JPH02160510A - Production of fiber reinforced composite - Google Patents

Production of fiber reinforced composite

Info

Publication number
JPH02160510A
JPH02160510A JP31670588A JP31670588A JPH02160510A JP H02160510 A JPH02160510 A JP H02160510A JP 31670588 A JP31670588 A JP 31670588A JP 31670588 A JP31670588 A JP 31670588A JP H02160510 A JPH02160510 A JP H02160510A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
filaments
fiber
resin
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31670588A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
山本 和芳
Kiyoyasu Fujii
藤井 清康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP31670588A priority Critical patent/JPH02160510A/en
Publication of JPH02160510A publication Critical patent/JPH02160510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced composite having excellent strength by holding powdery thermoplastic resin between the filaments of roving-shaped reinforced fiber and heating the filaments at the temp. not lower than the m.p. of the resin and thereafter passing the filaments through a plurality of dies having the passage ports different in the cross-sectional shapes and cooling the filaments. CONSTITUTION:Reinforced fiber 1 is guided by the guide rolls 22, 23, 24 and introduced into a vessel 20. Powdery thermoplastic resin 2 in the vessel 20 is held between the filaments. At this time, a fluidized bed 26 is formed by ejecting gas into the vessel 20 through the air holes 25. Successively, reinforced fiber 1 holding resin 2 is supplied to a far infrared heating oven 60 and heated. Thereafter reinforced fiber 1 is passed through a first die 61 and the cross-sectional shape is made a square and then passed through a second die 62 and the cross-sectional shape is made a circular form. Furthermore, even when reinforced fiber 1 is passed through a third die 63, it is subjected to the same action and thereafter it is passed through the pinch rolls and cooled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維と熱可塑性樹脂とが一体化された繊
維強化複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber reinforced composite material in which reinforcing fibers and a thermoplastic resin are integrated.

(従来の技術) ロービング状の連続する強化繊維を粉体状熱可塑性樹脂
中を通過させ、強化繊維に粉体状熱可塑性樹脂を保持さ
せた後、連続的に加熱ゾーンを通過させて粉体状熱可塑
性樹脂を溶融させ、次いで加熱された金型を通過させる
ことにより、強化繊維と熱可塑性樹脂とを一体化させる
繊維強化複合材の製造方法は広く知られている。
(Prior technology) Continuous reinforcing fibers in the form of roving are passed through a powdered thermoplastic resin, the reinforcing fibers retain the powdered thermoplastic resin, and then continuously passed through a heating zone to form a powder. BACKGROUND ART A method for producing a fiber-reinforced composite material in which reinforcing fibers and a thermoplastic resin are integrated by melting a thermoplastic resin and then passing it through a heated mold is widely known.

すなわち、従来の製造方法は、所望の断面形状の通過口
を有する加熱された金型を加熱ゾーンの後方位置に配置
し、加熱ゾーンで粉体状熱可塑性樹脂を溶融させた後、
この溶融樹脂が付着した強化繊維を金型の通過口を通過
させることにより所望断面形状の繊維強化複合材を得る
ものである。
That is, in the conventional manufacturing method, a heated mold having a passage opening with a desired cross-sectional shape is placed at a rear position of a heating zone, and after melting the powdered thermoplastic resin in the heating zone,
A fiber-reinforced composite material having a desired cross-sectional shape is obtained by passing the reinforcing fibers to which the molten resin has adhered through the passage hole of the mold.

従来の方法においては、強化繊維のフィラメントが一方
向に引き揃えられた繊維強化複合材を得ることができる
。ところが、溶融した熱可塑性樹脂が強化繊維のフィラ
メント間に充分侵入していないため、熱可塑性樹脂と強
化繊維との密着性にかける欠点があり、製造された繊維
強化複合材は脆いものとなる場合があった。また、粉体
状熱可塑性樹脂に安定剤や滑剤等を添加した樹脂組成物
を強化繊維に一体化させる場合には、この添加剤の分散
性が悪く、添加剤の効果が充分に発揮できないという欠
点があった。
In the conventional method, a fiber-reinforced composite material in which filaments of reinforcing fibers are aligned in one direction can be obtained. However, because the molten thermoplastic resin does not penetrate sufficiently between the filaments of the reinforcing fibers, there is a drawback that the adhesion between the thermoplastic resin and the reinforcing fibers is poor, and the manufactured fiber-reinforced composite material may be brittle. was there. In addition, when integrating a resin composition made by adding stabilizers, lubricants, etc. to powdered thermoplastic resin into reinforcing fibers, the dispersibility of the additives is poor and the effects of the additives cannot be fully demonstrated. There were drawbacks.

樹脂に剪断流動を与えることで樹脂と強化繊維との密着
性を良くする技術として、特開昭50−35460号公
報には、金型の通過口の断面積を小さくして溶融樹脂が
付着した強化繊維がこの通過口を通過する際に、過剰の
樹脂を絞り出す方法が開示されている。しかしながら、
この方法では、金型内で樹脂の滞留が起こり易く、樹脂
劣化の問題を招来するといった欠点があった。
As a technique for improving the adhesion between the resin and reinforcing fibers by imparting shear flow to the resin, JP-A-50-35460 discloses a technique in which the cross-sectional area of the passage opening of the mold is reduced to allow molten resin to adhere. A method is disclosed for squeezing out excess resin when the reinforcing fibers pass through this passage port. however,
This method has the disadvantage that the resin tends to remain in the mold, leading to the problem of resin deterioration.

(発明が解決しようとする課題) 本発明は上記欠点を解決するものであり、その目的とす
るところは、強化繊維のフィラメントが一方向に揃えら
れていると共に、そのフィラメント間に充分流動された
熱可塑性樹脂が含浸して優れた強度を持つ繊維強化複合
材の製造方法を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks, and its purpose is to provide a structure in which the filaments of reinforcing fibers are aligned in one direction and have sufficient flow between the filaments. An object of the present invention is to provide a method for producing a fiber-reinforced composite material impregnated with a thermoplastic resin and having excellent strength.

(課題を解決するための手段) 本発明の繊維強化複合材の製造方法は、多数の連続する
フィラメントより構成されたロービング状の強化繊維を
、粉体状熱可塑性樹脂中を通過させてフィラメント間に
粉体状熱可塑性樹脂を保持させた後、熱可塑性樹脂の溶
融温度以上に加熱して熱可塑性樹脂を溶融させると共に
、熱可塑性樹脂の溶融状態で断面形状が異なる通過口を
有する金型を複数個通過させ、次いで冷却することを特
徴としており、そのことにより上記目的が達成される。
(Means for Solving the Problems) The method for producing a fiber-reinforced composite material of the present invention involves passing a roving-shaped reinforcing fiber made up of a large number of continuous filaments through a powdered thermoplastic resin to create a fiber-reinforced composite material between the filaments. After holding the thermoplastic resin in powder form, the thermoplastic resin is heated to a temperature higher than the melting temperature of the thermoplastic resin to melt the thermoplastic resin, and a mold having a passage opening with a different cross-sectional shape depending on the molten state of the thermoplastic resin is formed. The feature is that a plurality of particles are passed through and then cooled, thereby achieving the above object.

第1図は本発明に用いられる製造装置の一例を示したも
のである。
FIG. 1 shows an example of a manufacturing apparatus used in the present invention.

この製造装置は、ロービング状の強化繊維1が巻回され
たロール1aをセットする巻戻しロール10と、粉体状
熱可塑性樹脂2が供給されている容器20と、容器20
を通過した強化繊維1を引き取るピンチロール11と、
強化繊維1がビンチロール11で引き取られる途中に配
設されており、強化繊維1を押圧して一定幅に広げる押
圧ロール40と、強化繊維1の上下面に一対配設されて
おり、強化繊維1に保持された過剰の粉体状熱可塑性樹
脂2を除去してその保持量を一定にするスリッター50
.51と、強化繊維1に保持された上記粉体状熱可塑性
樹脂2を溶融させる遠赤外線加熱炉60と、溶融した熱
可塑性樹脂と強化繊維1とを一体化させると共に、所定
断面形状とする加熱状態の金型61.62.63と、を
備えている。
This manufacturing device includes an unwinding roll 10 for setting a roll 1a wound with roving-shaped reinforcing fibers 1, a container 20 in which powdered thermoplastic resin 2 is supplied, and a container 20.
a pinch roll 11 that takes over the reinforcing fiber 1 that has passed through the
The reinforcing fibers 1 are placed on the way to being taken up by the vinyl rolls 11, and a pair of press rolls 40 are placed on the upper and lower surfaces of the reinforcing fibers 1 to press and spread the reinforcing fibers 1 to a certain width. A slitter 50 that removes the excess powdered thermoplastic resin 2 retained in the resin 1 to keep the retained amount constant.
.. 51, a far-infrared heating furnace 60 for melting the powdered thermoplastic resin 2 held on the reinforcing fibers 1, and heating to integrate the molten thermoplastic resin and the reinforcing fibers 1 and form a predetermined cross-sectional shape. It is equipped with molds 61, 62, and 63 in the state.

上記容器20の底部には多数の通気孔25.25・・・
が設けられており、気体供給路21から送られた気体が
この通気孔25を通って容器20内へ送られるようにな
っている。従って、容器20内に入れられた上記粉体状
熱可塑性樹脂2は、その気体の噴出によって流動化した
状態となり流動床26が形成されている。容器20の壁
の上端部及び内部には、強化繊維1を案内するガイドロ
ール22.23.24が配設されている。
The bottom of the container 20 has a large number of ventilation holes 25, 25...
is provided, and the gas sent from the gas supply path 21 is sent into the container 20 through the vent hole 25. Therefore, the thermoplastic resin powder 2 placed in the container 20 is fluidized by the jetting of the gas, and a fluidized bed 26 is formed. Guide rolls 22, 23, 24 for guiding the reinforcing fibers 1 are arranged at the upper end and inside the wall of the container 20.

上記金型61.62.63の強化繊維1が通過する通過
口の形状は、金型61.62.63ごとに異なっている
0例えば、加熱炉60側の第1の金型61の通過口の断
面形状は正方形に形成され、第2の金型62の通過口の
断面形状は円形に形成され、第3の金型63の通過口の
断面形状は長方形に形成されている。
The shape of the passage port through which the reinforcing fiber 1 of the mold 61, 62, 63 passes is different for each mold 61, 62, 63. For example, the passage port of the first mold 61 on the heating furnace 60 side The cross-sectional shape of the passage hole of the second mold 62 is formed as a circle, and the cross-sectional shape of the passage hole of the third mold 63 is formed as a rectangle.

各金型61.62.63の通過口の断面積は、溶融樹脂
が付着した状態の強化繊維1の断面積と略等しいか、あ
るいはやや大きく設定するのが好ましく、また第1金型
61から第3金型63へいくにつれて順次通過口の断面
積を小さくするのが好ましい。
The cross-sectional area of the passage opening of each mold 61, 62, 63 is preferably set to be approximately equal to or slightly larger than the cross-sectional area of the reinforcing fiber 1 to which the molten resin is attached. It is preferable to gradually reduce the cross-sectional area of the passage opening as the third mold 63 is approached.

この第1から第3の金型61.62.63の通過口の断
面形状は種々変更することができ、例えば、菱形、台形
、楕円形等にしてもよく、隣接する金型61.62.6
3の通過口の断面形状を異ならせるものである。また、
通過口の断面形状が円形以外の同形状において、その通
過口の角度を変えるようにしても良く、例えば、第1及
び第3の金型61.63では縦長の長方形とし、第2の
金型62では横長の長方形としても良い、各金型61.
62.63の加熱温度は粉体状熱可塑性樹脂2のほぼ融
点あるいは融点以上とするのが好守しい、また、金型は
四個以上設けても良い。
The cross-sectional shapes of the passage openings of the first to third molds 61, 62, 63 can be changed in various ways, for example, they may be rhombic, trapezoidal, oval, etc. 6
The cross-sectional shape of the passage port No. 3 is made different. Also,
Even if the cross-sectional shape of the passage hole is the same shape other than circular, the angle of the passage hole may be changed. For example, the first and third molds 61 and 63 have a vertically long rectangle, and the second mold has a vertically long rectangle. Each mold 61.62 may be a horizontally long rectangle.
The heating temperature of 62.63 is preferably set to approximately the melting point or higher than the melting point of the powdered thermoplastic resin 2, and four or more molds may be provided.

次に、上記製造装置を用いて本発明の製造方法を説明す
る。
Next, the manufacturing method of the present invention will be explained using the above manufacturing apparatus.

強化繊維1の端部はビンチロール11で挟持されていて
、ピンチロール11の回転駆動により強化繊維1は所定
速度で引き取られてロール1aの外側より撚りがかから
ないように順次巻戻される。そして、強化繊維lはガイ
ドロール22.23.24で案内されて容器20内へ導
かれる。容器20内には粉体状熱可塑性樹2が入れられ
ており、この容器20内を通過する強化繊維1のフィラ
メント間に粉体状熱可塑性樹脂2が侵入して保持される
。特に、上記したように、容器20内に通気孔25から
気体を噴出させて流動床26を形成することにより、そ
れら気体の噴出及び粉体状熱可塑性樹脂2の衝突等によ
って強化繊維1はフィラメント状に開繊され易くなり、
粉体状熱可塑性樹脂2をロービングのフィラメント間に
容易に侵入させることができる。また、強化繊維1の開
繊装置等を用いて、容器20内で強化繊維1を機械的に
開繊するようにしてもよい。
The ends of the reinforcing fibers 1 are pinched by pinch rolls 11, and the reinforcing fibers 1 are taken off at a predetermined speed by the rotational drive of the pinch rolls 11 and sequentially rewound from the outside of the rolls 1a without being twisted. The reinforcing fibers 1 are then guided by guide rolls 22, 23, 24 into the container 20. A powdered thermoplastic resin 2 is placed in a container 20, and the powdered thermoplastic resin 2 enters between the filaments of the reinforcing fibers 1 passing through the container 20 and is held therein. In particular, as described above, by ejecting gas from the vent hole 25 into the container 20 to form the fluidized bed 26, the reinforcing fibers 1 are transformed into filaments by the ejection of gas and the collision of the powdered thermoplastic resin 2. It becomes easier to open the fibers into shapes,
The powdered thermoplastic resin 2 can be easily penetrated between the filaments of the roving. Further, the reinforcing fibers 1 may be mechanically opened within the container 20 using a reinforcing fiber 1 opening device or the like.

次に、粉体状熱可塑性樹脂2が保持された強化繊維1は
、ロール40で押圧されながら通過することで一定幅の
帯状に広げられ、引き続いて強化繊維1がスリッター5
0.51の上下面を通過する際に過剰の粉体状熱可塑性
樹脂2は除去され、その保持量が一定とされる。引き続
いて、上記粉体状熱可塑性樹脂2が保持された強化繊維
1は遠赤外線加熱炉60に供給され、ここで加熱されて
粉体状熱可塑性樹脂は溶融する。その後、溶融する樹脂
が付着された強化繊維1が各金型61.62.63を通
過する際に、各金型61.62.63の通過口内面で押
圧される結果、溶融樹脂と強化繊維1とが一体化される
Next, the reinforcing fiber 1 holding the powdered thermoplastic resin 2 is spread out into a belt shape of a constant width by passing through the roll 40 while being pressed.
Excess powdered thermoplastic resin 2 is removed when passing through the upper and lower surfaces of 0.51, and the retained amount is kept constant. Subsequently, the reinforcing fiber 1 holding the powdered thermoplastic resin 2 is supplied to a far-infrared heating furnace 60, where it is heated and the powdered thermoplastic resin is melted. After that, when the reinforcing fiber 1 to which the melting resin is attached passes through each mold 61, 62, 63, it is pressed by the inner surface of the passage port of each mold 61, 62, 63, and as a result, the molten resin and the reinforcing fiber 1 are integrated.

すなわち、第1の金型61を通過した上記溶融樹脂が付
着する強化繊維1の断面形状は正方形となっており、次
いで第2の金型62を通過する際には、断面円形となる
ように強制的に金型62の通過口の内壁面から押圧され
るので、溶融樹脂が強化繊維1内に押し込まれるように
なり、溶融樹脂が強化繊維lに充分含浸するようになる
。また、樹脂が付着した強化繊維1が第2金型62から
第3金型63へ通過する際にも同様な作用を受けること
になる。
That is, the cross-sectional shape of the reinforcing fibers 1 to which the molten resin adheres after passing through the first mold 61 is square, and then when passing through the second mold 62, the reinforcing fibers 1 have a circular cross-section. Since it is forcibly pressed from the inner wall surface of the passage opening of the mold 62, the molten resin is forced into the reinforcing fibers 1, and the molten resin is sufficiently impregnated into the reinforcing fibers 1. Moreover, when the reinforcing fiber 1 to which the resin is attached passes from the second mold 62 to the third mold 63, it is subjected to a similar effect.

その後、ピンチロール11を通過して冷却されることに
より、板状の繊維強化複合材が得られる。
Thereafter, it passes through pinch rolls 11 and is cooled, thereby obtaining a plate-shaped fiber-reinforced composite material.

本発明で用いられるロービング状の連続した強化繊維1
としては、ガラス繊維、炭素繊維、微細な金属線等の無
機繊維や、アラミド繊維、ポリエステル繊維、ポリアミ
ド繊維等の有機繊維が用いられ、通常繊維径2〜40μ
mのフィラメントを数百〜数十1本同方向に束ねて構成
された連続する繊維である。また、強化繊維1は樹脂と
の接着強度を向上させるために通常行われるサイジング
処理が施されていても良い。また、使用する粉体状熱可
塑性樹脂の溶融温度において熱的に安定な繊維が選ばれ
る。
Roving-shaped continuous reinforcing fiber 1 used in the present invention
Inorganic fibers such as glass fibers, carbon fibers, and fine metal wires, and organic fibers such as aramid fibers, polyester fibers, and polyamide fibers are used, and the fiber diameter is usually 2 to 40μ.
It is a continuous fiber composed of several hundred to several dozen m filaments bundled in the same direction. Further, the reinforcing fiber 1 may be subjected to a commonly performed sizing treatment in order to improve the adhesive strength with the resin. In addition, fibers are selected that are thermally stable at the melting temperature of the powdered thermoplastic resin used.

本発明で用いられる粉体状熱可塑性樹脂は、ポリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリスルホン、
ポリアミド、ポリフッ化ビニリデン、ポリフェニレンサ
ルファイド、ポリエーテルエーテルケトン等の熱により
軟化溶融する樹脂が総て使用可能である。また、これら
の熱可塑性樹脂の混合物も使用し得る。また、安定剤、
潤滑剤、加工助剤、可塑剤、染料、顔料のような添加剤
を熱可塑性樹脂に配合しても良い。この粉体状熱可塑性
樹脂の平均粒子径は1000μm以下が好ましい。
Powdered thermoplastic resins used in the present invention include polyethylene, polypropylene, polyvinyl chloride, polysulfone,
All resins that are softened and melted by heat, such as polyamide, polyvinylidene fluoride, polyphenylene sulfide, and polyetheretherketone, can be used. Mixtures of these thermoplastics may also be used. Also, stabilizers,
Additives such as lubricants, processing aids, plasticizers, dyes, and pigments may be incorporated into the thermoplastic resin. The average particle diameter of this powdery thermoplastic resin is preferably 1000 μm or less.

粉体状熱可塑性樹脂の平均粒子径が1000μmを上回
ると流動床中での粉体の流動が好適に起こらず、o −
ヒング状の連続強化繊維のフィラメント間への熱可塑性
樹脂の付着が低下する傾向にある。
If the average particle diameter of the powdered thermoplastic resin exceeds 1000 μm, the powder will not flow properly in the fluidized bed, and o-
The adhesion of the thermoplastic resin between the filaments of the hinge-shaped continuous reinforcing fibers tends to decrease.

さらに、上記容器20内に繊維状微小充填材を供給して
強化繊維1のフィラメント間に粉体状熱可塑性樹脂2と
ともに微小充填材を保持させても良い。この微小充填材
としては、ガラス繊維、炭素繊維等の無機繊維のミルド
ファイバー、あるいは窒化ケイ素、炭化ケイ素、チタン
酸カリウム等のウィスカーが好適に用いられる。このよ
うに、微小充填材を強化繊維1のフィラメント間に保持
させることにより、ランダムに配向する微小充填材によ
って製造された繊維強化複合材の繊維間の強度を上げる
ことができ、強化繊維1の長手方向に沿った割れ等を防
止することができる。
Furthermore, a fibrous fine filler may be supplied into the container 20 to be held between the filaments of the reinforcing fibers 1 together with the powdered thermoplastic resin 2. As this fine filler, milled inorganic fibers such as glass fibers and carbon fibers, or whiskers such as silicon nitride, silicon carbide, and potassium titanate are preferably used. In this way, by holding the microfiller between the filaments of the reinforcing fibers 1, it is possible to increase the strength between the fibers of the fiber-reinforced composite material manufactured by the randomly oriented microfillers. Cracks along the longitudinal direction can be prevented.

この繊維状微小充填材の平均アスペクト比(L/D)は
5以上であるのが好ましい。平均アスペクト比が5を下
回ると、繊維状としての機能がなくなり、繊維強化複合
材の幅及び厚み方向に対する強度が充分得られない、ま
た、繊維状微小充填材の繊維長は10〜1000μmの
範囲が好ましい。繊維長が1000μmを上回ると、流
動床26中での粉体の流動が好適に起こらず、ロービン
グ状の強化繊維1のフィラメント間に繊維状微小充填材
が充分付着しない。
The average aspect ratio (L/D) of this fibrous microfiller is preferably 5 or more. When the average aspect ratio is less than 5, the fibrous function is lost, and the fiber-reinforced composite material cannot have sufficient strength in the width and thickness directions, and the fiber length of the fibrous microfiller is in the range of 10 to 1000 μm. is preferred. When the fiber length exceeds 1000 μm, the powder does not flow properly in the fluidized bed 26, and the fibrous microfiller does not adhere sufficiently between the filaments of the roving-shaped reinforcing fibers 1.

10μlを下回ると繊維状としての機能がなくなり、繊
維強化複合材の幅及び厚み方向に対する強度が充分得ら
れない。
If it is less than 10 μl, the fibrous function is lost, and the fiber-reinforced composite material cannot have sufficient strength in the width and thickness directions.

また、繊維状微小充填材は、粉体状熱可塑性樹脂と繊維
状微小充填材との混合組成物2中において、1〜30容
量%の範囲で含有されるのが良い。
Further, the fibrous microfiller is preferably contained in the mixed composition 2 of the powdered thermoplastic resin and the fibrous microfiller in a range of 1 to 30% by volume.

1容量%を下回ると、繊維状微小充填材の添加効果が小
さいため繊維強化複合材の幅及び厚み方向に対する強度
が充分得られず、30容量%を上回ると、熱可塑性樹脂
の結合力が低下し、強化繊維1への熱可塑性樹脂の含浸
性が損なわれる傾向にある。
If it is less than 1% by volume, the effect of adding the fibrous microfiller is small and the strength in the width and thickness directions of the fiber-reinforced composite material cannot be obtained sufficiently, and if it exceeds 30% by volume, the bonding strength of the thermoplastic resin decreases. However, the impregnation of the thermoplastic resin into the reinforcing fibers 1 tends to be impaired.

上記流動床26を形成するための気体としては、通常空
気が用いられ、コンプレッサーやブロアー等から供給さ
れる。必要に応じて窒素、二酸化炭素、ヘリウム、アル
ゴン等の不活性気体が用いられる。
Air is normally used as the gas for forming the fluidized bed 26, and is supplied from a compressor, blower, or the like. An inert gas such as nitrogen, carbon dioxide, helium, or argon is used as necessary.

本発明によって得られた繊維強化複合材は、強化繊維1
を構成するフィラメントが開繊した状態で一方向に配向
しているため、曲げ方向の強度が高いものであり、また
粉体状熱可塑性樹脂が溶融している状態で形状の異なる
通過口を有する複数個の金型から押圧されるので、熔融
樹脂と強化繊維とが充分密着しており、繊維相互間の接
着性も良く、強度の高い繊維強化複合材が得られる。
The fiber reinforced composite material obtained by the present invention has reinforcing fibers 1
Because the filaments constituting the fiber are oriented in one direction in an open state, they have high strength in the bending direction, and also have passage ports with different shapes when the powdered thermoplastic resin is molten. Since it is pressed from a plurality of molds, the molten resin and the reinforcing fibers are in close contact with each other, and the adhesion between the fibers is also good, resulting in a fiber-reinforced composite material with high strength.

このようにして得られた繊維強化複合材は、種々の形状
に成形することができ、単独であるいは複数枚を積層し
、又は他の部材と積層して板材、管等に用いることがで
きる。
The fiber-reinforced composite material thus obtained can be molded into various shapes, and can be used alone, in a stack of multiple sheets, or in a stack with other members to make plates, pipes, etc.

(実施例) 以下に本発明を実施例に基づいて詳細に説明する。(Example) The present invention will be explained in detail below based on examples.

ス五〇1し く使用材料〉 強化繊維としてガラス繊維ロービング(フィラメント径
22μm 、(4400g/km)を7本用いた。粉体
状熱可塑性樹脂として下記配合で混合したものを用いた
501 Materials Used> Seven glass fiber rovings (filament diameter 22 μm, (4400 g/km)) were used as the reinforcing fibers. As the powdered thermoplastic resin, a mixture of the following composition was used.

ブチル錫含硫黄系安定剤 (三共有機社、ST、ANN−JP95B)  ・・・
3重量部ステアリルアルコール    ・・・1重量部
ポリオレフィンワックス   ・・・1重量部く製造条
件〉 第1図に示した装置を用いて板状の繊維強化複合材を製
造した。容器20内に上記粉体状熱可塑性樹脂2を投入
し、コンプレッサーにより容器20底部の通気孔25が
ら空気を容器20内へ噴出させて流動床26を形成した
Butyltin sulfur-containing stabilizer (Sankyoki Co., Ltd., ST, ANN-JP95B)...
3 parts by weight Stearyl alcohol 1 part by weight Polyolefin wax 1 part by weight Manufacturing conditions> A plate-shaped fiber-reinforced composite material was manufactured using the apparatus shown in FIG. The powdered thermoplastic resin 2 was put into the container 20, and air was blown into the container 20 through the vent hole 25 at the bottom of the container 20 using a compressor to form a fluidized bed 26.

上記ロービング1の引き取り速度は、ピンチロール11
にて150cm/ll1inの一定速度とした。加熱炉
60は表面温度約340°Cに設定された赤外線ヒータ
ーを有するものを用いた。各金型61.62.63の通
過口の強化繊維1の通過長さはそれぞれ100 mmで
あり、温度は190°Cとした。第1の金型61の通過
口の断面形状は一辺7.8−の正方形とし、第2の金型
62の通過口の断面形状は直径8.8 mmの円形とし
、第3の金型63の通過口の断面形状は縦2.0 mm
、横30mmの長方形とした。
The pick-up speed of the roving 1 is as follows:
The speed was set at a constant speed of 150 cm/11 inch. The heating furnace 60 used had an infrared heater set at a surface temperature of about 340°C. The passage length of the reinforcing fibers 1 through the passage ports of each mold 61, 62, and 63 was 100 mm, and the temperature was 190°C. The cross-sectional shape of the passage opening of the first mold 61 is a square with a side of 7.8 mm, the cross-sectional shape of the passage opening of the second mold 62 is circular with a diameter of 8.8 mm, and the cross-sectional shape of the passage opening of the second mold 62 is a circle with a diameter of 8.8 mm. The cross-sectional shape of the passage port is 2.0 mm long.
, a rectangle with a width of 30 mm.

得られた板状の繊維強化複合材は幅約30mm、厚み約
2mmであり、ガラス繊維含有量は30重量%でフィラ
メントが一方向に配向し、樹脂がフィラメント間に良く
含浸したものであった。得られた繊維強化複合材の曲げ
試験及びデュポン衝撃試験を行ったところ、曲げ強度は
35kg/mm2であり、衝撃強度は45kg −cm
であった。
The obtained plate-shaped fiber reinforced composite material had a width of about 30 mm and a thickness of about 2 mm, the glass fiber content was 30% by weight, the filaments were oriented in one direction, and the resin was well impregnated between the filaments. . When the resulting fiber-reinforced composite material was subjected to a bending test and a DuPont impact test, the bending strength was 35 kg/mm2, and the impact strength was 45 kg-cm.
Met.

ス1」レー 〈製造条件〉 第1図に、示した装置において、第1の金型61の通過
口の断面形状を直径8.81111Iの円形、第2の金
型62の通過口の断面形状を一辺7.8Mの正方形、第
3の金型63の通過口の断面形状を縦2.0M、横30
mmの長方形とした以外は、実施例1と同様にして板状
の繊維強化複合材を得た。
<Manufacturing Conditions> In the apparatus shown in FIG. is a square with one side of 7.8M, and the cross-sectional shape of the passage hole of the third mold 63 is 2.0M in length and 30M in width.
A plate-shaped fiber-reinforced composite material was obtained in the same manner as in Example 1 except that it was made into a rectangle of mm.

得られた板状の繊維強化複合材は幅約30mm、厚み約
2mmであり、ガラス繊維含有量は30重量%でフィラ
メントが一方向に配向し、樹脂がフィラメント間に良く
含浸したものであった。
The obtained plate-shaped fiber reinforced composite material had a width of about 30 mm and a thickness of about 2 mm, the glass fiber content was 30% by weight, the filaments were oriented in one direction, and the resin was well impregnated between the filaments. .

得られた板状の繊維強化複合材の曲げ試験及びデュポン
衝撃試験を行ったところ、曲げ強度は35kg/mm”
であり、衝撃強度は40kg−cmであった。
When the resulting plate-shaped fiber-reinforced composite material was subjected to a bending test and a DuPont impact test, the bending strength was 35 kg/mm.
The impact strength was 40 kg-cm.

裏層■ユ 〈製造条件〉 強化繊維としてPAN系炭素炭素繊維ロービングィラメ
ント径8μm、フィラメント数6000本)を10本用
いた。粉体状熱可塑性樹脂としてポリフッ化ビニリデン
(重合度1100、平均粒子径200μm)を用いた。
Back layer ■Yu <Manufacturing conditions> Ten PAN-based carbon fiber roving filaments (diameter: 8 μm, number of filaments: 6000) were used as reinforcing fibers. Polyvinylidene fluoride (degree of polymerization: 1100, average particle diameter: 200 μm) was used as the powdered thermoplastic resin.

く製造条件〉 実施例1と同様の装置を用い、以下の条件で板状の繊維
強化複合材を製造した。ロービング1の引き取り速度は
、ピンチロール11にて120cm/winの一定速度
とした。加熱炉60は表面温度約350°Cに設定され
た赤外線ヒーターを有するものとした。
Manufacturing Conditions> Using the same apparatus as in Example 1, a plate-shaped fiber reinforced composite material was manufactured under the following conditions. The take-up speed of the roving 1 was set to a constant speed of 120 cm/win by the pinch roll 11. The heating furnace 60 was equipped with an infrared heater whose surface temperature was set to about 350°C.

各金型61.62.63の通過口の強化繊維1の通過長
さはそれぞれ100mn+、温度は210°Cとした。
The passage length of the reinforcing fibers 1 through the passage ports of each mold 61, 62, and 63 was 100 m+, and the temperature was 210°C.

第1の金型61の通過口の断面形状は一辺7.8鵬の正
方形とし、第2の金型62の通過口の断面形状は直径8
.8 anの円形とし、第3の金型63の通過口の断面
形状は縦2.0皿、横30鵬の長方形とした。
The cross-sectional shape of the passage opening of the first mold 61 is a square with a side of 7.8 mm, and the cross-sectional shape of the passage opening of the second mold 62 is a diameter of 8 mm.
.. The cross-sectional shape of the passage opening of the third mold 63 was a rectangle with a length of 2.0 mm and a width of 30 mm.

得られた板状の繊維強化複合材は幅約30順、厚み約2
InL11であり、ガラス繊維含有量は20重量%でフ
ィラメントが一方向に配向し、樹脂がフィラメント間に
良く含浸したものであった。
The obtained plate-shaped fiber-reinforced composite material has a width of about 30 mm and a thickness of about 2 mm.
InL11, the glass fiber content was 20% by weight, the filaments were oriented in one direction, and the resin was well impregnated between the filaments.

得られた板状の繊維強化複合材の曲げ試験及びデュポン
衝撃試験を行ったところ、曲げ強度は40kg/mB”
であり、衝撃強度は50kg−cmであった。
When the resulting plate-shaped fiber-reinforced composite material was subjected to a bending test and a DuPont impact test, the bending strength was 40 kg/mB.
The impact strength was 50 kg-cm.

1較■ 〈製造条件〉 第1図に示した繊維強化複合材の製造装置において、第
1金型61及び第2金型62を取り外し、第3金型63
のみを用いた以外は、実施例1と同様にして板状繊維強
化複合材を得た。
Comparison 1 ■ <Manufacturing conditions> In the fiber-reinforced composite material manufacturing apparatus shown in FIG.
A plate-shaped fiber-reinforced composite material was obtained in the same manner as in Example 1, except that only the following materials were used.

得られた板状の繊維強化複合材は幅約30mm、厚み約
211I111であり、ガラス繊維含有量は40重量%
でフィラメントが一方向に配向したものであったが、フ
ィラメント間に樹脂が充分含浸していないものであった
The obtained plate-shaped fiber-reinforced composite material has a width of about 30 mm, a thickness of about 211I111, and a glass fiber content of 40% by weight.
Although the filaments were oriented in one direction, the resin was not sufficiently impregnated between the filaments.

得られた板状の繊維強化複合材の曲げ試験及びデュポン
衝撃試験を行ったところ、曲げ強度は12kg/mm”
であり、衝撃強度は6 kg−ctt+であった。
When the resulting plate-shaped fiber-reinforced composite material was subjected to a bending test and a DuPont impact test, the bending strength was 12 kg/mm.
The impact strength was 6 kg-ctt+.

(発明の効果) このように、本発明の製造方法によれば、強化繊維のフ
ィラメントが一方向に揃えられ、かつ樹脂がフィラメン
ト間に充分含浸していて曲げ強度及び耐衝撃性に優れた
繊維強化複合材を得ることができる。しかも、金型の通
過口の断面積を特に小さくする必要もなく、従来のよう
に溶融樹脂が金型内に滞留して樹脂が劣化することもな
い。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, the filaments of the reinforcing fibers are aligned in one direction, the resin is sufficiently impregnated between the filaments, and the fibers have excellent bending strength and impact resistance. A reinforced composite material can be obtained. Moreover, there is no need to particularly reduce the cross-sectional area of the passage opening of the mold, and there is no possibility that the molten resin will stay in the mold and deteriorate the resin as in the prior art.

4、 ゛  の   な量 日 第1図は本発明に用いる製造装置の一実施例を示す概略
図である。
4. Figure 1 is a schematic diagram showing an embodiment of the manufacturing apparatus used in the present invention.

1・・・強化繊維、2・・・粉体状熱可塑性樹脂、61
・・・第1の金型、62・・・第2の金型、63・・・
第3の金型。
1... Reinforcing fiber, 2... Powdered thermoplastic resin, 61
...First mold, 62...Second mold, 63...
Third mold.

Claims (1)

【特許請求の範囲】[Claims] 1、多数の連続するフィラメントより構成されたロービ
ング状の強化繊維を、粉体状熱可塑性樹脂中を通過させ
てフィラメント間に粉体状熱可塑性樹脂を保持させた後
、熱可塑性樹脂の溶融温度以上に加熱して熱可塑性樹脂
を溶融させると共に、熱可塑性樹脂の溶融状態で断面形
状が異なる通過口を有する金型を複数個通過させ、次い
で冷却することを特徴とする繊維強化複合材の製造方法
1. After passing a roving-shaped reinforcing fiber composed of a large number of continuous filaments through a powdered thermoplastic resin and holding the powdered thermoplastic resin between the filaments, the melting temperature of the thermoplastic resin is Production of a fiber-reinforced composite material characterized in that the thermoplastic resin is melted by heating above, and the molten thermoplastic resin is passed through a plurality of molds having passage ports with different cross-sectional shapes, and then cooled. Method.
JP31670588A 1988-12-15 1988-12-15 Production of fiber reinforced composite Pending JPH02160510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31670588A JPH02160510A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31670588A JPH02160510A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Publications (1)

Publication Number Publication Date
JPH02160510A true JPH02160510A (en) 1990-06-20

Family

ID=18079984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31670588A Pending JPH02160510A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Country Status (1)

Country Link
JP (1) JPH02160510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274138A (en) * 2007-04-27 2008-11-13 Daicel Polymer Ltd Fiber reinforced cyclic olefin resin composition and molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274138A (en) * 2007-04-27 2008-11-13 Daicel Polymer Ltd Fiber reinforced cyclic olefin resin composition and molded product

Similar Documents

Publication Publication Date Title
US5206085A (en) Preformed yarn useful for forming composite articles and process for producing same
US5268050A (en) Process for using an extruder die assembly for the production of fiber reinforced thermoplastic pellets, tapes and similar products
US6517654B1 (en) Process for the production of fiber-reinforced semi-finished articles made of thermoplastics of medium to high viscosity
US5134016A (en) Fiber reinforced porous sheets
JPH04501587A (en) Maleic anhydride grafted polyolefin fiber
JPS62135537A (en) Flexible composite material and production thereof
US5626703A (en) Method for preparing a liquid crystal resin composite material and molding a product from the same
JPH02160510A (en) Production of fiber reinforced composite
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
US5194106A (en) Method of making fiber reinforced porous sheets
JPH02160509A (en) Production of fiber reinforced composite
JP3982007B2 (en) -Direction reinforced thermoplastic resin structure manufacturing method and manufacturing apparatus
JPH0157053B2 (en)
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JP2005535793A (en) Spinning method
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH04138219A (en) Manufacture of long fiber-contained resin composition
JPH02160512A (en) Prepreg sheet and production thereof
JPH0531812A (en) Manufacture of fiber-reinforced resin sheet and manufacture of fiber-reinforced resin molded product
JPH02160511A (en) Production of fiber reinforced composite
JPH0615729A (en) Composite sheet for thermoforming
JP3667932B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced sheet
JPH04119807A (en) Manufacture of reinforced plastic and die for manufacture
JPH07227915A (en) Manufacture of fiber-reinforced thermoplastic resin composition
JPH02160508A (en) Production of fiber reinforced composite