JPH02160688A - Production of silicon single crystal and apparatus therefor - Google Patents
Production of silicon single crystal and apparatus thereforInfo
- Publication number
- JPH02160688A JPH02160688A JP31294288A JP31294288A JPH02160688A JP H02160688 A JPH02160688 A JP H02160688A JP 31294288 A JP31294288 A JP 31294288A JP 31294288 A JP31294288 A JP 31294288A JP H02160688 A JPH02160688 A JP H02160688A
- Authority
- JP
- Japan
- Prior art keywords
- partition member
- crucible
- single crystal
- silicon
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 87
- 239000010703 silicon Substances 0.000 title claims abstract description 87
- 239000013078 crystal Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005192 partition Methods 0.000 claims abstract description 62
- 239000002994 raw material Substances 0.000 claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 238000003466 welding Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、チョクラルスキー法によるシリコン単結晶の
製造方法及び装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for producing a silicon single crystal using the Czochralski method.
[従来の技術]
チョクラルスキー法によるシリコン単結晶の製造法は従
来から行なわれており、はぼ完成された技術となってい
る。[Prior Art] The Czochralski method for producing silicon single crystals has been practiced for a long time and has become an almost perfected technology.
この技術は、周知のように石英製のるつぼに溶融したシ
リコン原料を入れ、種結晶をこの溶融面に接すると同時
に回転させながら徐々に引上げると、接触面の凝固と共
に結晶成長が行なわれ、これにより円柱状のシリコン単
結晶を得るようにしたものである。As is well known, in this technology, a molten silicon raw material is placed in a quartz crucible, a seed crystal is brought into contact with the molten surface, and at the same time the seed crystal is rotated and pulled up gradually. As the contact surface solidifies, crystal growth occurs. In this way, a cylindrical silicon single crystal is obtained.
このとき、目的に応じてシリコン単結晶をP型又はN型
の半導体1ごするため、溶融原料に適量のボロン、アン
チモン、リン等のドープ材を混入している。しかしなが
ら、これらドープ材のシリコン単結晶への取込まれ方は
一定でなく、下部はど濃度が高くなる。At this time, in order to transform the silicon single crystal into a P-type or N-type semiconductor depending on the purpose, an appropriate amount of doping material such as boron, antimony, or phosphorus is mixed into the molten raw material. However, the way these dopants are incorporated into the silicon single crystal is not constant, and the concentration in the lower part becomes high.
また、上記のようにシリコン単結晶内に意識的に混入す
るドープ材以外に、製造上不可避的に混入する酸素の存
在も大きい。即ち、シリコン単結晶内に取込まれた酸素
によって半導体の特性や歩留りを向上させることができ
るので、シリコン単結晶の上部から下部まで均一に酸素
が含まれていることが望ましいが、一般に上部はど濃度
が高くなる。このため、ドープ材の濃度が低く酸素の濃
度が高いシリコン単結晶の上部を基準にしてシリコン単
単結晶を製造している。Furthermore, in addition to the dopant intentionally mixed into the silicon single crystal as described above, there is also a large presence of oxygen, which is unavoidably mixed during manufacturing. In other words, oxygen incorporated into the silicon single crystal can improve the characteristics and yield of the semiconductor, so it is desirable that the silicon single crystal contains oxygen uniformly from top to bottom. The concentration increases. For this reason, a silicon single crystal is manufactured based on the upper part of the silicon single crystal where the concentration of the dopant is low and the concentration of oxygen is high.
ところが、シリコン単結晶の引上げが進むにしたがって
るつぼ内の溶融液の液面が低下し、がつ溶融液面の温度
が変化するため、るつぼ内の溶融液はドープ材の濃度が
高くなり、酸素の濃度が低くなる。そのため引上げられ
て成長するシリコン単結晶の中に存在するドープ材が次
第に増加し、酸素は減少するため、製造されたシリコン
単結晶の品質が引上げ方向に沿って変動するという問題
があった。その結果、ウェハーとして使用する製品の歩
留りを向上させることが困難であった。However, as the pulling of the silicon single crystal progresses, the liquid level of the melt in the crucible decreases and the temperature of the melt surface changes, so the melt in the crucible has a higher concentration of dopant and oxygen concentration becomes lower. As a result, the dopant present in the silicon single crystal that is pulled and grown gradually increases while the oxygen content decreases, resulting in a problem that the quality of the manufactured silicon single crystal fluctuates along the pulling direction. As a result, it has been difficult to improve the yield of products used as wafers.
このような問題を解決するためにいくつかの方法が提案
されているが、実用上可能と考えられる代表的な方法と
して二重構造のるつぼを用いたものがある。Several methods have been proposed to solve these problems, and one of the representative methods considered to be practically possible is one using a double-structured crucible.
第6図は二重構造のるつぼを用いたシリコン単結晶の製
造装置を模式的に示したもので、(21)は外側るつぼ
(22)と内側るつぼ(23)とを高純度石英で一体に
構成したるつぼ1. (25)はるっぽ(21)内に入
れられたシリコン溶融液、(2B)は内側るつぼ(3)
の溶融液面から引上げられたシリコン単結晶である。な
お、内側るつぼ(23)の下部には外側るつぼ(20)
と内側るつぼ(22)との間をシリコン溶融液(25)
が流動するための穴(24)が明けられている。Figure 6 schematically shows a silicon single crystal manufacturing apparatus using a double-structured crucible, and (21) shows an outer crucible (22) and an inner crucible (23) made of high-purity quartz. Constructed crucible 1. (25) Silicon melt placed in Haruppo (21), (2B) is the inner crucible (3)
This is a silicon single crystal pulled up from the surface of the molten liquid. In addition, the outer crucible (20) is located at the bottom of the inner crucible (23).
and the inner crucible (22) is filled with silicon melt (25).
A hole (24) is drilled through which the fluid flows.
そして、第3図(a)は、内側るつぼ(23)内(以下
単結晶育成部Aという)のシリコン溶融液からシリコン
単結晶(26)を引上げると共に、外側るつぼ(22)
と内側るつぼ(23)との間(以下原料供給部Bという
)のシリコン溶融液に原料シリコンを間欠的に装入する
ようにしたバッチ式のシリコン単結晶の製造装置である
。FIG. 3(a) shows that a silicon single crystal (26) is pulled up from the silicon melt in the inner crucible (23) (hereinafter referred to as single crystal growth section A), and the silicon single crystal (26) is pulled up from the outer crucible (22).
This is a batch type silicon single crystal manufacturing apparatus in which raw silicon is intermittently charged into the silicon melt between the crucible and the inner crucible (23) (hereinafter referred to as raw material supply section B).
また、第3図(b)に示すものは、単結晶育成部Aから
シリコン単結晶(26)を引上げつつ、原料供給部Bに
、この溶融液と同一成分の溶融液から引上げた単結晶で
、かつ育成目的とする単結晶と同一形態の原料インゴッ
ト(27)を一定速度で挿入するようにしたものである
。さらに、第3図(C)に示すものは、単結晶育成部A
からシリコン単結晶(26)を引上げつつ、原料供給管
(28)から原料供給部Bに粉末状原料(29)を連続
的に供給するようにしたもの(特開昭58−13019
5号公報参照)で、これらは何れも単結晶育成部Aの溶
融液中のドープ材濃度を一定にすることを目的としたも
のである。In addition, in the case shown in FIG. 3(b), a silicon single crystal (26) is pulled up from the single crystal growth section A, and a single crystal pulled up from a melt having the same composition as this melt is transferred to the raw material supply section B. , and a raw material ingot (27) having the same form as the single crystal to be grown is inserted at a constant speed. Furthermore, what is shown in FIG. 3(C) is the single crystal growth part A.
The powdered raw material (29) is continuously supplied from the raw material supply pipe (28) to the raw material supply section B while pulling the silicon single crystal (26) from the raw material supply pipe (28).
(Refer to Publication No. 5), and all of these are aimed at keeping the dopant concentration in the melt in the single crystal growth section A constant.
[発明が解決しようとする課題]
上記の従来技術によるるつぼ・は、外側るつぼと内側る
つぼとが一体構造であるため、加工費がきわめて高価な
石英るつぼを、さらに二重構造に加工しなければならな
いのでコストアップを招来し、その結果、製品の歩留り
向上の効果が相殺されてしまい、実効が得られないとい
う問題がある。[Problems to be Solved by the Invention] The crucible according to the prior art described above has an integral structure of the outer crucible and the inner crucible, so the quartz crucible, which is extremely expensive to process, must be further processed into a double structure. This results in an increase in costs, which cancels out the effect of improving product yield, resulting in a problem that no practical effect can be obtained.
このような問題に対処するため、シリコン溶融液中に高
純度石英からなる円筒状の仕切り部材を挿入して、単結
晶育成部と原料供給部とを形成することも考えられるが
、石英の方がシリコン溶融液より密度が小さいために溶
融液上に浮遊してしまい、仕切りとしての役割を果たさ
ないばかりです<、シリコン単結晶の成長も阻害される
という問題が生じていた。In order to deal with this problem, it is possible to insert a cylindrical partition member made of high-purity quartz into the silicon melt to form a single crystal growth section and a raw material supply section, but quartz is preferable. Since it has a lower density than the silicon melt, it floats on top of the melt and does not function as a partition.The growth of the silicon single crystal is also inhibited.
本発明は、上記の課題を解決すべくなされたもので、る
つぼと別体に構成した仕切り部材をるつぼに熱溶着させ
て一体化することにより、低コストで仕切り部材が浮遊
するおそれのないシリコン単結晶の製造方法及び装置を
得ることを目的としたものである。The present invention has been made in order to solve the above-mentioned problems, and by thermally welding and integrating the partition member configured separately from the crucible to the crucible, silicone can be used at low cost and without the risk of the partition member floating. The purpose of this invention is to obtain a method and apparatus for producing single crystals.
[課題を解決するための手段]
本発明は、シリコン溶融液が入れられるるつぼ内を、引
き上げられるシリコン単結晶を囲みかつ前記シリコン溶
融液が静かに移動しうるように小孔が貫通された仕切り
部材で仕切り、該仕切り部材の内側から単結晶を引き上
げてシリコン単結晶を製造する方法において、
前記るつぼ内に仕切り部材をその下端部が該るつぼに接
するように配置して前記るつぼ内にシリコン原料を装入
し、該シリコン原料を加熱溶解すると共に前記仕切り部
材の下端部とるつぼとを溶着させるようにしたシリコン
単結晶の製造方法。[Means for Solving the Problems] The present invention provides a crucible into which a silicon melt is placed, a partition that surrounds a silicon single crystal to be pulled and has a small hole penetrated therein so that the silicon melt can move quietly. In a method for producing a silicon single crystal by partitioning the crucible with a member and pulling the single crystal from inside the partition member, the partition member is arranged in the crucible so that its lower end is in contact with the crucible, and the silicon raw material is placed in the crucible. A method for producing a silicon single crystal, the method comprising heating and melting the silicon raw material and welding the lower end of the partition member to a crucible.
及び、
前記仕切り部材の外側の溶融液に粒状シリコン原料を連
続的に供給しながらその内側からシリコン単結晶を引上
げるようにしたシリコン単結晶の製造方法。さらに、
シリコン溶融液が入れられるるつぼ内を、引き上げられ
るシリコン単結晶を囲みかつ前記シリコン溶融液が静か
に移動しうるように小孔が貫通された仕切り部材で仕切
り、該仕切り部材の内側から単結晶を引き上げてシリコ
ン単結晶を製造する装置において、
前記仕切り部材の下端部を熱溶着により一体化したるつ
ぼを備えたシリコン単結晶の製造装置。and a method for producing a silicon single crystal, wherein the silicon single crystal is pulled from the inside while continuously supplying granular silicon raw material to the melt outside the partition member. Furthermore, the inside of the crucible into which the silicon melt is placed is partitioned with a partition member having a small hole penetrated therein so as to surround the silicon single crystal to be pulled and to allow the silicon melt to move quietly, An apparatus for producing a silicon single crystal by pulling a crystal, comprising: a crucible in which a lower end of the partition member is integrated by thermal welding.
及び、
前記仕切り部材の外側の溶融液面に近接して粒状シリコ
ン原料の供給装置を設けたシリコン単結晶の製造装置を
提供するものである。The present invention also provides a silicon single crystal manufacturing apparatus, in which a granular silicon raw material supply device is provided close to the molten liquid surface outside the partition member.
[作 用]
るつぼと仕切り部材は、熱溶着により一体化されるので
、シリコン溶融液によって仕切り部材が浮遊するおそれ
がない。[Function] Since the crucible and the partition member are integrated by thermal welding, there is no fear that the partition member will float due to the silicon melt.
〔実施例]
第1図は本発明の実施例を模式的に示した断面図、第2
図はそのI−1断面図である。図において、1は石英る
つぼで、黒鉛るつぼ2のなかにセットされており、黒鉛
るつぼ2はペデスタル3上に上下動および回転可能に支
持されている。4はるつぼ1内に入れられたシリコン溶
融液で、これから柱状に育成されたシリコン単結晶5が
引き上げられる。6は黒鉛るつぼ2をとり囲むヒータ、
7はこのヒータ6をとり囲むホットゾーン断熱材で、こ
れらは通常のチョクラルスキー法による単結晶引き上げ
装置と基本的には同じである。[Example] Figure 1 is a sectional view schematically showing an example of the present invention, and Figure 2 is a cross-sectional view schematically showing an example of the present invention.
The figure is a sectional view taken along line I-1. In the figure, a quartz crucible 1 is set in a graphite crucible 2, and the graphite crucible 2 is supported on a pedestal 3 so as to be movable up and down and rotatable. 4 is a silicon melt placed in the crucible 1, from which a silicon single crystal 5 grown into a columnar shape is pulled. 6 is a heater surrounding the graphite crucible 2;
Reference numeral 7 denotes a hot zone heat insulating material surrounding this heater 6, which is basically the same as a single crystal pulling apparatus using the ordinary Czochralski method.
11は高純度の石英からなり、熱溶着によりるつぼ1と
一体的に構成された円筒状の仕切り部材で、第3図に一
例を示すように高さ方向のほぼ中央部から下の領域には
、少なくとも1個の小孔12が貫通されている。Reference numeral 11 denotes a cylindrical partition member made of high-purity quartz and integrated with the crucible 1 by heat welding.As shown in FIG. , at least one small hole 12 is passed through.
第4図は仕切り部材11の配設手順の一例を示すもので
ある。先ず、(a)図に示すように、るつぼ1内にこれ
と同心的にかつその下端部がるつぼ1の底部と確実に接
触するように仕切り部材1工を設置したのち、(b)図
に示すように仕切り部材11の内側及び外側にこれを固
定するように塊状のシリコン原料18を装入する。そし
て、るつぼ1をヒータ6により加熱してシリコン原料1
8を溶解すると、これに伴って仕切り部材11はシリコ
ン原料18により固定された状態で、その下端部とるつ
ぼ1の底部とが完全に溶着される。FIG. 4 shows an example of a procedure for arranging the partition member 11. First, as shown in figure (a), a partition member 1 is installed in the crucible 1 concentrically with the crucible 1 so that its lower end is securely in contact with the bottom of the crucible 1, and then as shown in figure (b). As shown, bulk silicon raw material 18 is charged inside and outside the partition member 11 so as to be fixed therein. Then, the crucible 1 is heated by the heater 6 to melt the silicon raw material 1.
8, the partition member 11 is fixed by the silicon raw material 18, and its lower end and the bottom of the crucible 1 are completely welded together.
このようにしてるつぼ1内にセットされた仕切り部材1
1は、シリコン原料18の溶融後は単結晶5を取り囲む
ように溶融液4内に浸されており、上級部は溶融液面か
られずかに露出している。また、下端部はるつぼ1と溶
着し、浮き上がることはない。したがって、仕切り部材
11の外側の溶融液4は小孔12を介してのみ静かに内
側に移動できるだけのため、仕切り部材11の外側と内
側(単結晶育成部)とを十分に仕切ることができる。Partition member 1 set in crucible 1 in this way
1 is immersed in the melt 4 so as to surround the single crystal 5 after the silicon raw material 18 is melted, and the upper part is slightly exposed from the surface of the melt. Further, the lower end portion is welded to the crucible 1 and will not float up. Therefore, the molten liquid 4 on the outside of the partition member 11 can quietly move inward only through the small holes 12, so that the outside and the inside (single crystal growth area) of the partition member 11 can be sufficiently partitioned.
なお、仕切り部材11の形状は任意のものでよく、また
、仕切り部材11の外径は、るっぽ1内で溶融するシリ
コン原料の鉢植に応じて、その内側と外側におけるシリ
コン溶融液の体積比を計算して抹定する。Note that the shape of the partition member 11 may be arbitrary, and the outer diameter of the partition member 11 is determined depending on the potted silicon raw material melted in Luppo 1, and the volume of the silicon melt on the inside and outside. Calculate and eliminate the ratio.
13は保温カバーで、仕切り部材11及びその外側の溶
融の保温効果を高めるために配置したものである。Reference numeral 13 denotes a heat insulating cover, which is arranged to enhance the heat insulating effect of the melting of the partition member 11 and its outside.
上記のように構成した本発明においては、るつぼ1内に
仕切り部材11を配設してその内側と外側にシリコン原
料18を装入し、るつぼ1をヒータ6で加熱してシリコ
ン原料18を溶解すると共に、仕切り部材11の下端部
をるつぼ1の底部に溶着させる。このとき、仕切り部材
11の内側と外側の溶融液面は同一レベルに保持されて
いる。いま、種結晶を仕切り部材■1の内側において溶
融液面に接触させ、回転させながら徐々に引上げると、
接触液面の凝固と共に結晶成長が行なわれ、円柱状のシ
リコン単結晶5が得られる。この間、仕切り部材11の
内外の溶融液は、小孔12を通って静かに移動し、溶融
液の液面レベルを常に一定に保持する。In the present invention configured as described above, the partition member 11 is disposed inside the crucible 1, the silicon raw material 18 is charged inside and outside of the partition member 11, and the crucible 1 is heated with the heater 6 to melt the silicon raw material 18. At the same time, the lower end of the partition member 11 is welded to the bottom of the crucible 1. At this time, the molten liquid levels on the inside and outside of the partition member 11 are maintained at the same level. Now, if the seed crystal is brought into contact with the molten liquid surface inside the partition member (1) and gradually pulled up while rotating,
Crystal growth occurs as the contact liquid surface solidifies, and a cylindrical silicon single crystal 5 is obtained. During this time, the molten liquid inside and outside the partition member 11 moves quietly through the small holes 12, and the level of the molten liquid is always kept constant.
第5図は本発明の他の実施例の縦断面図である。FIG. 5 is a longitudinal sectional view of another embodiment of the invention.
なお、第1図の実施例と同一機能の部分には同じ符号を
付し、説明を省略する。Note that parts having the same functions as those in the embodiment shown in FIG.
9はチャンバー8に、仕切り部材11の外側の溶融液面
に対応して設けた開口部で、この開口部9には粒状また
は塊状のシリコン原料(以下粒状シリコン原料という)
の供給装置14が挿入固定されており、供給装置■4の
先端部は仕切り部材11の外側の溶融液面に近接対向し
ている。この供給装置14はチャンバー8の外部に設け
た原料供給チャンバー(図示せず)に連結されており、
粒状シリコン原料を連続的に供給する。Reference numeral 9 denotes an opening provided in the chamber 8 corresponding to the molten liquid surface outside the partition member 11, and this opening 9 is filled with granular or lumpy silicon raw material (hereinafter referred to as granular silicon raw material).
A supply device (14) is inserted and fixed, and the tip of the supply device (4) is closely opposed to the surface of the molten liquid on the outside of the partition member 11. This supply device 14 is connected to a raw material supply chamber (not shown) provided outside the chamber 8,
Continuously supplies granular silicon raw material.
15、18はチャンバー8の上部に配置された例えば放
射温度計のごとき温度検出器で、一方の温度検出器■5
は仕切り部材11の外側の溶融液面の、他方の温度検出
器16は内側の溶融液面の温度をそれぞれ測定する。15 and 18 are temperature detectors such as radiation thermometers placed at the upper part of the chamber 8, one of which is temperature detector 5.
The temperature detector 16 measures the temperature of the molten liquid surface on the outside of the partition member 11, and the other temperature sensor 16 measures the temperature of the molten liquid surface on the inside.
本実施例においては、円柱状のシリコン単結晶5を引上
げている間、供給装置14から仕切り部材11の外側の
溶融液面上に粒状シリコン原料17が連続的に供給され
、この粒状シリコン原料17は仕切り部材11の外側の
溶融液によって溶解され、引上げられるシリコン単結晶
5に見合う量だけ仕切り部材11の微小小孔12を通っ
て内側に静かに移動し、溶融液4の液面レベルを常に一
定に保持する。In this embodiment, while the cylindrical silicon single crystal 5 is being pulled, the granular silicon raw material 17 is continuously supplied from the supply device 14 onto the molten liquid surface outside the partition member 11. is melted by the melt on the outside of the partition member 11, and gently moves inward through the micropores 12 of the partition member 11 in an amount corresponding to the silicon single crystal 5 being pulled up, thereby keeping the liquid level of the melt 4 constant. Hold constant.
[発明の効果]
以上の説明から明らかなように、本発明は別体に構成し
た仕切り部材をるつぼに熱溶着させることにより仕切り
部材の浮遊を防止し、内側と外側とを確実に仕切るよう
にしたので、るつぼのコストを低減することができ、さ
らに、これにより製品の歩留りを向上しコストダウンを
達成できる等、実施による効果大である。[Effects of the Invention] As is clear from the above description, the present invention prevents floating of the partition member by thermally welding the separate partition member to the crucible, thereby reliably partitioning the inside and outside. Therefore, the cost of the crucible can be reduced, and furthermore, the yield of the product can be improved and the cost can be reduced, so the implementation has great effects.
第1図は本発明実施例を模式的に示した縦断面図、第2
図はそのI−I断面図、第3図は仕切り部材の実施例の
側面図、第4図(a)〜(c)は仕切り部材の配役手順
の一例を示す説明図、第5図は本発明の他の実施例を模
式的に示した縦断面図、第6図(a)〜(e)は従来の
二重構造のるつぼの一例を示す説明図である。
1:るつぼ、2:黒鉛るつぼ、4:溶融液、5:シリコ
ン単結晶、6:ヒータ、11:仕切り部材、12:小孔
、14:原料供給装置、17:粒状シリコン原料。Fig. 1 is a vertical sectional view schematically showing an embodiment of the present invention, Fig. 2
The figure is a sectional view taken along line II, FIG. 3 is a side view of an embodiment of the partition member, FIGS. FIGS. 6(a) to 6(e), which are vertical sectional views schematically showing other embodiments of the invention, are explanatory diagrams showing an example of a conventional double-structured crucible. 1: crucible, 2: graphite crucible, 4: melt, 5: silicon single crystal, 6: heater, 11: partition member, 12: small hole, 14: raw material supply device, 17: granular silicon raw material.
Claims (4)
げられるシリコン単結晶を囲みかつ前記シリコン溶融液
が静かに移動しうるように小孔が貫通された仕切り部材
で仕切り、該仕切り部材の内側から単結晶を引き上げて
シリコン単結晶を製造する方法において、 前記るつぼ内に仕切り部材をその下端部が該るつぼに接
するように配置して前記るつぼ内にシリコン原料を装入
し、該シリコン原料を加熱溶解すると共に前記仕切り部
材の下端部とるつぼとを溶着させることを特徴とするシ
リコン単結晶の製造方法。(1) The inside of the crucible into which the silicon melt is placed is partitioned with a partition member that surrounds the silicon single crystal to be pulled and has small holes penetrated so that the silicon melt can move quietly, and from the inside of the partition member. In the method of producing a silicon single crystal by pulling a single crystal, a partition member is placed in the crucible so that its lower end is in contact with the crucible, a silicon raw material is charged into the crucible, and the silicon raw material is heated. A method for producing a silicon single crystal, comprising melting and welding a lower end of the partition member to a crucible.
料を連続的に供給しながらその内側からシリコン単結晶
を引上げることを特徴とする請求項(1)記載のシリコ
ン単結晶の製造方法。(2) The method for producing a silicon single crystal according to claim (1), characterized in that the silicon single crystal is pulled from the inside of the partition member while continuously supplying granular silicon raw material to the melt outside the partition member.
げられるシリコン単結晶を囲みかつ前記シリコン溶融液
が静かに移動しうるように小孔が貫通された仕切り部材
で仕切り、該仕切り部材の内側から単結晶を引き上げて
シリコン単結晶を製造する装置において、 前記仕切り部材の下端部を熱溶着により一体化したるつ
ぼを備えたことを特徴とするシリコン単結晶の製造装置
。(3) The inside of the crucible into which the silicon melt is placed is partitioned with a partition member that surrounds the silicon single crystal to be pulled and has small holes penetrated so that the silicon melt can move quietly, and from the inside of the partition member. An apparatus for producing a silicon single crystal by pulling a single crystal, comprising: a crucible in which the lower end of the partition member is integrated by thermal welding.
シリコン原料の供給装置を設けたことを特徴とする請求
項(3)記載のシリコン単結晶の製造装置。(4) The apparatus for producing a silicon single crystal according to claim (3), further comprising a supply device for supplying granular silicon raw material close to the molten liquid surface outside the partition member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31294288A JPH02160688A (en) | 1988-12-13 | 1988-12-13 | Production of silicon single crystal and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31294288A JPH02160688A (en) | 1988-12-13 | 1988-12-13 | Production of silicon single crystal and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02160688A true JPH02160688A (en) | 1990-06-20 |
Family
ID=18035331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31294288A Pending JPH02160688A (en) | 1988-12-13 | 1988-12-13 | Production of silicon single crystal and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02160688A (en) |
-
1988
- 1988-12-13 JP JP31294288A patent/JPH02160688A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930001895B1 (en) | Method and equipment for manufacturing silicon single crystal | |
KR930003044B1 (en) | Method and apparatus for manufacturing silicon single crystal | |
JPH02133389A (en) | Production device of silicon single crystal | |
US4894206A (en) | Crystal pulling apparatus | |
US9822466B2 (en) | Crystal growing systems and crucibles for enhancing heat transfer to a melt | |
JP2755588B2 (en) | Crystal pulling method | |
US5143704A (en) | Apparatus for manufacturing silicon single crystals | |
JPH0825836B2 (en) | Silicon single crystal manufacturing equipment | |
KR100204522B1 (en) | Process and apparatus for growing single crystals | |
JPH035392A (en) | Production device of silicon single crystal | |
US5284631A (en) | Crucible for manufacturing single crystals | |
JPH04154687A (en) | Apparatus for producing semiconductor single crystal | |
JPH02160688A (en) | Production of silicon single crystal and apparatus therefor | |
JPH01317189A (en) | Production of single crystal of silicon and device therefor | |
JPH0259494A (en) | Production of silicon single crystal and apparatus | |
JPS6236096A (en) | Production of single crystal and device therefor | |
JPH01286994A (en) | Production of silicon single crystal and apparatus therefor | |
JPH01317188A (en) | Production of single crystal of semiconductor and device therefor | |
JPH0316989A (en) | Production device of silicon single crystal | |
JPH07110798B2 (en) | Single crystal manufacturing equipment | |
JPH02172885A (en) | Production of silicon single crystal | |
JPH01294588A (en) | Production of silicon single crystal and unit therefor | |
JPH01275495A (en) | Production of silicon single crystal and device therefor | |
JPH0825832B2 (en) | Crucible for single crystal production | |
JPH09208360A (en) | Growth of single crystal |