JPH02160678A - Production of porous ceramic structure - Google Patents

Production of porous ceramic structure

Info

Publication number
JPH02160678A
JPH02160678A JP31700688A JP31700688A JPH02160678A JP H02160678 A JPH02160678 A JP H02160678A JP 31700688 A JP31700688 A JP 31700688A JP 31700688 A JP31700688 A JP 31700688A JP H02160678 A JPH02160678 A JP H02160678A
Authority
JP
Japan
Prior art keywords
ceramic
slurry
precursor
sol
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31700688A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamamoto
敏博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK filed Critical Inoue MTP KK
Priority to JP31700688A priority Critical patent/JPH02160678A/en
Publication of JPH02160678A publication Critical patent/JPH02160678A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-purity porous ceramic structure in high yield in production of the porous ceramic structure by the method of attaching a ceramic slurry to a base material comprising a resin structure to be consumed by fire, by adding a colloidal ceramic precursor to the slurry. CONSTITUTION:A base material comprising a resin structure such as urethane foam is prepared. On the other hand, a ceramic raw material such as alumina is mixed with a solvent such as water, a binder of organic polymer and a surfactant and further blended with a ceramic precursor in a sol state to be characterized by ultrafine ceramic particles or inorganic polymer to give a ceramic slurry. The slurry is impregnated to the surface of the base material, stuck, dried and calcined. In the operation, the precursor is gelatinized by treatment such as drying to show dry strength, polycondensation takes place between sol gelatinized at the initial age of calcination, bonding between the ceramic raw material and the gel or bonding between the gels occurs to secure strength. Consequently, a high-purity product is obtained without reduction in yield caused by collapse of ceramic part.

Description

【発明の詳細な説明】 (従来の技術) 従来、ウレタンフオーム等の三次元構造の骨格を有した
有機物発泡体、及び有機物繊維からなる織物または不織
布による、二次元または三次元の有機物構造体の表面に
セラミックスラリ−を含浸して、付着させ、乾燥、焼成
することで二次元または三次元の網状構造を持つ多孔セ
ラミック構造体を製造する方法は公知である。
DETAILED DESCRIPTION OF THE INVENTION (Prior Art) Conventionally, two-dimensional or three-dimensional organic structures have been produced using organic foams having a three-dimensional skeleton, such as urethane foam, and woven or nonwoven fabrics made of organic fibers. A method of manufacturing a porous ceramic structure having a two-dimensional or three-dimensional network structure by impregnating and adhering a ceramic slurry to the surface, drying, and firing is known.

(発明が解決しようとする課運) 高純度の多孔セラミック体を得ようとする場合、上記従
来法では、セラミック原料に、水などの溶媒と、セラミ
ック固着及び形状保持のためのバインダーとして有機高
分子と、成形性向上のための各種界面活性剤を添加して
得られるセラミックスラリ−を上記有機物構造体表面に
付着させて、これを乾燥、焼成することにより行われて
いる。乾燥及び焼成初期の段階では、セラミック部分は
溶媒が揮発するため収縮の傾向にあるのに対し、骨格の
有機構造物は熱膨張及び熱分解によるガスの発生のなめ
、セラミック表面には引っ張り応力が生じており、セラ
ミック構造体はクラックが発生しやすい状態におかれて
いる。このため、付着の不均一性から生ずる骨格の脆弱
な部分から崩壊しやすく、製品の収率が十分得られない
(Issues to be Solved by the Invention) When attempting to obtain a high-purity porous ceramic body, in the above conventional method, a solvent such as water is added to the ceramic raw material, and an organic polymer is added as a binder to fix the ceramic and maintain its shape. This is carried out by attaching a ceramic slurry obtained by adding molecules and various surfactants for improving moldability to the surface of the organic structure, and drying and firing the slurry. In the early stages of drying and firing, the ceramic part tends to shrink due to the volatilization of the solvent, while the organic structure of the skeleton experiences thermal expansion and gas generation due to thermal decomposition, causing tensile stress on the ceramic surface. As a result, the ceramic structure is placed in a state where cracks are likely to occur. For this reason, the weak parts of the skeleton resulting from non-uniform adhesion tend to collapse, making it difficult to obtain a sufficient product yield.

収率を向上させようとするために、粘度鉱物やリン酸ア
ルミニウム等の無機バインダーの添加により乾燥強度を
向上させ、かつ焼成段階での強度を確保して多孔セラミ
ック構造体を製造することが行われているが、セラミッ
ク原料のみで製造した場合に比べ、純度が低下するため
、得られる多孔セラミック構造体は耐熱性、耐食性の点
で劣っている。
In order to improve the yield, porous ceramic structures have been manufactured by increasing the dry strength by adding clay minerals and inorganic binders such as aluminum phosphate, and by ensuring strength during the firing stage. However, since the purity is lower than that produced using only ceramic raw materials, the resulting porous ceramic structure is inferior in terms of heat resistance and corrosion resistance.

(課題を解決するための手段) 本発明は、セラミックスラリ−中にコロイド状のセラミ
ック前駆体を含有せしめ、本コロイド粒子が、ゾル−ゲ
ル反応を起こすことを利用して、乾燥から焼成初期段階
における構造体の強度を向上させ、高純度の多孔セラミ
ック構造体を高収率で得る方法を示したものである。
(Means for Solving the Problems) The present invention contains a colloidal ceramic precursor in a ceramic slurry, and takes advantage of the fact that the colloidal particles cause a sol-gel reaction to form a ceramic slurry from drying to the initial stage of firing. This paper shows a method for improving the strength of a structure in which a high-purity porous ceramic structure can be obtained in high yield.

本発明において、樹脂構造物よりなる基体は、ウレタン
フオーム等の三次元網状構造を有する連通形の有機発泡
体で構成されていてもよいし、ナイロン繊維等の合成繊
維を二次元状あるいは三次元状に織りあげたもので構成
されていてもよい。
In the present invention, the base made of a resin structure may be composed of a continuous organic foam having a three-dimensional network structure such as urethane foam, or may be composed of a two-dimensional or three-dimensional synthetic fiber such as nylon fiber. It may be composed of a material woven into a shape.

本発明において、上記コロイド状セラミック前駆体とし
ては製造したいセラミックの組成に応じて必要なものを
用いることができる。すなわち、酸化物系セラミックス
に対しては、シリカゾル、アルミナゾル、ジルコニアゾ
ル、チタニアゾル、酸化鉄ゾル、酸化スズゾル等の酸化
物ゾルまたはそれらの混合物が使用でき、非酸化物系セ
ラミックスに対しては、ボリシラゼン、ポリカルボシラ
ン、ポリボラゼン等の無機高分子が使用できる。
In the present invention, any necessary colloidal ceramic precursor can be used depending on the composition of the ceramic to be manufactured. That is, for oxide ceramics, oxide sols such as silica sol, alumina sol, zirconia sol, titania sol, iron oxide sol, and tin oxide sol, or mixtures thereof can be used, and for non-oxide ceramics, polysilazane Inorganic polymers such as , polycarbosilane, and polyborazene can be used.

(作用) 本発明は、セラミックスラリ−に微小セラミック粒子も
しくは無機高分子であることにより特徴づけられるゾル
状のセラミック前駆体を添加し、これを乾燥等の処理に
よりゲル化して乾燥強度を発生させてバインダーとして
の機能をもたせ、なおかつ、焼成初期には、ゲル化した
ゾル間に縮重合が起こりセラミック原料とゲル間または
ゲル同士の間に結合が形成されることにより構造体の強
度低下を抑制する現象を利用したものである。さらに、
添加したゲルは焼成時の強度繊維の役割を果たすだけで
なく、比表面積が大きく反応性に富むため、セラミック
の焼結温度を低下せしめる、高純度焼結助剤の効果も有
する。
(Function) The present invention adds a sol-like ceramic precursor characterized by fine ceramic particles or inorganic polymers to a ceramic slurry, and gels it by drying or other processing to generate dry strength. In addition, in the early stage of firing, condensation polymerization occurs between the gelled sol and bonds are formed between the ceramic raw material and the gel or between the gels, thereby suppressing the decrease in strength of the structure. This method takes advantage of the phenomenon of moreover,
The added gel not only plays the role of strength fiber during firing, but also has the effect of a high-purity sintering aid that lowers the sintering temperature of the ceramic because it has a large specific surface area and is highly reactive.

(実施例) 以下に、本発明に基づ〈実施例と比較例を示す。(Example) Examples and comparative examples based on the present invention are shown below.

本発明はその要旨を越えない限り、以下の実施例に限定
されるものではない。
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例の配合として酸化アルミニウム粉(昭和電工製:
純度99.7%;平均粒径2μm)100重量部に対し
て、コロイド状のセラミック前駆体として、シリカゾル
(日産化学製;20%水溶液)25部、解膠剤(中京油
脂製;ポリカルボン酸アンモニウム塩:不揮発分50%
)2部、消泡剤(第−工業製薬製;鉱物油)0.5部を
加えてセラミックスラリ−を調整する。比較例1として
酸化アルミニウム粉100部に対して、水30部、有機
バインダー(PVA)5部、解膠剤2部、消泡剤0.5
部を加えて酸化物ゾルを含まないセラミックスラリ−を
調整する。比較例2として酸化アルミニウム粉100部
に対して、リン酸アルミニウム(多本化学製;30%水
溶液)45部を加えて成形性に優れたセラミックスラリ
−を調整する。3種のスラリーの粘度は同程度である。
Aluminum oxide powder (manufactured by Showa Denko:
Purity 99.7%; average particle size 2 μm) 25 parts silica sol (Nissan Chemical Co., Ltd.; 20% aqueous solution) as a colloidal ceramic precursor, peptizer (Chukyo Yushi Co., Ltd.; polycarboxylic acid) Ammonium salt: non-volatile content 50%
) and 0.5 parts of an antifoaming agent (manufactured by Dai-Kogyo Seiyaku; mineral oil) to prepare a ceramic slurry. Comparative Example 1: 100 parts of aluminum oxide powder, 30 parts of water, 5 parts of organic binder (PVA), 2 parts of deflocculant, and 0.5 parts of antifoaming agent.
% to prepare a ceramic slurry free of oxide sol. As Comparative Example 2, 45 parts of aluminum phosphate (manufactured by Tamoto Chemical; 30% aqueous solution) was added to 100 parts of aluminum oxide powder to prepare a ceramic slurry with excellent moldability. The viscosities of the three slurries are comparable.

次にこれらのスラリーを三次元網状構造有機物として大
きさ5QX50X10mセル密度8個/、インチの完全
連通タイプの軟質ウレタンフオームに含浸し、所望の付
着量になるようにスラリー付着量を調整した後、乾燥機
により約100℃で十分乾燥する。得られた構造体を昇
温速度200℃/ h r、保持温度1500℃、保持
時間2時間で焼成した。それぞれ10個のサンプルのう
ち、実施例の組成の焼結体は、リン酸アルミニウムを含
む比較例2と同様に10個ともクラックを生じることな
く得られたが、ゾルを含まない比較例1は、部分的に崩
壊していたり、クラックを発生していたりして完全な多
孔セラミック構造体は3個得られただけであった。
Next, these slurries were impregnated as a three-dimensional network structure organic material into a fully open type soft urethane foam with a cell density of 8 cells/inch in size of 5Q x 50 x 10 m, and the amount of slurry attached was adjusted to the desired amount. Dry thoroughly at approximately 100°C using a dryer. The obtained structure was fired at a heating rate of 200°C/hr, a holding temperature of 1500°C, and a holding time of 2 hours. Among the 10 samples, all 10 sintered bodies having the composition of Example were obtained without any cracks as in Comparative Example 2 containing aluminum phosphate, but Comparative Example 1 without sol was obtained. However, only three complete porous ceramic structures were obtained, some of which were partially collapsed or cracked.

また、これらのスラリーを板状に湿式成形し、保持温度
1400〜1550℃で焼成してかさ密度を測定しなと
ころ、実施例の組成の焼結体は1500℃でかさ密度の
増大はほぼ飽和し、ゾルの添加により50℃以上の焼結
助剤としての効果が現れたことがわかった。JIS−R
1601に従い曲げ強さ試験を行ったところ、ゾルを含
まない比較例1は平均強度150MPa、リン酸アルミ
ニウムを含む比較例2は20MPa前後であるのに対し
、実施例は230 M P aを示し、本発明は強度向
上にも有効であることがわかった。
In addition, when these slurries were wet-formed into a plate shape, fired at a holding temperature of 1400 to 1550°C, and the bulk density was measured, it was found that the increase in bulk density of the sintered body with the composition of the example was almost saturated at 1500°C. It was found that the addition of sol was effective as a sintering aid at temperatures of 50°C or higher. JIS-R
When a bending strength test was conducted in accordance with 1601, Comparative Example 1, which did not contain sol, had an average strength of 150 MPa, Comparative Example 2, which contained aluminum phosphate, had an average strength of around 20 MPa, whereas the Example showed an average strength of 230 MPa, It has been found that the present invention is also effective in improving strength.

(発明の効果) 以上詳述したごとく、本発明方法により、乾燥、焼成の
段階でのセラミック部分の崩壊による収率の低下を起こ
すことなく、またセラミック前駆体を含まない従来法に
比べより低い焼成温度で、高純度な多孔セラミック構造
体が得られる。
(Effects of the Invention) As detailed above, the method of the present invention does not cause a decrease in yield due to the collapse of the ceramic part during the drying and firing stages, and is lower than the conventional method that does not include a ceramic precursor. At the firing temperature, a highly pure porous ceramic structure is obtained.

Claims (1)

【特許請求の範囲】[Claims] 焼成により焼失する樹脂構造物よりなる基体にセラミッ
クスラリーを付着させ、乾燥、焼成により、多孔セラミ
ック構造体を製造する方法において、前記セラミックス
ラリー中にコロイド状のセラミック前駆体を含有せしめ
たことを特徴とする多孔セラミック構造体の製造方法。
A method of manufacturing a porous ceramic structure by adhering a ceramic slurry to a base made of a resin structure that is burnt out by firing, drying and firing, characterized in that a colloidal ceramic precursor is contained in the ceramic slurry. A method for manufacturing a porous ceramic structure.
JP31700688A 1988-12-15 1988-12-15 Production of porous ceramic structure Pending JPH02160678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31700688A JPH02160678A (en) 1988-12-15 1988-12-15 Production of porous ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31700688A JPH02160678A (en) 1988-12-15 1988-12-15 Production of porous ceramic structure

Publications (1)

Publication Number Publication Date
JPH02160678A true JPH02160678A (en) 1990-06-20

Family

ID=18083360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31700688A Pending JPH02160678A (en) 1988-12-15 1988-12-15 Production of porous ceramic structure

Country Status (1)

Country Link
JP (1) JPH02160678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444360B1 (en) * 2001-10-26 2004-08-16 한국과학기술연구원 A Ceramic Article Having Interconnected Pores and Method of Making the Same
CN113601678A (en) * 2021-08-12 2021-11-05 江西全兴化工填料有限公司 Ceramic filler forming equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444360B1 (en) * 2001-10-26 2004-08-16 한국과학기술연구원 A Ceramic Article Having Interconnected Pores and Method of Making the Same
CN113601678A (en) * 2021-08-12 2021-11-05 江西全兴化工填料有限公司 Ceramic filler forming equipment
CN113601678B (en) * 2021-08-12 2023-05-12 江西全兴化工填料有限公司 Ceramic filler forming equipment

Similar Documents

Publication Publication Date Title
US3108888A (en) Colloidal, anisodiametric transition aluminas and processes for making them
US3041190A (en) Compositions and processes for making foamed alumina refractory products, and articles so produced
CA2048502A1 (en) Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
CN109020628A (en) A kind of SiC nanowire enhancing porous ceramic composite and preparation method thereof
WO2006016730A1 (en) Porous ceramic heating element and method of manufacturing thereof
US4963515A (en) Lightweight hydrogel-bound aggregate shapes and process for producing same
JPH0388762A (en) Production of mullite-cordierite combined ceramics
CN101456747B (en) Non-settling refractory mortar
JPH02160678A (en) Production of porous ceramic structure
KR101118607B1 (en) Silicon carbide ceramic compositions added strontium carbonate for high temperature filtration filters and preparing method of high temperature filtration filters using the same
JPS6410469B2 (en)
US5874374A (en) Method for producing engineered materials from salt/polymer aqueous solutions
JP3081354B2 (en) Heat resistant fiber composition
JPH06256069A (en) Ceramic porous material and its production
CN109516831A (en) A kind of preparation method of aluminum oxide porous material
JPH024554B2 (en)
KR100189171B1 (en) Method for manufacturing wall paper using yellow soil and silica
JPH0254301B2 (en)
JPS60241917A (en) Purifying body of exhaust gas
JPH0794347B2 (en) Insulation
KR910002579B1 (en) Alumina porous body and production of the same
JPH06247778A (en) Lightweight ceramic compact with obliquely oriented pore and its production
JP2959402B2 (en) High strength porcelain
CA2246870C (en) Method for producing engineered materials from salt/polymer aqueous solutions
WO2023079860A1 (en) Heat-resistant plate member and structure