JPH02161793A - Multi-layer wiring substrate - Google Patents

Multi-layer wiring substrate

Info

Publication number
JPH02161793A
JPH02161793A JP31681188A JP31681188A JPH02161793A JP H02161793 A JPH02161793 A JP H02161793A JP 31681188 A JP31681188 A JP 31681188A JP 31681188 A JP31681188 A JP 31681188A JP H02161793 A JPH02161793 A JP H02161793A
Authority
JP
Japan
Prior art keywords
layer
conductor pattern
thin film
pattern
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31681188A
Other languages
Japanese (ja)
Inventor
Toshio Matsuzaki
松崎 壽夫
Hiroaki Toshima
博彰 戸島
Kiyoshi Sato
清 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31681188A priority Critical patent/JPH02161793A/en
Publication of JPH02161793A publication Critical patent/JPH02161793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve adhesion properties of a conductor pattern and ease manufacturing by forming an upper-part conductor pattern consisting of Cu or Au on the uppermost insulation layer with W as a main constituent through an adhesion layer and by making connection to a copper lower-part conductor pattern through a via hole of the insulation layer. CONSTITUTION:In a multi-layer wiring substrate 21, a conductor pattern 3 is formed of Cu on an alumina substrate 2 and a glass insulation layer 4 is formed on it. After forming a conductor pattern 5 on the layer 4, an insulation layer 6 is formed and a conductor pattern 23 is formed on the insulation layer 6. The pattern 23 is composed of a resistance pattern 8, an adhesion layer 22 consisting mainly of W, and a conductor layer 10 consisting of Cu or Au. Thus, W of the layer 22 improves adhesion properties with Cu or Au of the pattern 23, is provided with resistance against etchant of strong alkali, and eases manufacture.

Description

【発明の詳細な説明】 〔概要〕 高集積化混成集積回路および高速混成集積回路等に用い
られる多層配線基板の構成に関し、その製造を容易なら
しめることを目的とし、最上位の絶縁層のビアホールを
介して該絶縁層の下に形成した銅の下部導体パターンと
接続せしめ該絶縁層の上に銅または金により形成した上
部導体パターンが、タングステンを主成分とした密着層
を媒体に形成してなることを特徴とし、さらに、前記密
着層がタングステンにチタンを1〜5%含むことを特徴
とし構成する。
[Detailed Description of the Invention] [Summary] In order to facilitate the manufacture of multilayer wiring boards used in highly integrated hybrid integrated circuits, high-speed hybrid integrated circuits, etc., via holes in the uppermost insulating layer have been developed. An upper conductor pattern made of copper or gold is connected to the lower copper conductor pattern formed under the insulating layer through the insulating layer, and an adhesion layer mainly composed of tungsten is formed on the medium. Further, the adhesive layer contains 1 to 5% titanium in tungsten.

〔産業上の利用分野] 本発明は装置の小型化のため用いられる高集積化混成集
積回路や、低抵抗導体,高精度抵抗素子が必要な高速混
成集積回路に用いられる多層配線基板に関する。
[Industrial Field of Application] The present invention relates to a multilayer wiring board used in highly integrated hybrid integrated circuits used to miniaturize devices and high-speed hybrid integrated circuits that require low resistance conductors and high precision resistance elements.

C従来の技術〕 導体パターンの低抵抗化と高精度の薄膜抵抗素子を同一
基板内に形成する方法として、Cuの厚膜パターンとA
uまたはCuの薄膜パターンを混成に多層化する方法が
あり、従来の該多層配線基板においてその最上位に形成
される薄膜導体バターンは、NiCrまたはCrを密着
層としNiCr/Au、Cr/Au、Cr/Cuという
構成であった。
C. Conventional technology] As a method for reducing the resistance of a conductor pattern and forming a high-precision thin film resistor element on the same substrate, a thick film pattern of Cu and A
There is a method of multi-layering U or Cu thin film patterns in a hybrid manner, and in conventional multilayer wiring boards, the thin film conductor pattern formed on the top layer is NiCr/Au, Cr/Au, with NiCr or Cr as an adhesion layer. The structure was Cr/Cu.

一般にガラス質の絶縁層に形成したビアホールを介して
Cuの下部導体と接続される前記薄膜導体パターンは、
密着層となるNiCr薄膜またはCr薄膜を被着した上
に導体層となるAu薄膜またはCu薄膜を積層したのち
、所望のパターンにそれらをエツチングし形成されるが
、絶縁層に形成したビアホールに表呈する下部導体パタ
ーンの表呈部は密着膜に対する選択エツチング性を確保
する必要がある。
Generally, the thin film conductor pattern is connected to the Cu lower conductor through a via hole formed in a glassy insulating layer.
After depositing a NiCr thin film or Cr thin film as an adhesion layer and laminating an Au thin film or Cu thin film as a conductive layer, they are etched into a desired pattern. The exposed portion of the lower conductor pattern needs to ensure selective etching properties with respect to the adhesive film.

そのため、従来は前記表呈部にNiめっきを被着させる
かまたは、Cuに対し選択性を有する強アルカリのエッ
チャントを用いNiCr薄膜またはCr薄膜をエツチン
グしていた。
Therefore, conventionally, Ni plating was applied to the exposed portion, or the NiCr thin film or Cr thin film was etched using a strong alkaline etchant that was selective to Cu.

第4図は従来の多層配線基板の要部を示す断面図であり
、前述のNiめっきを利用し形成された多層配線基板1
は、アルミナ基板2の上にCuにて第1の導体パターン
3を形成し、その上に結晶質ガラスにて第1の絶縁層4
を形成させる。所要部にビアホールを有する絶縁層4の
上にCuにて第2の導体パターン5を形成したのち、結
晶質ガラスにて第2の絶縁層6を形成し、絶縁層6のビ
アポール内に表呈する導体パターン5の表呈部分にはN
iめっき層7を形成する。次いで、その上に順次被着さ
」遍だ抵抗体薄膜とNiCr薄膜およびAu薄膜を選択
エツチングして、抵抗体パターン8.密着層9と導体層
10にてなる導体パターン11を形成する。
FIG. 4 is a sectional view showing the main parts of a conventional multilayer wiring board, and the multilayer wiring board 1 is formed using the aforementioned Ni plating.
Forms a first conductor pattern 3 made of Cu on an alumina substrate 2, and forms a first insulating layer 4 made of crystalline glass on top of the first conductor pattern 3 made of Cu.
to form. After forming a second conductive pattern 5 of Cu on the insulating layer 4 having via holes at required parts, a second insulating layer 6 of crystalline glass is formed and exposed inside the via pole of the insulating layer 6. The exposed part of the conductor pattern 5 has N
i-plating layer 7 is formed. Next, the uniform resistor thin film, NiCr thin film, and Au thin film sequentially deposited thereon are selectively etched to form a resistor pattern 8. A conductor pattern 11 consisting of the adhesive layer 9 and the conductor layer 10 is formed.

ただし、導体パターン3.5と絶縁層4は厚膜手段で形
成し、絶縁層6は厚膜手段で形成した結晶質のガラス層
6aの上に、ガラス層6aの粗面を平滑化する非晶質の
ガラス層6bをCVDにより積層させたものである。
However, the conductor pattern 3.5 and the insulating layer 4 are formed by thick film means, and the insulating layer 6 is formed on the crystalline glass layer 6a formed by the thick film means. Crystalline glass layers 6b are laminated by CVD.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように、従来の多層配線基板は所定部にN
iめっきを形成させるまたは、強アルカリ性のエッチャ
ントを使用していた。
As explained above, conventional multilayer wiring boards have N
A strong alkaline etchant was used to form i-plating.

しかし、Niめっきを利用する従来方法は、該下部導体
をめっき電極に接続するための電気的接続が必要となり
そのことでパターン設計の自由度が損なわれるおよび、
5μm以下でマスクとして効果がなく10μm以上にな
ると膜応力によって剥離し易いNiめっきの厚さを、5
μff1〜10μmにコントロールすることが厄介であ
るという問題点があった。
However, the conventional method using Ni plating requires an electrical connection to connect the lower conductor to the plating electrode, which impairs the degree of freedom in pattern design.
The thickness of the Ni plating, which is ineffective as a mask when it is less than 5 μm and easily peels off due to film stress when it exceeds 10 μm, is 5 μm.
There was a problem in that it was difficult to control μff to 1 to 10 μm.

他方、強アルカリのエッチャントを使用する従来方法は
、耐アルカリ性の強いネガレジストを使用する必要が生
じ、強い耐アルカリ性ネガレジストはポジレジストに比
べて有機溶剤を多く必要とするため、有機溶剤に対する
防爆性等の配慮から自動化させた製造装置の構成に困難
性が増して大型化されると共に、一般にガラス質である
絶縁層は、強アルカリ性のエッチャントによって劣化さ
れ易いという問題点がある。
On the other hand, the conventional method using a strong alkali etchant requires the use of a negative resist with strong alkali resistance, and since a strong alkali resistant negative resist requires more organic solvent than a positive resist, explosion protection against organic solvents is required. Due to considerations such as performance, the construction of automated manufacturing equipment becomes more difficult and larger, and the insulating layer, which is generally glassy, is easily deteriorated by strong alkaline etchants.

前記問題点に鑑みてなされた本発明の目的は、多層配線
基板の製造を容易化させることである。
An object of the present invention, which was made in view of the above problems, is to facilitate the manufacture of a multilayer wiring board.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はその実施例を示す第1図によれば、最上位の絶
縁層6のビアホールを介して絶縁層6の下に形成した銅
の下部導体パターン5と接続せしめ絶縁層6の上にCu
またはAuにより形成した上部導体パターン23が、W
を主成分とした密着層22を媒体に形成してなることを
特徴とし、さらには、密着層22がWにTiを1〜5%
含むことを特徴とする多層配線基板21である。
According to FIG. 1 showing an embodiment of the present invention, a copper conductor pattern 5 is connected to a lower copper conductor pattern 5 formed under an insulating layer 6 through a via hole in an uppermost insulating layer 6.
Alternatively, the upper conductor pattern 23 formed of Au may be
It is characterized by forming an adhesion layer 22 mainly composed of W and Ti in an amount of 1 to 5%.
This is a multilayer wiring board 21 characterized by including.

〔作用] 上記手段によれば、W自体がCuまたはAuによりなる
導体パターンに対しNiCr、Crと同等の密着性を有
すると共に、ポジレジストを使用してNiCrまたはC
rをエツチングするエッチャントに対する耐性を具え、
さらにはWに1〜5%Tiを含有させることでその耐水
性と残渣発生率が向上し、多層配線基板の製造を容易な
らしめることができる。
[Function] According to the above means, W itself has the same adhesion as NiCr or Cr to the conductor pattern made of Cu or Au, and the W itself has adhesion to the conductor pattern made of Cu or Au, and it also has the same adhesion as NiCr or Cr using a positive resist.
Provides resistance to etchant that etches r,
Furthermore, by incorporating 1 to 5% Ti into W, its water resistance and residue generation rate can be improved, making it easier to manufacture a multilayer wiring board.

〔実施例] 以下に、図面を用いて本発明の実施例による多層配線基
板を説明する。
[Example] A multilayer wiring board according to an example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による多層配線基板の要部を
示す断面図、第2図は該多層配線基板の主要製造工程を
説明するための断面図である。
FIG. 1 is a cross-sectional view showing the main parts of a multilayer wiring board according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view for explaining the main manufacturing steps of the multilayer wiring board.

第4図と共通部分に同一符号を使用した第1図において
、多層配線基板21は96%のアルミナ基板2の上にC
uにて第1層目の導体パターン3を形成し、その上にガ
ラス絶縁層4を形成させる。所要部にビアホールを有す
る絶縁層4の上に第2の導体パターン5を形成したのち
第2の絶縁層6を形成し、ビアホールを設けた絶縁層6
の上に抵抗体パターン8.Wを主成分とした密着層22
.銅または金にてなる導体層10からなる導体パターン
23を形成してなる。
In FIG. 1, in which the same reference numerals are used for parts common to those in FIG.
A first layer conductor pattern 3 is formed at u, and a glass insulating layer 4 is formed thereon. A second conductor pattern 5 is formed on the insulating layer 4 having via holes in required parts, and then a second insulating layer 6 is formed, and the insulating layer 6 with via holes is formed.
Resistor pattern 8. Adhesion layer 22 mainly composed of W
.. A conductor pattern 23 made of a conductor layer 10 made of copper or gold is formed.

ただし、導体パターン3と5.絶縁層4およびガラス層
6aは厚膜手段で形成し、ガラス層6bと導体パターン
23は薄膜手段で形成する。
However, conductor patterns 3 and 5. The insulating layer 4 and the glass layer 6a are formed by thick film means, and the glass layer 6b and the conductor pattern 23 are formed by thin film means.

第2図(イ)において、アルミナ基板2の上に導体パタ
ーン3.絶縁層4.導体パターン5および絶縁層6を形
成したのち、DCマグネトロンスパンタによりTa−N
(窒化タンタル)の抵抗体薄膜24(例えば厚さ100
0人)、W薄膜25(例えばI7さ500人)、Au薄
膜26(例えば厚さlμl)を連続に被着し、その上に
所望のポジレジスト27を形成する。
In FIG. 2(a), a conductor pattern 3. Insulating layer 4. After forming the conductor pattern 5 and the insulating layer 6, Ta-N is formed using a DC magnetron spunter.
(Tantalum nitride) resistor thin film 24 (for example, 100 mm thick)
A thin W film 25 (for example, I7, 500 mm), and an Au thin film 26 (for example, 1 μl thick) are successively deposited, and a desired positive resist 27 is formed thereon.

次いで、レジスト27より表呈するAu薄膜26の不要
部を沃素沃化カリ系のエッチャントにより溶去し、Au
薄II!26の該不要部の溶去により表呈するW薄膜2
5の不要部をp H9に調整した赤血塩系のエッチャン
トにより溶去し、W薄膜25の該不要部の溶去により表
呈する抵抗薄膜24の不要部をCF、系のエッチャント
により?容去したのち、第2図(0)に示すように第2
のポジレジスト28を形成させる。
Next, unnecessary parts of the Au thin film 26 exposed from the resist 27 are dissolved away using an iodine-potassium iodide-based etchant, and the Au
Thin II! W thin film 2 exposed by dissolving the unnecessary parts of 26
The unnecessary portions of the resistive thin film 24 exposed by the elution of the unnecessary portions of the W thin film 25 are removed using a CF-based etchant. After removal, the second
A positive resist 28 is formed.

しかるのち、レジスト28より表呈するAu薄膜26の
不要部を沃素沃化カリ系のエッチャントにより溶去し、
Au!膜26の該不要部の溶去により表呈するW薄膜2
5の不要部をpH9に調整した赤血塩系のエラチャン1
−により溶去したのち、レジスト28を除去して洗浄す
ると第2図(ハ)に示すように、多層配線基板21が完
成する。
After that, unnecessary parts of the Au thin film 26 exposed from the resist 28 are dissolved away using an iodine-potassium iodide-based etchant.
Au! The W thin film 2 exposed by dissolving the unnecessary part of the film 26
Erachan 1, a red blood salt system with the unnecessary parts of 5 adjusted to pH 9
After the resist 28 is removed and cleaned, the multilayer wiring board 21 is completed as shown in FIG. 2(C).

第3図はW薄膜に含むTiの含有量とその上に被着させ
た導体薄膜の剥離発生率、残渣発生率との関係を示す図
であり、85°C395%RHの雰囲気中に1000時
間曝すプレッシャクツカーテストを施した試料について
、実線は測定値を黒丸でブロットシた導体薄膜の剥離特
性、破線は測定値を白丸でプロットした残渣発住持性で
ある。
Figure 3 is a diagram showing the relationship between the Ti content in the W thin film and the peeling rate and residue generation rate of the conductive thin film deposited thereon, after 1000 hours in an atmosphere of 85°C and 395% RH. Regarding the samples subjected to the pressure-cutting car test, the solid line shows the peeling characteristics of the conductor thin film, where the measured values are plotted with black circles, and the broken line shows the residue generation durability, where the measured values are plotted with white circles.

第3図から明らかなように、導体薄膜の剥離発生率はW
薄膜に含有するTiが1%以上のとき約2%以下となり
、導体薄膜の残渣発生率はW薄膜に含有するTiが5%
以下のとき約2.5%以下となる。従って、W薄膜に含
有するTiは1〜5%のとき、導体薄膜は剥離発生率お
よび残渣発生率の双方に優れた特性が得られることにな
る。
As is clear from Figure 3, the peeling rate of the conductor thin film is W
When the Ti content in the thin film is 1% or more, it is approximately 2% or less, and the residue generation rate in the conductive thin film is 5% when the Ti content in the W thin film is 5%.
It will be about 2.5% or less in the following cases. Therefore, when the Ti content in the W thin film is 1 to 5%, the conductive thin film has excellent characteristics in both the peeling rate and the residue rate.

[発明の効果] 以北説明したように本発明によれば、W自体がCuまた
はAuによりなる導体パターンに対しNiCr、Crと
同等の密着性を有すると共に、ポジレジストを使用して
NiCrまたはCrをエツチングするエッチャントに対
する耐性を具え、さらにはWに1〜5%のTiを含有さ
せることで薄膜の密着性と残渣発生率が向上し、多層配
線基板の製造を容易ならしめることができる。
[Effects of the Invention] As described above, according to the present invention, W itself has adhesion to a conductor pattern made of Cu or Au equivalent to that of NiCr or Cr, and can also be bonded to a conductor pattern made of Cu or Au using a positive resist. Furthermore, by incorporating 1 to 5% Ti into W, the adhesion of the thin film and the rate of residue generation are improved, making it easier to manufacture multilayer wiring boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による多層配線基板、第2図
は第1図に示す多層配線基板の主要製造工程の説明図、 第3図は密着層のWに含むTiの含有量と膜剥離発生率
、残渣発生率との関係、 第4図は従来の多層配線基板、 である。 図中において、 5は最上位絶縁層の下部導体パターン、6は最上位の絶
縁層、 21は多層配線基板、 22は密着層、 23は最」二値絶縁層の上部導体パターン、を示す。
Fig. 1 is a multilayer wiring board according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the main manufacturing process of the multilayer wiring board shown in Fig. 1, and Fig. 3 is a diagram showing the content of Ti in W in the adhesive layer. The relationship between the rate of film peeling and the rate of residue generation is shown in Figure 4 for a conventional multilayer wiring board. In the figure, 5 indicates a lower conductor pattern of the uppermost insulating layer, 6 indicates the uppermost insulating layer, 21 indicates a multilayer wiring board, 22 indicates an adhesion layer, and 23 indicates an upper conductor pattern of the uppermost binary insulating layer.

Claims (2)

【特許請求の範囲】[Claims] (1)最上位の絶縁層(6)のビアホールを介して該絶
縁層(6)の下に形成した銅の下部導体パターン(5)
と接続せしめ該絶縁層(6)の上に銅または金により形
成した上部導体パターン(23)が、タングステンを主
成分とした密着層(22)を媒体に形成してなることを
特徴とする多層配線基板。
(1) A lower copper conductor pattern (5) formed under the uppermost insulating layer (6) through a via hole in the uppermost insulating layer (6).
An upper conductor pattern (23) formed of copper or gold on the insulating layer (6) and connected to the insulating layer (6) is formed by forming an adhesion layer (22) mainly composed of tungsten as a medium. wiring board.
(2)前記密着層(22)がタングステンにチタンを1
〜5%含むことを特徴とする前記請求項1に記載の多層
配線基板。
(2) The adhesion layer (22) is made of tungsten and titanium.
The multilayer wiring board according to claim 1, characterized in that the multilayer wiring board contains ~5%.
JP31681188A 1988-12-14 1988-12-14 Multi-layer wiring substrate Pending JPH02161793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31681188A JPH02161793A (en) 1988-12-14 1988-12-14 Multi-layer wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31681188A JPH02161793A (en) 1988-12-14 1988-12-14 Multi-layer wiring substrate

Publications (1)

Publication Number Publication Date
JPH02161793A true JPH02161793A (en) 1990-06-21

Family

ID=18081187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31681188A Pending JPH02161793A (en) 1988-12-14 1988-12-14 Multi-layer wiring substrate

Country Status (1)

Country Link
JP (1) JPH02161793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037620A1 (en) * 1999-11-18 2001-05-25 Ibiden Co., Ltd. Resistor structure of wiring board
JP2004304068A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037620A1 (en) * 1999-11-18 2001-05-25 Ibiden Co., Ltd. Resistor structure of wiring board
JP2004304068A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US5120572A (en) Method of fabricating electrical components in high density substrates
US5254493A (en) Method of fabricating integrated resistors in high density substrates
US4964947A (en) Method of manufacturing double-sided wiring substrate
JP2688446B2 (en) Multilayer wiring board and manufacturing method thereof
CN110349927A (en) Multi-layer wiring structure body and its manufacturing method
JPH07147483A (en) Printed wiring board and manufacture thereof
JP2001223460A (en) Packaging circuit board and its manufacturing method
JPH02161793A (en) Multi-layer wiring substrate
JP3144596B2 (en) Thin film electronic component and method of manufacturing the same
JP4328134B2 (en) Method for manufacturing printed wiring board
JPH07131155A (en) Manufacture of multilayer interconnection substrate, and multilayer interconnection substrate
JP2530008B2 (en) Wiring board manufacturing method
JPH0245996A (en) Manufacture of hybrid integrated circuit
JPH0151076B2 (en)
JP3049161B2 (en) Method for manufacturing multi-chip thin film multilayer wiring board
JP2001196252A (en) Manufacturing method of electronic device
JPH0621651A (en) Multilayer wiring circuit board and its manufacture
JP2937676B2 (en) Multilayer circuit board
JP2565362B2 (en) Method for manufacturing multilayer wiring board
JPS63148696A (en) Electronic circuit substrate
JPH05183273A (en) Multilayer wiring board and manufacture thereof and elecronic device using the same
JP4626282B2 (en) Manufacturing method of resistance element built-in substrate
JPH0744336B2 (en) Circuit board manufacturing method
JPH0240232B2 (en)
JPH0693538B2 (en) Ceramic printed circuit board and method for manufacturing the same