方法で本発明の磁気抵抗素子を製作した。
Table 3 Manufacturing Example 4 An alumina ceramic substrate having a height of 0.1 mm and a protrusion of 1 mm x 1.5 mm square was pressed with a mold,
Formed by sintering. Next, S is applied to the entire surface of the board by PCVD.
t.2 film was deposited to a thickness of 3 μm, and the surface roughness of the protrusion forming the sensor portion was set to 100 Å or less. Next, the entire substrate was heated and maintained at 300°C, and a 83-17-100-100-100-100-100-100-100-100% polyester resin was heated to a thickness of 500 mm.
A JFe alloy thin film was formed by sputtering. Thereafter, the magnetoresistive element of the present invention was manufactured in the same manner as in Manufacturing Example 3.

得られた素子の特性は製造例3に示した素子と同様であ
った。
The characteristics of the obtained device were similar to those of the device shown in Production Example 3.

[発明の効果] 以上述べたように本発明によれば、従来の約173のチ
ップサイズの素子を作ることができる。
[Effects of the Invention] As described above, according to the present invention, an element having a chip size of about 173 that is conventional can be manufactured.

また、端子部モールドがセンサ面に対し、突出しない構
造の素子が製作可能であり、センサ面と磁気信号源との
ギャップを任意に設定できるので、信号源ピッチの微細
化に伴う信号磁界強度の低下にも十分に対応できる。ま
た、従来のように端子部のモールド突出部を磁気信号源
の下側にもってくる必要もないので、素子の小型化が図
れると共に、モータの薄型化、小型化にも役立つ。
In addition, it is possible to manufacture an element with a structure in which the terminal mold does not protrude from the sensor surface, and the gap between the sensor surface and the magnetic signal source can be set arbitrarily, so the signal magnetic field strength can be reduced as the signal source pitch becomes finer. It can fully cope with the decline. Further, unlike in the conventional case, there is no need to place the molded protrusion of the terminal section below the magnetic signal source, so the device can be made smaller, and the motor can also be made thinner and smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示し、同図(A)は素
子ベレット上面図、同図(B)は同図(八)の八−へ線
に沿った断面図、 第2図はハンダボンディングした場合の本発明実施例を
示す素子構造断面図、 第3図はワイヤーボンディングした場合の本発明実施例
を示す素子構造断面図、 第4図は第2の実施例を示す素子ベレット断面図、 第5図はリング状磁気信号源への本発明素子の配置図、 第6図は本発明磁気抵抗素子の製造法の実施例を示す工
程図、 第7図(八)および(B)は各工程における磁気抵抗素
子の上面図、 第8図(A)および(B)はそれぞれ第7図(A)およ
び(B)のトB線に沿った断面図、 第9図は従来の磁気抵抗素子を示し、同図(A)は上面
図、同図(111は同図(八)のA−At、!11に沿
った断面図、 第1θ図および第11図はそれぞれリング状磁気信号源
への従来素子の配置に例を示す図である。 1.10・・・絶縁性基板、 2・・・焼成膜、 3・・・強磁性体薄膜、 4.4八、4B、4C・・・端子部、 5・・・保護膜、 11・・・リング状磁気信号源、 12・・・本発明素子、 13.15・・・従来の素子。 リ(−y!、イTリ の〕二面 bロ tテJひ°W杓
=面 ε]第1図 大 シタ2p巳コイ3「夏コσンa−″iff  圀弗 図 化f)×テ克イ列/)止乍面図 第4図 慮\イ賽号湿へ/)苓把明京千0配1図第5図 ”l1ztL?/) 大JP、DJ の):釦rA第7
図 不光明−V止シ太の亥1克グ1]をホす工程図第6図 髪凌工程市0木〃巴4列α峻而団 第8図 ス来り帥入希dt奪チの1狛図#−Jf#午鉛図第9図
FIG. 1 shows a first embodiment of the present invention, in which FIG. 1A is a top view of an element pellet, FIG. 1B is a sectional view taken along line 8 in FIG. The figure is a sectional view of an element structure showing an embodiment of the present invention in the case of solder bonding. Figure 3 is a sectional view of an element structure showing an embodiment of the invention in the case of wire bonding. Figure 4 is a device structure showing a second embodiment. A sectional view of the pellet, FIG. 5 is a layout diagram of the element of the present invention in a ring-shaped magnetic signal source, FIG. 6 is a process diagram showing an embodiment of the method for manufacturing the magnetoresistive element of the present invention, and FIGS. 7 (8) and ( B) is a top view of the magnetoresistive element in each step, FIGS. 8(A) and (B) are cross-sectional views taken along the line T and B in FIGS. 7(A) and (B), respectively, and FIG. 9 is a conventional Figure (A) shows a top view, Figure 111 is a cross-sectional view along A-At and !11 in Figure (8), and Figures 1θ and 11 are ring-shaped, respectively. It is a diagram showing an example of the arrangement of conventional elements in a magnetic signal source. 1.10... Insulating substrate, 2... Baked film, 3... Ferromagnetic thin film, 4.48, 4B, 4C... Terminal portion, 5... Protective film, 11... Ring-shaped magnetic signal source, 12... Element of the present invention, 13.15... Conventional element. ri's] two sides b ro t te J hi ° W 沓= ε] Fig. 1 large position 2 p 巳 koi 3 ``Summer con σa-''iff 圀弗图ification f) x te K I row/) stop乍面子 4th design \ い い G G G GE/) 蓓控 明京 千 0 G 1 fig.
Figure Fukou Ming - V Stop Shita's Pig 1 Keg 1 1 Komazu #-Jf#Gourmet map Figure 9

Claims (1)

【特許請求の範囲】 1)強磁性体材料の薄膜を磁気センサ部として利用する
磁気抵抗素子において、前記薄膜から成るセンサ部が、
素子を構成するペレット上の他の部分に対して突出して
いることを特徴とする磁気抵抗素子。 2)高さが少なくとも20μmの突出部を1カ所以上有
する絶縁性基板に強磁性体薄膜を被着させる工程を含む
ことを特徴とする磁気抵抗素子の製造法。 3)絶縁性の基板の一部に絶縁性材料からなる高さが少
なくとも20μmの突出部を焼成あるいは融着すること
により形成する工程を含むことを特徴とする磁気抵抗素
子の製造法。 4)高さが少なくとも20μmの突出部を有する基板を
金型にて成形する工程を含むことを特徴とする磁気抵抗
素子の製造法。 5)機械的な加工手段により、高さが少なくとも20μ
mの突出部を有する基板を形成する工程を含むことを特
徴とする磁気抵抗素子の製造法。
[Claims] 1) In a magnetoresistive element that uses a thin film of ferromagnetic material as a magnetic sensor part, the sensor part made of the thin film is
A magnetoresistive element characterized by protruding from other parts of a pellet constituting the element. 2) A method for manufacturing a magnetoresistive element, comprising the step of depositing a ferromagnetic thin film on an insulating substrate having one or more protrusions with a height of at least 20 μm. 3) A method for manufacturing a magnetoresistive element, comprising the step of forming a protrusion made of an insulating material and having a height of at least 20 μm on a part of an insulating substrate by firing or fusing. 4) A method for manufacturing a magnetoresistive element, comprising the step of molding a substrate having a protrusion with a height of at least 20 μm using a mold. 5) By mechanical processing means, the height is at least 20μ
1. A method for manufacturing a magnetoresistive element, the method comprising the step of forming a substrate having m protrusions.
JP63316429A 1988-12-16 1988-12-16 Magnetoresistive element and manufacturing method thereof Expired - Lifetime JP2572119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316429A JP2572119B2 (en) 1988-12-16 1988-12-16 Magnetoresistive element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316429A JP2572119B2 (en) 1988-12-16 1988-12-16 Magnetoresistive element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02162279A true JPH02162279A (en) 1990-06-21
JP2572119B2 JP2572119B2 (en) 1997-01-16

Family

ID=18076984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316429A Expired - Lifetime JP2572119B2 (en) 1988-12-16 1988-12-16 Magnetoresistive element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2572119B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179322U (en) * 1983-05-16 1984-11-30 ティーディーケイ株式会社 magnetic sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179322U (en) * 1983-05-16 1984-11-30 ティーディーケイ株式会社 magnetic sensor

Also Published As

Publication number Publication date
JP2572119B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US7193288B2 (en) Magnetoelectric transducer and its manufacturing method
JPS6410112B2 (en)
EP0464226B1 (en) Magnetoresistive sensor
US4797765A (en) Thin film magnetic head having solder-bonded protective plate
JPH03255970A (en) Magnetic detecting sensor and its manufacture
JP2005123383A (en) Electromagnetic transducer element
EP1037289B1 (en) Semiconductor magnetoresistance device, magnetic sensor, and production method thereof
JPH02162279A (en) Magnetoresistance element and preparation thereof
EP1536490A1 (en) Magnetoresistance effect element and production method and application method therefor
JP3464369B2 (en) Method of manufacturing thin high-sensitivity Hall element
JP4723804B2 (en) Magnetoelectric converter
JP4846955B2 (en) Magnetoelectric transducer
JP2610083B2 (en) Ferromagnetic magnetoresistive element
JP4410320B2 (en) Magnetoelectric conversion element and manufacturing method thereof
JP4573368B2 (en) Manufacturing method of small magnetoelectric transducer for face-down connection
US6995951B2 (en) Method of planarizing substrate, magnetic head and manufacturing method of the same
JPS6029914A (en) Thin film head
JPH11214766A (en) Small magnetoelectric conversion element and manufacture thereof
JPH10227845A (en) Chip-shaped magnetic sensor element and its manufacture
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JPS62128578A (en) Ferromagnetic magnetoresistance element and manufacture of the same
JP2000150983A (en) Hall element and its manufacture
JPS61216371A (en) Mold type magnetic resistance element
JPS6218778A (en) Mold type magnetoresistance element
JPH03263385A (en) Magnetic sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13