JPS60241917A - Purifying body of exhaust gas - Google Patents

Purifying body of exhaust gas

Info

Publication number
JPS60241917A
JPS60241917A JP59096598A JP9659884A JPS60241917A JP S60241917 A JPS60241917 A JP S60241917A JP 59096598 A JP59096598 A JP 59096598A JP 9659884 A JP9659884 A JP 9659884A JP S60241917 A JPS60241917 A JP S60241917A
Authority
JP
Japan
Prior art keywords
ceramic
cordierite
exhaust gas
parts
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59096598A
Other languages
Japanese (ja)
Inventor
Fumio Odaka
文雄 小高
Hirotaka Yamazaki
博貴 山崎
Keisuke Yamamoto
山本 慧介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59096598A priority Critical patent/JPS60241917A/en
Publication of JPS60241917A publication Critical patent/JPS60241917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce pressure drop by mixing 5-25wt% ceramic having m.p. higher than that of cordierite into cordierite. CONSTITUTION:A porous ceramic body of three-dimensional structure is prepared by adding 5-25pts.wt. ceramic such as aluminum titanate, mullite, zircon, and silicon carbide having higher m.p. than cordierite and having 0-5X10<-6> (1/ deg.C) thermal expansion coefficient at 20-1,000 deg.C to 95-75pts.wt. cordierite. The purifying body is manufactured by adding a binder such as polyvinyl alcohol and CMC, a deflocculant such as sodium silicate, and water to said ceramic mixture to obtain a low-viscosity slurry, depositing the slurry on a foamed organic substance, and calcining the obtained material at 1,250-1,400 deg.C.

Description

【発明の詳細な説明】 本発明はコーディエライトおよびコーディエライトより
高融点でかつ20℃〜1000℃での熱6 膨張係数が5XlO(1/”O)以下のセラミックをセ
ラミック成分として用いた三次元網状骨格構造のセラミ
ック多孔体からなる排ガス浄化体に関するものである。
Detailed Description of the Invention The present invention uses cordierite and a ceramic having a higher melting point than cordierite and a thermal expansion coefficient of 5XlO (1/''O) or less at 20°C to 1000°C as a ceramic component. The present invention relates to an exhaust gas purifying body made of a ceramic porous body having a three-dimensional network skeleton structure.

一般にコープイエライl−(2MgO・2A1203・
5SiO2)は熱膨張係数が小さく、急激な温度変化を
与えた時の熱衝撃に対し優れた抵抗性を有するため、温
度が大きく変動する産業用用途に対し有用性が高い0例
えば自動車排ガス浄化体などのように、使用条件での温
度範囲がおよそ一り0℃〜1000℃程度と広く、 し
かも温度の変化の速度が大きい用途にはコーディエライ
ト材質は適しているといえる。
Generally, Coop Yerai l-(2MgO・2A1203・
5SiO2) has a small coefficient of thermal expansion and excellent resistance to thermal shock when a sudden temperature change is applied, making it highly useful for industrial applications where the temperature fluctuates widely.For example, it is used in automobile exhaust gas purifiers. As shown in the above, cordierite material is suitable for applications where the temperature range under usage conditions is wide, approximately 0°C to 1000°C, and the rate of temperature change is large.

しかしながら、コーディエライトは一般に組織が緻密で
高強度の磁器をうるための好ましい焼成温度範囲は大き
くても30°C以内、好ましくは20°C以内に制限さ
れる。好ましい焼成温度範囲より低温側では焼結が進ま
ず、得られる製品強度は実用上不満足であり、より高温
側では急激に焼結がすすむが、焼結に伴なう収縮および
軟化による変形がおこるため所望の寸法精度を達成する
のが困難である。三次元網状骨格構造のセラミック多孔
体を製造する場合には骨格が細いため特に焼結に伴なう
収縮および軟化による変形が顕著である。従ってコーデ
ィエライト質の三次元網状骨格構造のセラミック多孔体
の焼成にあたっては適正な極めて狭い温度範囲に温度を
コントロールする必要があり製造技術的に困難性が大き
い。
However, cordierite generally has a dense structure and the preferred firing temperature range for obtaining high-strength porcelain is limited to at most 30°C, preferably within 20°C. Sintering does not proceed at lower temperatures than the preferred firing temperature range, and the resulting product strength is unsatisfactory for practical purposes; at higher temperatures, sintering progresses rapidly, but deformation occurs due to shrinkage and softening associated with sintering. Therefore, it is difficult to achieve the desired dimensional accuracy. When producing a ceramic porous body with a three-dimensional network skeleton structure, the skeleton is thin, so deformation due to shrinkage and softening accompanying sintering is particularly noticeable. Therefore, when firing a ceramic porous body having a three-dimensional network skeleton structure made of cordierite, it is necessary to control the temperature within an appropriate and extremely narrow temperature range, which is very difficult in terms of manufacturing technology.

一方、排ガス浄化体、特に自動車の排ガス浄化体の場合
は圧力損失が出来るだけ低いことが重要であり、圧力損
失が大きいことはエンジンに負担を与えるだけでなく燃
料の経済性を悪化させる。
On the other hand, in the case of an exhaust gas purifying body, especially an exhaust gas purifying body for automobiles, it is important that the pressure loss is as low as possible, and a large pressure loss not only puts a burden on the engine but also deteriorates fuel economy.

ところがコーディエライトを原料として、三次元網状構
造の合成樹脂発泡体をコーディエライト泥漿に浸漬して
引き上げ乾燥し、焼成してえた三次元網状骨格構造を有
するセラミック多孔体は圧力損失が大きくセラミック多
孔体内部に流体を通過させる排ガス浄化体などの用途で
は圧力損失として不満なレベルにとどまる。
However, a ceramic porous body with a three-dimensional network skeleton structure obtained by using cordierite as a raw material and immersing a three-dimensional network structure synthetic resin foam in cordierite slurry, pulling it up, drying it, and firing it has a large pressure loss and is not suitable for ceramics. In applications such as exhaust gas purifiers in which fluid is passed through a porous body, the pressure loss remains at an unsatisfactory level.

以上のとおりコーディエライトは良好な耐熱衝撃性を有
するが、特に三次元網状構造の合成樹脂発泡体をコーデ
ィエライト泥漿に浸漬して引き−1;げ乾燥し焼成して
三次元網状骨格構造を有するセラミック多孔体を作成す
る場合には、好適な焼成温度範囲が特に狭く、より高温
では軟化変形しやすいこと、また圧力損失が比較的大き
いことを改良する必要があった。
As mentioned above, cordierite has good thermal shock resistance.In particular, a synthetic resin foam with a three-dimensional network structure is immersed in cordierite slurry, dried, and fired to form a three-dimensional network skeleton. When creating a ceramic porous body having a sintered body, it was necessary to improve the fact that the suitable firing temperature range is particularly narrow, that it is susceptible to softening and deformation at higher temperatures, and that the pressure loss is relatively large.

本発明者らは種々研究を行なった結果1本発明に到達し
た。すなわち、コーディエライトより高い融点をもち、
かつ20℃〜1000℃での熱膨張係数6 が0〜5X10 (1/’O)のセラミックをコーディ
エライト85〜75重量部に対し、5〜25重量部加え
全体で100重量部となしたセラミック粉末にバインダ
ーなどの副原料を加えて調製したセラミック泥漿に合成
樹脂発泡体を浸漬したのち引き上げ、余剰スラリーを遠
心分離により除去したのち乾燥し、成形し焼成する通常
の製造方法により、容易に三次元網状骨格構造のセラミ
ック多孔体から成る寸法精度と圧力損失が改良された排
ガス浄化体をうることが出来たものである。
The inventors of the present invention have conducted various studies and have arrived at the present invention. In other words, it has a higher melting point than cordierite,
And 5 to 25 parts by weight of ceramic having a thermal expansion coefficient 6 of 0 to 5X10 (1/'O) at 20°C to 1000°C was added to 85 to 75 parts by weight of cordierite for a total of 100 parts by weight. A synthetic resin foam is immersed in a ceramic slurry prepared by adding auxiliary materials such as a binder to ceramic powder, then pulled up, the excess slurry is removed by centrifugation, dried, molded, and fired. It has been possible to obtain an exhaust gas purifying body which is made of a ceramic porous body with a three-dimensional network skeleton structure and has improved dimensional accuracy and pressure loss.

本発明では前記のコーディエライトより高い融点をもち
、かつ20℃〜1000°Cでの熱膨張係数がO6 〜5X10 (1/”O)のセラミック原料を5〜25
部配合することにより、コーディエライト単独の場合よ
りも、収縮、変形を抑えながらより高温度までの焼成を
可能となし実用的な焼成温度範囲を拡大して、より安定
した寸法精度をえると同時により密な焼結を可能となし
機械的強度を向上したことにより工業的な規模での品質
の安定した製造の可能性を見出した。
In the present invention, a ceramic raw material having a melting point higher than that of cordierite and a thermal expansion coefficient of O6 to 5X10 (1/''O) at 20°C to 1000°C is used.
By blending these parts together, it is possible to fire at higher temperatures while suppressing shrinkage and deformation than when using cordierite alone, expanding the practical firing temperature range and achieving more stable dimensional accuracy. At the same time, by enabling denser sintering and improving mechanical strength, we discovered the possibility of manufacturing with stable quality on an industrial scale.

一方コーディエライト粉末にバインダーなどの副原ネ4
を加えて調製したセラミック泥漿を用い、従来の製造方
法により製造してえた三次元網状構造のセラミック多孔
体は圧力損失が大きい、その理由はコーディエライト泥
漿がチクソトロピー性が顕著であるため余剰泥漿除去が
不完全となり、三次元網状構造の連通ずる空間部に泥漿
が残りやすい結果、製品の圧力損失を極めて不良にする
ものと考えられる。
On the other hand, accessory raw materials such as binder to cordierite powder 4
Ceramic porous bodies with a three-dimensional network structure manufactured by conventional manufacturing methods using ceramic slurry prepared by adding It is thought that the removal is incomplete and the slurry tends to remain in the communicating spaces of the three-dimensional network structure, resulting in extremely poor pressure loss in the product.

したがって、泥漿のチクソトロピー性を低減するために
、水ガラス、炭酸ソーダ、ビロリン酸ソーダなどの解膠
剤を添加するが改良効果はみられるもののなお製品の圧
力損失は満足出来るレベルではない。
Therefore, in order to reduce the thixotropic properties of the slurry, deflocculants such as water glass, soda carbonate, and sodium birophosphate are added, but although an improvement effect is seen, the pressure loss of the product is still not at a satisfactory level.

しかし乍ら、前記のコーディエライトより高い融点をも
ち、かつ20℃〜1000℃での熱膨張6 係数が0〜5X10 (1/”O)のセラミックをコー
ディエライト95〜75重量部に対し5〜25重量部添
加することにより、スラリーのチクソトロピー性が低減
出来、製品の圧力損失を大きく改良出来ることが判った
。圧力損失が大きく改良されるのは、三次元網状骨格構
造のセラミック多孔体の連通空間部へのセラミックの目
詰りが少ないことによるものと考えられるが、詳細な機
構については明らかではない。
However, a ceramic having a melting point higher than that of the above-mentioned cordierite and having a thermal expansion coefficient of 0 to 5X10 (1/''O) at 20°C to 1000°C is used for 95 to 75 parts by weight of cordierite. It was found that by adding 5 to 25 parts by weight, the thixotropy of the slurry can be reduced and the pressure loss of the product can be greatly improved.The pressure loss is greatly improved by the porous ceramic material with a three-dimensional network skeleton structure. This is thought to be due to less clogging of the communication space with ceramics, but the detailed mechanism is not clear.

いずれにせよ、上述のとおりコーディエライトより高い
融点をもち、かつ20℃〜1000℃で6 の熱膨張係数がO〜5XIO(+/℃)のセラミックを
5〜25重量部、コーディエライトな95〜75重量部
の複合材料系にすることによりコーディエライト単独材
料系の場合にくらべ明らかに圧力損失を低減出来る効果
があることを見出した。
In any case, as mentioned above, 5 to 25 parts by weight of a ceramic having a melting point higher than that of cordierite and a coefficient of thermal expansion of 0 to 5XIO (+/℃) at 20 to 1000 degrees Celsius, It has been found that by using a composite material system containing 95 to 75 parts by weight, pressure loss can be clearly reduced compared to the case where cordierite is used as a single material.

ここでコーディエライトより高い融点をもち、カッ、2
0°(3−1000℃テノ熱膨張係数がo〜6 5X10 (1/’C)のセラミックとしては、チタン
酸アルミニウム、ムライト、ジルコン及び炭化ケイ素が
好ましく、1種又は2種以上混合して用いられる。 な
お20℃〜1000”Oでの熱膨張係数が0〜5X10
 (1/”Cりのセラミックをコーチイエライト95〜
75重量部に対し5〜25重量部添加して作成した三次
元網状構造のセラミック多孔体の熱膨張係数はコーディ
エライト6 単独材質の場合の2.0X10 (1/”O)に比較し
てやや大きくなるものもあるが最大のものでも6 3.5XIO(1/’O)程度にすぎず、実際に耐熱衝
撃性試験でも、コーディエライト単独材質の場合と殆ど
同等の耐熱衝撃性が保持されることが判った。
Here, it has a higher melting point than cordierite,
As the ceramic having a thermal expansion coefficient of 0° (3-1000°C) of o to 6 5X10 (1/'C), aluminum titanate, mullite, zircon, and silicon carbide are preferable, and one type or a mixture of two or more types can be used. The coefficient of thermal expansion at 20°C to 1000"O is 0 to 5X10.
(1/”C ceramic coach Yelite 95 ~
The coefficient of thermal expansion of the ceramic porous body with a three-dimensional network structure created by adding 5 to 25 parts by weight to 75 parts by weight is slightly lower than that of 2.0×10 (1/”O) for cordierite 6 alone. Although there are some cases where the size increases, the maximum size is only about 63.5XIO (1/'O), and in actual thermal shock resistance tests, it maintains almost the same thermal shock resistance as cordierite alone. It turns out that

ここでコーディエライトより高い融点を有し、6 かつ熱膨張係数がθ〜5X10 (+/”O)の前記セ
ラミックの好適な添加量はコープイエライ]・95〜7
5重量部に対しそれぞれ5〜25重量部である。
Here, a suitable addition amount of the ceramic having a melting point higher than that of cordierite and a coefficient of thermal expansion of θ~5×10 (+/”O) is 95~7
5 parts by weight and 5 to 25 parts by weight, respectively.

すなわち、添加量が5重量部未満の場合では、前記の添
加効果が顕著ではなく、また添加量が25重量部をこえ
ると工業炉の経済性から1250℃〜1400℃の好適
な温度域ではコーディエライトの焼結はおこってもコー
ディエライトより高融点のセラミックの充分な焼結はお
こらず添加量の増大に伴なって機械的強度が低減する傾
向があるからである。
In other words, if the amount added is less than 5 parts by weight, the above-mentioned effect of addition is not significant, and if the amount added exceeds 25 parts by weight, the temperature range of 1250°C to 1400°C, which is suitable for industrial furnace economy, will not be compatible. This is because even if sintering of eliteite occurs, sufficient sintering of the ceramic having a higher melting point than cordierite does not occur, and mechanical strength tends to decrease as the amount added increases.

製造の方法はまず、コーディエライト粉末95〜75重
量部に対しコーディエライトより高い融点を有し、かつ
熱膨張係数が0〜5 X I O−’(1/”O)のセ
ラミックを5〜25重量部添加する。これにポリビニア
ルコール、CMCなどのバインダー、ケイ酸ナトリウム
などの解膠剤および水を添加し低粘性のセラミックスラ
リ−を作成した。スラリーの粘度は目的とするセラミッ
ク多孔体のセルの大きさにより、水の添加量を加減して
調整した。所定形状の三次元網目状構造の有機物フオー
ムをこのセラミックスラリ−中に浸漬し余剰のスラリー
を遠心分離などの適切な方法で除去し乾燥する。
The manufacturing method is to first add 5 parts by weight of a ceramic having a melting point higher than that of cordierite and a coefficient of thermal expansion of 0 to 5 X I O-'(1/''O) to 95 to 75 parts by weight of cordierite powder. Add ~25 parts by weight.To this, a binder such as polyvinyl alcohol and CMC, a deflocculant such as sodium silicate, and water were added to create a low-viscosity ceramic slurry.The viscosity of the slurry was adjusted to the desired ceramic porosity. The amount of water added was adjusted depending on the size of the body cells. An organic material foam with a three-dimensional network structure of a predetermined shape was immersed in this ceramic slurry, and the excess slurry was removed by an appropriate method such as centrifugation. Remove and dry.

所定量のセラミックが三次元網目状構造の有機物フオー
ムに耐着するまでこの操作を繰り返す。
This operation is repeated until a predetermined amount of ceramic adheres to the organic foam of the three-dimensional network structure.

排ガス浄化体として利用するのに便利なように排ガス流
れ方向に平行な最外部を封じる構造とするため、セラミ
ックスラリ−をスプレーあるいはコーティングすること
もできる。乾燥した成形品を炉に入れ1250℃〜14
00℃の間の好適な焼成温度で焼成して、圧力損失が低
く、高強度で寸法精度のすぐれた排ガス浄化体をうるこ
とができる。 本発明の排ガス浄化体は、そのまま、あ
るいは、骨格表面に触媒を設けることにより自動車エン
ジンからの排ガスの浄化に用いられるが、特にディーゼ
ルエンジンからの排ガス浄化に好適である。ディーゼル
エンジンからの排ガス浄化に用いる場合には、セラミッ
ク多孔体の骨格表面にアルミナを被覆した上に、カーボ
ン微粒子あるいは炭化水素、−酸化炭素を燃焼させる触
媒層を設けることが好ましい、この際、セラミック多孔
体としては、直線1インチ当りのセル数が5〜50個の
セル数を有するものが好ましい。
In order to conveniently use it as an exhaust gas purifier, it is possible to spray or coat it with a ceramic slurry in order to seal the outermost part parallel to the flow direction of the exhaust gas. Place the dried molded product in a furnace at 1250°C to 14°C.
By firing at a suitable firing temperature between 00° C., an exhaust gas purifying body with low pressure loss, high strength, and excellent dimensional accuracy can be obtained. The exhaust gas purifying body of the present invention can be used as it is or by providing a catalyst on the skeleton surface to purify exhaust gas from an automobile engine, and is particularly suitable for purifying exhaust gas from a diesel engine. When used to purify exhaust gas from a diesel engine, it is preferable to coat the skeleton surface of the ceramic porous body with alumina, and then provide a catalyst layer for burning carbon particles, hydrocarbons, and carbon oxides. The porous body preferably has 5 to 50 cells per linear inch.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

実施例1〜6.比較例1〜3゜ コーディエライト微粉末にジルコンまたはチタン酸アル
ミニウム、またはそれらの混合物を配合したセラミック
混合物lOO部にポリビニルアルコール4部、ケイ酸ナ
トリウム0.2部、シリカゲル2部および適量の水を添
加し、低粘性のスラリーを作成した。1インチあたりセ
ル数が20ケの一辺がloc+wの立方体形状のセル膜
のない三次元網状骨格構造を有するポリウレタンフォー
ムをこのスラリーに含浸した。
Examples 1-6. Comparative Examples 1 to 3 Ceramic mixture containing fine cordierite powder, zircon or aluminum titanate, or a mixture thereof. 100 parts of polyvinyl alcohol, 0.2 parts of sodium silicate, 2 parts of silica gel, and an appropriate amount of water. was added to create a low viscosity slurry. A polyurethane foam having a cubic cell membrane-free three-dimensional network skeleton structure with 20 cells per inch and a side of loc+w was impregnated with this slurry.

余分なスラリーを遠心分離あるいは空気吹っけなどの処
理を行なって除去したのち充分に乾燥した適量のセラミ
ックが付着するまで」二記採作を繰りかえした、排ガス
流路と平行方向の最外部にもセラミンクコーティングを
施した後乾燥した。
After removing the excess slurry by centrifugation or air blowing, the sampling process was repeated until an appropriate amount of sufficiently dried ceramic was deposited on the outermost part in the direction parallel to the exhaust gas flow path. It was also coated with ceramic and then dried.

1290℃で1時間焼成を行なってセラミックフオーム
をえた。えられたセラミックフオームは高温で焼成した
場合、サンプル下面に対しサンプル」二面の方が収縮が
犬きく変形がみられた。この変形の度合を表わすためサ
ンプル下面の面積でサンプル上面の面積を除した面積比
を用いることにした。
A ceramic foam was obtained by firing at 1290° C. for 1 hour. When the resulting ceramic foam was fired at high temperatures, the second side of the sample showed more shrinkage and deformation than the bottom side of the sample. In order to express the degree of this deformation, we decided to use the area ratio obtained by dividing the area of the top surface of the sample by the area of the bottom surface of the sample.

また焼成品から一辺が5cmの立方体を切り山し風速3
m/秒での圧力損失と圧縮強度を測定した。
Also, from the fired product, I cut a cube with a side of 5cm and cut it into a pile with a wind speed of 3.
The pressure drop in m/sec and the compressive strength were measured.

これらの結果を表1に示した。セラミック成分がコーデ
ィエライト単独のサンプルも同様にして作成した。
These results are shown in Table 1. A sample in which the ceramic component was cordierite alone was also created in the same manner.

これらの結果からコーディエライト単独材質系では変形
度は大きいがコーディエライトに対し、コーディエライ
トより高い融点をもち、20〜6 i ooo℃での熱膨彊係数が5X10 (1/’O)
のセラミックを5〜20重量部を加えた配合系では焼成
時の変形が少なく、圧縮強度がほぼ同等で圧力損失が極
めて改良された三次元網状骨格構造のセラミック多孔体
からなる排ガス浄化体をうることが出来ることがわかっ
た。
These results show that cordierite alone has a high degree of deformation, but has a higher melting point than cordierite, and has a coefficient of thermal expansion of 5X10 (1/'O )
By adding 5 to 20 parts by weight of ceramic, an exhaust gas purifying body made of a ceramic porous body with a three-dimensional network skeleton structure can be obtained, which has little deformation during firing, almost the same compressive strength, and extremely improved pressure loss. I found out that it is possible.

表 1 (注)変形度は下式で算出した。Table 1 (Note) The degree of deformation was calculated using the formula below.

2 実施例7〜10、比較例4〜6 コーディエライト微粉末に炭化ケイ素またはムライトを
配合したセラミック混合物lOO部にポリビニルアルコ
ール4.5部、ケイ酸ナトリウム0.2部、シリカゲル
2部および適量の木を添加し、低粘性 −−スラリーを
作成し た。1インチあたりのセル数が13ケの一辺がtoes
の立方体形状のセル膜のない三次元網状骨格構造を有す
るポリウレタンフォームをこのスラリーに含浸し、余分
なスラリーを遠心分離あるいは空気吹きつけなどの処理
を行なって除去したのち、充分乾燥した。1350°C
で1時間焼成をおこないセラミックフオームをえた。先
の実施例と同様にして変形度、圧力損失および圧縮強度
を測定した。
2 Examples 7 to 10, Comparative Examples 4 to 6 4.5 parts of polyvinyl alcohol, 0.2 parts of sodium silicate, 2 parts of silica gel, and appropriate amounts to 100 parts of a ceramic mixture in which silicon carbide or mullite was blended with fine cordierite powder. of wood was added to create a low viscosity slurry. One side is TOES with 13 cells per inch.
A polyurethane foam having a three-dimensional network skeleton structure without a cubic cell membrane was impregnated with this slurry, excess slurry was removed by centrifugation or air blowing, and then thoroughly dried. 1350°C
After firing for 1 hour, a ceramic form was obtained. The degree of deformation, pressure loss and compressive strength were measured in the same manner as in the previous example.

試験結果は表2に示したとおりである。コーディエライ
ト単独系にくらべ機械的強度がほぼ同等で変形度、圧力
損失が大幅に改良されることがわかる。
The test results are shown in Table 2. It can be seen that the mechanical strength is almost the same as that of cordierite alone, and the degree of deformation and pressure loss are significantly improved.

表 2 出願人 株式会社ブリデストン 代理人 弁理士 久 米 英 − 代理人 弁理士 鈴 木 悦 部Table 2 Applicant: Brideston Co., Ltd. Agent Patent Attorney Hide Hisaume - Agent Patent Attorney Etsu Suzuki

Claims (2)

【特許請求の範囲】[Claims] (1)内部連通空間を有する三次元網状骨格構造をなし
たセラミック多孔体からなる排ガス浄化体において、セ
ラミック成分として、コーディエライトより高融点でか
つ20℃〜1000℃における熱膨張係数が5X 10
−6 (1/”O)以下のセラミックを5〜25重量部
、コーディエライトを95〜75重量部を用いたことを
特徴とする排ガス浄化体。
(1) In an exhaust gas purifying body made of a ceramic porous body with a three-dimensional network skeleton structure having internal communication spaces, the ceramic component has a higher melting point than cordierite and a thermal expansion coefficient of 5X 10 at 20°C to 1000°C.
-6 (1/''O) or less ceramic and 95 to 75 parts by weight of cordierite, respectively.
(2)コーディエライトより高融点でかつ20℃〜10
00°Cにおける熱膨張係数が5 X 10−’(1/
”O)以下のセラミックがチタン酸アルミニウム、ジル
コン、ムライト及び炭化ケイ素から選ばれる1種以上で
ある特許請求の範囲第1項記載の排ガス浄化体。
(2) Higher melting point than cordierite and 20℃~10℃
The coefficient of thermal expansion at 00°C is 5 x 10-' (1/
2. The exhaust gas purifying body according to claim 1, wherein the following ceramic is one or more selected from aluminum titanate, zircon, mullite, and silicon carbide.
JP59096598A 1984-05-16 1984-05-16 Purifying body of exhaust gas Pending JPS60241917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096598A JPS60241917A (en) 1984-05-16 1984-05-16 Purifying body of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096598A JPS60241917A (en) 1984-05-16 1984-05-16 Purifying body of exhaust gas

Publications (1)

Publication Number Publication Date
JPS60241917A true JPS60241917A (en) 1985-11-30

Family

ID=14169318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096598A Pending JPS60241917A (en) 1984-05-16 1984-05-16 Purifying body of exhaust gas

Country Status (1)

Country Link
JP (1) JPS60241917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419779B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with high strength for dust collection
JP2007176720A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Ceramic porous body with three-dimensional skeleton structure, and method for producing ceramic porous body
CN112759415A (en) * 2020-12-31 2021-05-07 松山湖材料实验室 Preparation process of porous ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419779B1 (en) * 2001-02-23 2004-02-21 한국에너지기술연구원 Fabrication method of silicon carbide ceramics filter with high strength for dust collection
JP2007176720A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Ceramic porous body with three-dimensional skeleton structure, and method for producing ceramic porous body
CN112759415A (en) * 2020-12-31 2021-05-07 松山湖材料实验室 Preparation process of porous ceramic

Similar Documents

Publication Publication Date Title
US7473464B2 (en) Porous material and method for production thereof
JP5054460B2 (en) Method for manufacturing honeycomb structure and raw material composition for honeycomb fired body
Guzman Certain principles of formation of porous ceramic structures. Properties and applications (a review)
US6582796B1 (en) Monolithic honeycomb structure made of porous ceramic and use as a particle filter
US5030398A (en) Method of producing a cordierite honeycomb structural body
KR930012633A (en) High porosity cordierite body and its manufacturing method
KR20030036205A (en) Cordierite body
WO2002041972A1 (en) Porous honeycomb filter and method for manufacture thereof
WO2008032390A1 (en) Process for producing honeycomb structure
JP5293608B2 (en) Ceramic honeycomb structure and manufacturing method thereof
KR20030059169A (en) Lithium aluminosilicate ceramic
JPH10174885A (en) Cordierite honeycomb structural body and its production
US6770111B2 (en) Pollucite-based ceramic with low CTE
US4963515A (en) Lightweight hydrogel-bound aggregate shapes and process for producing same
EP1995226B1 (en) Porous object based on silicon carbide and process for producing the same
JP2004148308A (en) Ceramic honeycomb filter and its production method
JPH04305076A (en) Production of cordierite honeycomb structural body
JP2651170B2 (en) Ceramics porous body
JPS60241917A (en) Purifying body of exhaust gas
US20130160412A1 (en) Permeable material, articles made therefrom and method of manufacture
JPH0558773B2 (en)
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JPH0254301B2 (en)
JPS61295283A (en) Manufacture of low heat expansion ceramic porous body
KR101133650B1 (en) Preparing method hot gas filters using sr-containing ceramic compostitions for mullite-bonded silicon carbide