JPH02161345A - Catalyst combustion type gas detecting element - Google Patents

Catalyst combustion type gas detecting element

Info

Publication number
JPH02161345A
JPH02161345A JP31678688A JP31678688A JPH02161345A JP H02161345 A JPH02161345 A JP H02161345A JP 31678688 A JP31678688 A JP 31678688A JP 31678688 A JP31678688 A JP 31678688A JP H02161345 A JPH02161345 A JP H02161345A
Authority
JP
Japan
Prior art keywords
tin oxide
palladium
carrier
coil
alarming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31678688A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
博 酒井
Shinichi Ochiwa
小知和 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31678688A priority Critical patent/JPH02161345A/en
Publication of JPH02161345A publication Critical patent/JPH02161345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To form the catalyst combustion type gas detecting element which is free from erroneous alarming and failure in alarming and is excellent in reliability by providing a tin oxide carrier deposited with a noble metal catalyst and increasing the temp. rise when a combustible gas makes contact combustion in the carrier. CONSTITUTION:A palladium chloride soln. is impregnated in tin oxide powder having, for example, 3mum average grain size and 20m<2>/g specific surface area at such a ratio at which prescribed weight % is attained as palladium. The powder is gradually heated over a water bath to remove the moisture and is heated in air after drying to decompose the palladium chloride. A silica sol is added to this tin oxide powder with the palladium so as to attain prescribed weight % as silica to prepare paste. The tin oxide with the palladium is applied on a coil 1 so as to cover the coil 1. The coil 1 is then dried and heated to form the tin oxide carrier 2 with the palladium around the coil 1. Since the tin oxide carrier is deposited with the noble metal catalyst in this way, the temp. rise when the combustible gas burns in the carrier increases and the contact combustion type gas detecting element which is free from the erroneous alarming and the failure in alarming is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は接触燃焼式ガス検知素子に係り、特に検知素
子の担体の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a catalytic combustion type gas sensing element, and particularly to the structure of a carrier for the sensing element.

〔従来の技術〕[Conventional technology]

接触燃焼式ガス検知素子は第3図に示すように白金など
の抵抗温度係数の高い材質の線をコイル状にした熱線条
1を活性アルミナなどの担体2で被覆し、更に、この担
体に可燃性ガスに対する酸化性能に優れた触媒を担持し
て形成される。一方、温度補償素子が可燃性ガスに対し
て不活性な点を除けばガス検知素子と同様にして形成さ
れる。画素子は第4図に示すように隣接する枝路内に抵
抗5とともに接続され、画素子3,4の接続点と抵抗5
の接続点との間に設けられた出力検出部7によりガス検
知素子の出力が検出される。
As shown in Fig. 3, the catalytic combustion type gas detection element consists of a hot wire 1 made of a coiled wire made of a material with a high temperature coefficient of resistance, such as platinum, and coated with a carrier 2 such as activated alumina. It is formed by supporting a catalyst that has excellent oxidation performance against toxic gases. On the other hand, the temperature compensating element is formed in the same manner as the gas sensing element except that it is inert to combustible gas. The pixel elements are connected together with a resistor 5 in an adjacent branch as shown in FIG.
The output of the gas detection element is detected by the output detection section 7 provided between the connection point of the gas detection element and the connection point of the gas detection element.

従来の接触燃焼式ガス検知素子の担体としては例えば米
国特許明細書第3092799号公報に開示されている
ように、多孔質活性アルミナに白金。
As a carrier for a conventional catalytic combustion type gas detection element, for example, platinum is used in porous activated alumina, as disclosed in US Pat. No. 3,092,799.

パラジウム等の貴金属を担持したものが一般に用いられ
ている。この様な活性アルミナ相持黄金属触媒は可燃性
ガスの接触酸化反応に対して高い活性を示すことが知ら
れており、LPガス、都市ガス等を対象としたガス漏れ
警報器用センサに広く用いられる。
Those carrying noble metals such as palladium are generally used. Such activated alumina supported yellow metal catalysts are known to exhibit high activity in catalytic oxidation reactions of combustible gases, and are widely used in gas leak alarm sensors for LP gas, city gas, etc. .

従来用いられている上記の材質からなるガス検知素子に
おいては、例えば0.2%のイソブタンガス中での接触
燃焼による温度上昇は素子のサイズが約1.5*mφの
場合10〜20℃の範囲にありその結果ブリッジ出力と
しては10〜20mVの値が得られていた。
In conventionally used gas detection elements made of the above materials, the temperature rise due to catalytic combustion in, for example, 0.2% isobutane gas is 10 to 20°C when the element size is approximately 1.5*mφ. As a result, a bridge output value of 10 to 20 mV was obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら検知素子を温度補償素子と組み合せてブリ
ッジを形成して使用しても長期使用する場合においては
ほこりの付着状況や焼結度合の差などから画素子の放熱
状態に差が生じて大気中での零ガス出力(以後零点と呼
ぶ)に変動がおこり、数年間には数mVに達して上述の
ような検知素子のブリッジ出力では誤動作あるいは警報
不能等の不具合を2こす危険性がありた。
However, even if the sensing element is used in combination with a temperature compensation element to form a bridge, when used for a long period of time, there will be differences in the heat dissipation state of the pixel element due to dust adhesion and differences in the degree of sintering. Fluctuations occur in the zero gas output (hereinafter referred to as the zero point), reaching several mV over several years, and there is a risk that the bridge output of the above-mentioned sensing element may cause problems such as malfunction or failure to provide an alarm.

この発明は上述の点に鑑みてなされ、その目的は接触燃
焼反応によるガス検知素子の温度変化を大きくして検知
素子出力をより大きくすることにより、長期使用による
零点変動の影響を受けることがなく信頼性に優れる接触
燃焼式ガス検知素子を提供することにある。
This invention was made in view of the above points, and its purpose is to increase the temperature change of the gas detection element due to the catalytic combustion reaction and increase the detection element output, thereby eliminating the influence of zero point fluctuation due to long-term use. An object of the present invention is to provide a catalytic combustion type gas detection element with excellent reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、担体内部表面において
可燃性ガスを接触燃焼させ燃焼反応による温度上昇を担
体内部に埋込まれたコイルの抵抗変化として検知するガ
ス検知素子に2いて、貴金属触媒を担持させた酸化スズ
担体2を備えることにより達成される。
According to the present invention, the above-mentioned object is to provide a gas detection element that catalytically burns a combustible gas on the internal surface of a carrier and detects the temperature rise due to the combustion reaction as a resistance change of a coil embedded inside the carrier. This is achieved by providing a tin oxide carrier 2 on which is supported.

貴金属触媒としては白金、パラジウムのいずれも類似の
高い活性を示す。
As noble metal catalysts, both platinum and palladium exhibit similar high activity.

〔作用〕[Effect]

活性アルミナが主として貴金属の分散性を高める機能を
有するのに対し、酸化スズはその粒子表面に酸素を活性
化吸着して8す、この吸着酸素と貴金属触媒とが相乗的
に作用して可燃性ガスに対する高い酸化活性か生ずるも
のと考えられる。
Activated alumina mainly has the function of increasing the dispersibility of precious metals, whereas tin oxide actively adsorbs oxygen on its particle surface, and this adsorbed oxygen and precious metal catalyst act synergistically to cause flammability. This is thought to be due to high oxidation activity against gases.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面に基いて説明する。平均
粒径3μm、比表面積20 d/iの酸化スズ粉末に、
パラジウムとして0.5重量%となるように塩化パラジ
ウム溶液を含浸させ、水浴上で徐々に加熱して水分を除
き、次いで150℃で2時間乾燥してから600℃で3
時間空気中で加熱し、塩化パラジウムを分解させる。こ
のパラジウム付き酸化スズ粉末にシリカゾルをシリカと
して3m−11%となるように添加してペースト状とし
、第3図に示すコイル1を被覆するようにパラジウム付
き酸化スズを塗布する。次いで常温で2時間乾燥後60
0°Cで3時間大気中で加熱し、コイル周囲にパラジウ
ム付き酸化スズ担体を形成させる(以降、この素子をP
d/5n02累子と呼ぶ)。
Embodiments of the present invention will be described below with reference to the drawings. Tin oxide powder with an average particle size of 3 μm and a specific surface area of 20 d/i,
Impregnated with a palladium chloride solution to a concentration of 0.5% by weight as palladium, gradually heated on a water bath to remove water, dried at 150°C for 2 hours, and then heated at 600°C for 3 hours.
Heat in air for an hour to decompose the palladium chloride. Silica sol is added to this palladium-coated tin oxide powder to give a concentration of 3 m - 11% as silica to form a paste, and the palladium-coated tin oxide is applied so as to cover the coil 1 shown in FIG. Then, after drying at room temperature for 2 hours,
Heating in the air at 0°C for 3 hours forms a tin oxide carrier with palladium around the coil (hereinafter, this element is referred to as P
d/5n02 Seiko).

次に比較のため平均粒径3μm、比表面積150、?1
/gのr−アルミナ粉末にパラジウムとして0.5重量
%となるように塩化パラジウム溶液を含浸させ以降の操
作は前記Pd/Sn0g素子と同様にしてパラジウム付
きr −1’J20sを担体とするガス検知素子を作製
する(以降この素子をPa/A1320s t=子と呼
ぶ)。
Next, for comparison, the average particle diameter is 3 μm, the specific surface area is 150, ? 1
/g of r-alumina powder is impregnated with a palladium chloride solution to give a concentration of 0.5% by weight as palladium, and the subsequent operations are carried out in the same manner as for the Pd/Sn0g element, using a gas using palladium-attached r-1'J20s as a carrier. A sensing element is produced (hereinafter this element will be referred to as a Pa/A1320s t=child).

上記2つの素子を夫々、第4図のガス検知素子3の位置
にセットしインブタンガスに対する出力を測定した。但
し温度補償素子4にはそれぞれのガス検知素子をガスが
接触しないように密封キャップをした素子を用いた。
The above two elements were each set at the position of the gas detection element 3 shown in FIG. 4, and the output with respect to inbutane gas was measured. However, as the temperature compensation element 4, an element was used in which each gas detection element was covered with a hermetically sealed cap to prevent gas from coming into contact with it.

第1図は、イソブタンガスの無い大気中での素子温度を
400℃に保った時のイソブタンガス濃度に対するブリ
ッジ出力をPd/5n02素子と20M2O3素子とで
比較したものである。図中実線Aは本発明のPd/5n
02素子の出力、実線Bは比較例としてのPa/A13
203素子の出力を示す。第1図に示すようにPd/5
n02素子は従来のガス検知素子に用いられているPd
/)J203X子に比べ約4倍という高いブリッジ出力
が得られることがわかる。
FIG. 1 compares the bridge output with respect to isobutane gas concentration between a Pd/5n02 element and a 20M2O3 element when the element temperature is maintained at 400 DEG C. in an atmosphere without isobutane gas. The solid line A in the figure is the Pd/5n of the present invention.
02 element output, solid line B is Pa/A13 as a comparative example
The output of 203 elements is shown. As shown in Figure 1, Pd/5
The n02 element is Pd, which is used in conventional gas detection elements.
/) It can be seen that the bridge output is about 4 times higher than that of the J203X.

次に、前記実施例で作成したPd/SnO2素子及びP
d/に−e ZOs累子0ガス接触時の温度上昇を比較
するため素子の表面温度をサーモグユアを用いて測定し
た。第2図は大気中での素子温度を変えた時の0.2%
のインブタンガス接触時の温度上昇値を求めたもので実
線CはPd/5nOz 素子、実線りはPd%す203
素子の特性を示す。第2図に示すように400℃の素子
温度では20M2O3素子に比べPd/5nOz素子は
約4倍の温度上昇を示すことがわかる。
Next, the Pd/SnO2 element prepared in the above example and the Pd/SnO2
In order to compare the temperature rise upon contact with d/to-e ZOs crystal 0 gas, the surface temperature of the element was measured using a thermograph. Figure 2 shows 0.2% when changing the element temperature in the atmosphere.
The temperature rise value when contacting with inbutane gas is calculated, solid line C is Pd/5nOz element, solid line C is Pd%203
Indicates the characteristics of the element. As shown in FIG. 2, it can be seen that at a device temperature of 400° C., the Pd/5nOz device exhibits a temperature increase approximately four times that of the 20M2O3 device.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、担体内部表面において可燃性ガスを
接触燃焼させ燃焼反応による温度上昇を担体内部に埋込
まれたコイルの抵抗変化として検知するガス検知素子に
おいて、貴金属触媒を担持させた酸化スズ担体を備える
ので可燃性ガスが担体において接触燃焼したときの温度
上昇が従来の素子よりも大きくなり、そのために素子出
力が大きくなって零点の経年変化の影響がなくなり、誤
報、警報不能などのない信頼性に優れる接触燃焼式ガス
検知素子を提供することが可能となる。さらに素子の高
感度変化により低濃度ガスに対しても高精度の測定が可
能となりガス濃度計としての適用等その使用範囲を拡げ
ることも可能となる。
According to this invention, in a gas detection element that catalytically burns a combustible gas on the internal surface of a carrier and detects the temperature rise due to the combustion reaction as a resistance change in a coil embedded inside the carrier, tin oxide on which a noble metal catalyst is supported is used. Since it is equipped with a carrier, the temperature rise when combustible gas catalytically burns on the carrier is greater than that of conventional elements, which increases the element output and eliminates the effects of aging of the zero point, eliminating false alarms and failure to alarm. It becomes possible to provide a catalytic combustion type gas detection element with excellent reliability. Furthermore, due to the high sensitivity change of the element, it is possible to measure with high precision even for low concentration gases, and it is also possible to expand the range of use, such as application as a gas concentration meter.

【図面の簡単な説明】[Brief explanation of the drawing]

再1図は本発明の冥施例に係るガス検知素子のブリッジ
出力とイノブタン濃度との関係を従来の素子の特性と比
較して示した線図、第2図は本発明の実施例に係るガス
検知素子の温度上昇値と素子温度との関係を従来の素子
の特性と比較して示した線図、ii!3図は接触燃焼式
ガス検知素子を示す一部破断斜視図、第4図はガス検知
素子の出力をとり出すブリッジ回路を示す接続図である
。 イツフ゛タンが又濃1L(%) 第  1 図 素子温度(−C) 夢  2 図
Figure 1 is a diagram showing the relationship between the bridge output and inbutane concentration of the gas detection element according to the embodiment of the present invention in comparison with the characteristics of the conventional element, and Figure 2 is the diagram according to the embodiment of the present invention. Diagram showing the relationship between the temperature rise value of the gas detection element and the element temperature in comparison with the characteristics of a conventional element, ii! FIG. 3 is a partially cutaway perspective view showing the catalytic combustion type gas sensing element, and FIG. 4 is a connection diagram showing a bridge circuit for taking out the output of the gas sensing element. Iftan is also concentrated 1L (%) Figure 1 Element temperature (-C) Dream 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)担体内部表面において可燃性ガスを接触燃焼させ燃
焼反応による温度上昇を担体内部に埋込まれたコイルの
抵抗変化として検知するガス検知素子において、貴金属
触媒を担持させた酸化スズ担体を備えることを特徴とす
る接触燃焼式ガス検知素子。
1) A gas detection element that catalytically burns combustible gas on the internal surface of the carrier and detects the temperature rise due to the combustion reaction as a change in resistance of a coil embedded inside the carrier, is equipped with a tin oxide carrier on which a noble metal catalyst is supported. A catalytic combustion type gas detection element featuring:
JP31678688A 1988-12-15 1988-12-15 Catalyst combustion type gas detecting element Pending JPH02161345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31678688A JPH02161345A (en) 1988-12-15 1988-12-15 Catalyst combustion type gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31678688A JPH02161345A (en) 1988-12-15 1988-12-15 Catalyst combustion type gas detecting element

Publications (1)

Publication Number Publication Date
JPH02161345A true JPH02161345A (en) 1990-06-21

Family

ID=18080900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31678688A Pending JPH02161345A (en) 1988-12-15 1988-12-15 Catalyst combustion type gas detecting element

Country Status (1)

Country Link
JP (1) JPH02161345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632771A1 (en) * 2003-06-12 2006-03-08 Riken Keiki Co., Ltd. Catalytic combustion type gas sensor and method for manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632771A1 (en) * 2003-06-12 2006-03-08 Riken Keiki Co., Ltd. Catalytic combustion type gas sensor and method for manufacture thereof
EP1632771A4 (en) * 2003-06-12 2010-09-15 Riken Keiki Kk Catalytic combustion type gas sensor and method for manufacture thereof

Similar Documents

Publication Publication Date Title
US5338515A (en) SO2 sensor
EP0115182B1 (en) Gas sensor
US4072467A (en) Combustible gas detectors
JPS644617B2 (en)
JPH02161345A (en) Catalyst combustion type gas detecting element
JPS6137577B2 (en)
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPS6146455Y2 (en)
JP2570440B2 (en) Gas sensor
JPH0473744B2 (en)
JPH0252247A (en) Gas sensor
JPH0949819A (en) Carbon monoxide detector
JPH02263145A (en) Semiconductor type gas sensor
KR960000806B1 (en) Co-gas sensor
JPH03138556A (en) Contact combustion type carbon monoxide sensor
JPH0882610A (en) Catalytic combustion type alcohol sensor
JPH09101279A (en) Catalytic combustion method gas sensor
JPS61145442A (en) Methane gas sensor
JPS63252243A (en) Contact combustion type gas sensor
JPS62235555A (en) Contact combustion type gas sensor
JPH02206749A (en) Gas sensor
JPH04186148A (en) Gas sensor
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection
JPS5925001Y2 (en) Carbon monoxide gas selection detection element
JPS5840696B2 (en) gas sensing element