JPH02160509A - Production of fiber reinforced composite - Google Patents

Production of fiber reinforced composite

Info

Publication number
JPH02160509A
JPH02160509A JP31670488A JP31670488A JPH02160509A JP H02160509 A JPH02160509 A JP H02160509A JP 31670488 A JP31670488 A JP 31670488A JP 31670488 A JP31670488 A JP 31670488A JP H02160509 A JPH02160509 A JP H02160509A
Authority
JP
Japan
Prior art keywords
fiber
mixed composition
reinforced composite
thermoplastic resin
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31670488A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
山本 和芳
Kiyoyasu Fujii
藤井 清康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP31670488A priority Critical patent/JPH02160509A/en
Publication of JPH02160509A publication Critical patent/JPH02160509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To enhance strength of the fiber reinforced composite in the bending direction, the width direction and the thickness direction respectively by holding the mixed composition of powdery thermoplastic resin and a fine fibrous filler between the filaments of roving-shaped reinforced fiber and heating them at the temp. not lower than m.p. of resin and thereafter cooling them. CONSTITUTION:Reinforced fiber 1 is guided by the guide rolls 22, 23, 24 and introduced into a vessel 20. The mixed composition 2 of powdery thermoplastic resin and a fine fibrous filler in the vessel 20 is held between filaments. In this case, when a fluidized bed 26 is formed by ejecting gas into the vessel 20 through the air holes 25, the mixed composition 2 can be easily infiltrated into the filaments of reinforced fiber 1. Successively, reinforced fiber 1 holding the mixed composition 2 is supplied to a far infrared heating oven 60 and heated and resin is melted. Thereafter, melted resin is pressed from the upper and lower sides by the heating rollers 61 and thereby melted resin, the fine fibrous filler and reinforced fiber 1 are integrated together. Then when this integrated body is passed through the pinch rolls 11 and cooled, after reinforced composite having a thin belt-shaped prepreg form is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維と熱可塑性樹脂とが一体化された繊
維強化複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber reinforced composite material in which reinforcing fibers and a thermoplastic resin are integrated.

(従来の技術) ロービング状の連続する強化繊維を粉体状熱可塑性樹脂
中を通過させ、強化繊維に粉体状熱可塑性樹脂を保持さ
せた後、連続的に加熱ゾーンを通過させて粉体状熱可塑
性樹脂を溶融させることにより、強化繊維と熱可塑性樹
脂とを一体化させる繊維強化複合材の製造方法は広く知
られている(特公昭52−3985号公報、特開昭58
−501943号公報、特開昭63−27208号公報
参照)。
(Prior technology) Continuous reinforcing fibers in the form of roving are passed through a powdered thermoplastic resin, the reinforcing fibers retain the powdered thermoplastic resin, and then continuously passed through a heating zone to form a powder. A method for producing fiber reinforced composite materials in which reinforcing fibers and thermoplastic resin are integrated by melting a thermoplastic resin is widely known (Japanese Patent Publication No. 52-3985, Japanese Patent Application Laid-Open No. 1983-1999).
-501943, JP-A-63-27208).

(発明が解決しようとする課R) これらの方法において得られた繊維強化複合材は、強化
繊維のフィラメントが一方向に引き揃えられているため
、繊維の折り曲げ方向に対しては非常に優れた強度を示
すが、繊維間方向、つまり繊維強化複合材の幅方向及び
厚み方向の強度は不十分で、繊維の長手方向に沿った割
れ伸展等が起こり易いという欠点があった。
(Problem R to be solved by the invention) The fiber-reinforced composite materials obtained by these methods have excellent properties in the bending direction of the fibers because the filaments of the reinforcing fibers are aligned in one direction. Although it shows strength, the strength in the interfiber direction, that is, the width direction and thickness direction of the fiber reinforced composite material is insufficient, and there is a drawback that cracking and elongation along the longitudinal direction of the fibers are likely to occur.

本発明は上記欠点を解決するものであり、その目的とす
るところは、強化繊維のフィラメントが一方向に揃えら
れていて曲げ方向に対する強度が高い上に、幅方向及び
厚み方向の強度も高く、繊維の長手方向に沿って割れ等
を生じることのない繊維強化複合材の製造方法を提供す
ることにある。
The present invention is intended to solve the above-mentioned drawbacks, and its purpose is to have the filaments of reinforcing fibers aligned in one direction and have high strength in the bending direction, as well as high strength in the width and thickness directions. It is an object of the present invention to provide a method for manufacturing a fiber reinforced composite material that does not cause cracks or the like along the longitudinal direction of the fibers.

(課題を解決するための手段) 本発明の繊維強化複合材の製造方法は、粉体状熱可塑性
樹脂と繊維状微小充填材の混合組成物の中を、多数の連
続するフィラメントより構成されるロービング状の強化
繊維を通過させてフィラメント間に混合組成物を保持さ
せた後、これを熱可塑性樹脂の溶融温度以上に加熱し、
次いで冷却することを特徴としており、そのことにより
上記目的が達成される。
(Means for Solving the Problems) The method for producing a fiber-reinforced composite material of the present invention consists of a large number of continuous filaments in a mixed composition of a powdered thermoplastic resin and a fibrous microfiller. After passing the mixed composition through roving-shaped reinforcing fibers and holding the mixed composition between the filaments, this is heated to a temperature higher than the melting temperature of the thermoplastic resin,
It is then characterized by cooling, thereby achieving the above object.

第1図は本発明に用いられる製造装置の一例を示したも
のである。
FIG. 1 shows an example of a manufacturing apparatus used in the present invention.

この製造装置は、ロービング状の強化繊維1が巻回され
たロール1aをセットする巻戻しロール10と、粉体状
熱可塑性樹脂と繊維状微小充填材の混合組成物2が供給
されている容器20と、容器20を通過した強化繊維1
を引き取るピンチロール11と、強化繊維1がピンチロ
ール11で引き取られる途中に配設されており、強化繊
維1を押圧することにより、強化繊維1を所定幅に広げ
る押圧ロール40と、強化繊維1の上下面に一対配設さ
れており、強化繊維lに保持された過剰の粉体状熱可塑
性樹脂と繊維状微小充填材の混合組成物2を除去してそ
の保持量を一定にするスリッター50.51と、強化繊
維lに保持された上記混合組成物2を溶融させる遠赤外
線加熱炉60と、加熱された混合組成物2を押圧して強
化繊維1と一体化させる加熱ロール61と、を備えてい
る。
This manufacturing device includes an unwinding roll 10 in which a roll 1a wound with roving-shaped reinforcing fibers 1 is set, and a container in which a mixed composition 2 of a powdery thermoplastic resin and a fibrous microfiller is supplied. 20 and the reinforcing fiber 1 that has passed through the container 20
a pinch roll 11 that takes off the reinforcing fibers 1; a press roll 40 that is disposed in the middle of the reinforcing fibers 1 being taken off by the pinch rolls 11 and presses the reinforcing fibers 1 to spread the reinforcing fibers 1 to a predetermined width; A pair of slitters 50 are disposed on the upper and lower surfaces of the reinforcing fibers 1 to remove excess mixed composition 2 of powdered thermoplastic resin and fibrous microfiller retained on reinforcing fibers 1 to keep the retained amount constant. .51, a far-infrared heating furnace 60 that melts the mixed composition 2 held on the reinforcing fibers 1, and a heating roll 61 that presses the heated mixed composition 2 to integrate it with the reinforcing fibers 1. We are prepared.

容器20の底部には多数の通気孔25が設けられており
、気体供給路21から送られた気体がこの通気孔25を
通って容器20の内部へ送られるようになっている。従
って、容器20内に入れられた上記混合組成物2は、そ
の気体の噴出によって流動化した状態となり流動床26
が形成されている。容器20の壁の上端部及び内部には
、強化繊維1を案内するガイドロール22.23.24
が配設されている。
A large number of ventilation holes 25 are provided at the bottom of the container 20, and the gas sent from the gas supply path 21 is sent into the interior of the container 20 through the ventilation holes 25. Therefore, the mixed composition 2 placed in the container 20 becomes fluidized by the jetting of the gas, and the fluidized bed 26
is formed. At the upper end and inside the wall of the container 20, there are guide rolls 22, 23, 24 for guiding the reinforcing fibers 1.
is installed.

次に、上記製造装置を用いて本発明の製造方法を説明す
る。
Next, the manufacturing method of the present invention will be explained using the above manufacturing apparatus.

強化繊維1の端部はピンチロール11で挟持されていて
、ピンチロール11の駆動により強化繊維1は所定速度
で引き取られてロール1aの外側より撚りがかからない
ように順次巻戻される。そして、強化繊維1はガイドロ
ール22.23.24で案内されて容器20内に導かれ
る。容器20内には粉体状熱可塑性樹脂と繊維状微小充
填材の混合組成物2が入れられており、容器20内を通
過する強化繊維lのフィラメント間に混合組成物2が侵
入して保持される。特に、上記したように、容器20内
に通気孔25から気体を噴出させて流動床26を形成す
ることにより、それらの気体の噴出及び混合組成物2の
衝突等によって強化繊維1はフィラメント状に開繊され
易くなり、混合組成物2を強化繊維1のフィラメント間
に容易に侵入させることができる。
The ends of the reinforcing fibers 1 are held between pinch rolls 11, and as the pinch rolls 11 are driven, the reinforcing fibers 1 are taken off at a predetermined speed and sequentially rewound from the outside of the rolls 1a without being twisted. The reinforcing fibers 1 are guided by guide rolls 22, 23, 24 into the container 20. A mixed composition 2 of a powdered thermoplastic resin and a fibrous microfiller is placed in the container 20, and the mixed composition 2 enters between the filaments of the reinforcing fibers l passing through the container 20 and is retained. be done. In particular, as described above, by ejecting gas from the vent hole 25 into the container 20 to form the fluidized bed 26, the reinforcing fibers 1 become filament-like due to the ejection of the gas and the collision of the mixed composition 2. The fibers are easily opened, and the mixed composition 2 can easily penetrate between the filaments of the reinforcing fibers 1.

また、強化繊維1の開繊装置等を用いて、容器20内で
強化繊維1を機械的に開繊するようにしてもよい。
Further, the reinforcing fibers 1 may be mechanically opened within the container 20 using a reinforcing fiber 1 opening device or the like.

次に、混合組成物2が保持された強化繊維1は、ロール
40で押え付けられながら通過することで一定幅の帯状
に広げられ、引き続いて、強化繊維1がスリッター50
.51の上下面を通過する際に過剰の混合組成物2は除
去され、その保持量が一定とされる。引き続いて、上記
混合組成物2が保持された強化繊維1は遠赤外線加熱炉
60に供給され、ここで加熱されて粉体状熱可塑性樹脂
が溶融する。
Next, the reinforcing fibers 1 holding the mixed composition 2 are passed through a roll 40 while being pressed, and are spread out into a belt shape of a constant width.
.. Excess mixed composition 2 is removed when passing through the upper and lower surfaces of 51, and the amount retained is kept constant. Subsequently, the reinforcing fiber 1 holding the mixed composition 2 is supplied to a far-infrared heating furnace 60, where it is heated to melt the powdery thermoplastic resin.

その後、加熱ロール61を通過する際に、上記溶融した
熱可塑性樹脂が上下両面から押圧される結果、この溶融
樹脂が強化繊維1及び微小充填材側へ押し込まれて溶融
樹脂と繊維状微小充填材及び強化繊維lとが一体化され
る。次いで、ピンチロール11を通過して冷却されるこ
とにより、薄帯状プリプレグの形態で繊維強化複合材が
得られる。
Thereafter, when passing through the heating roll 61, the molten thermoplastic resin is pressed from both upper and lower surfaces, and as a result, this molten resin is pushed toward the reinforcing fibers 1 and the fine filler, and the molten resin and the fibrous fine filler are and reinforcing fibers 1 are integrated. Next, by passing through pinch rolls 11 and cooling, a fiber-reinforced composite material is obtained in the form of a ribbon-like prepreg.

本発明で用いられるロービング状の連続した強化繊維1
としては、ガラス繊維、炭素繊維、微細な金属線等の無
機繊維や、アラミド繊維、ポリエステル繊維、ポリアミ
ド繊維等の有機繊維が用いられ、通常繊維径2〜40μ
mのフィラメントを数百〜数十1本同方向に束ねて構成
された連続する繊維である。また、強化繊維Iは樹脂と
の接着強度を向上させるために通常行われるサイジング
処理が施されていても良い。また、使用する粉体状熱可
塑性樹脂の溶融温度において熱的に安定な繊維が選ばれ
る。
Roving-shaped continuous reinforcing fiber 1 used in the present invention
Inorganic fibers such as glass fibers, carbon fibers, and fine metal wires, and organic fibers such as aramid fibers, polyester fibers, and polyamide fibers are used, and the fiber diameter is usually 2 to 40μ.
It is a continuous fiber composed of several hundred to several dozen m filaments bundled in the same direction. Further, the reinforcing fibers I may be subjected to a commonly performed sizing treatment in order to improve the adhesive strength with the resin. In addition, fibers are selected that are thermally stable at the melting temperature of the powdered thermoplastic resin used.

本発明で用いられる粉体状熱可塑性樹脂は、ボリエチレ
ン、ポリプロピレン、ポリ塩化ビニル、ポリスルホン、
ポリアミド、ポリフッ化ビニリデン、ポリフェニレンサ
ルファイド、ポリエーテルエーテルケトン等の熱により
軟化溶融する樹脂が総て使用可能である。また、これら
の熱可塑性樹脂の混合物も使用し得る。安定剤、潤滑剤
、加工助剤、可塑剤、染料、顔料のような添加剤を、熱
可塑性樹脂に配合しても良い。この粉体状熱可塑性樹脂
の平均粒子径は、1000μm以下が好ましい。
Powdered thermoplastic resins used in the present invention include polyethylene, polypropylene, polyvinyl chloride, polysulfone,
All resins that are softened and melted by heat, such as polyamide, polyvinylidene fluoride, polyphenylene sulfide, and polyetheretherketone, can be used. Mixtures of these thermoplastics may also be used. Additives such as stabilizers, lubricants, processing aids, plasticizers, dyes, and pigments may be incorporated into the thermoplastic resin. The average particle diameter of this powdery thermoplastic resin is preferably 1000 μm or less.

粉体状熱可塑性樹脂の平均粒子径が1000μmを上回
ると流動床中での粉体の流動が好適に起こらず、ロービ
ング状の連続強化繊維のフィラメント間への熱可塑性樹
脂の付着が困難となる傾向にある。
If the average particle size of the powdered thermoplastic resin exceeds 1000 μm, the powder will not flow properly in the fluidized bed, making it difficult to adhere the thermoplastic resin between the filaments of the roving-like continuous reinforcing fibers. There is a tendency.

本発明で用いられる繊維状微小充填材は、ガラス繊維、
炭素繊維等の無機繊維のミルドファイバ、あるいは窒化
ケイ素、炭化ケイ素、チタン酸カリウム等のウィスカー
が好適に用いられる。この繊維状微小充填材の平均アス
ペクト比(L/D)は5以上であるのが好ましい。平均
アスペクト比が5を下回ると、繊維状としての機能がな
くなり、繊維強化複合材の幅及び厚み方向に対する強度
が充分得られない。また、繊維状微小充填材の繊維長は
10〜1000μmの範囲が好ましい。繊維長が100
0μmを上回ると、流動床26中での粉体の流動が好適
に起こらず、ロービング状の強化繊維1のフィラメント
間に繊維状微小充填材が充分付着しない。
The fibrous microfillers used in the present invention include glass fibers,
Milled inorganic fibers such as carbon fibers, or whiskers such as silicon nitride, silicon carbide, potassium titanate, etc. are preferably used. The average aspect ratio (L/D) of this fibrous microfiller is preferably 5 or more. When the average aspect ratio is less than 5, the fiber-like function is lost, and the fiber-reinforced composite material cannot have sufficient strength in the width and thickness directions. Moreover, the fiber length of the fibrous microfiller is preferably in the range of 10 to 1000 μm. Fiber length is 100
If it exceeds 0 μm, the powder will not flow properly in the fluidized bed 26, and the fibrous microfiller will not adhere sufficiently between the filaments of the roving-shaped reinforcing fibers 1.

10μmを下回ると繊維状としての機能がなくなり、繊
維強化複合材の幅及び厚み方向に対する強度が充分得ら
れない。
If it is less than 10 μm, it loses its fibrous function, and the fiber-reinforced composite material cannot have sufficient strength in the width and thickness directions.

また、繊維状微小充填材は、粉体状熱可塑性樹脂と繊維
状微小充填材との混合組成物2中において1〜30容量
%の範囲で含有されるのが良い。1容量%を下回ると、
繊維状微小充填材の添加効果が小さいため繊維強化複合
材の幅及び厚み方向に対する強度が充分得られず、30
容量%を上回ると熱可塑性樹脂の結合力が低下し、強化
繊維1への熱可塑性樹脂の含浸性が損なわれる傾向にあ
る。
Further, the fibrous microfiller is preferably contained in the mixed composition 2 of the powdered thermoplastic resin and the fibrous microfiller in a range of 1 to 30% by volume. If it is less than 1% by volume,
Because the effect of adding the fibrous microfiller is small, sufficient strength in the width and thickness directions of the fiber-reinforced composite material cannot be obtained;
If it exceeds the volume %, the bonding strength of the thermoplastic resin decreases, and the impregnation of the thermoplastic resin into the reinforcing fibers 1 tends to be impaired.

上記流動床26を形成するための気体としては、通常空
気が用いられ、コンプレッサーやブロアー等から供給さ
れる。必要に応じて窒素、二酸化炭素、ヘリウム、アル
ゴン等の不活性気体が用いられる。
Air is normally used as the gas for forming the fluidized bed 26, and is supplied from a compressor, blower, or the like. An inert gas such as nitrogen, carbon dioxide, helium, or argon is used as necessary.

なお、本発明の他の製造方法として、混合組成物2が保
持された強化繊維1を、粉体状熱可塑性樹脂の溶融温度
以上の温度に加熱された所望形状のスリットを有する金
型中を通過させることにより、溶融樹脂と微小充填材及
び混合組成物2と強化繊維1とを一体化させつつ所望の
横断面形状を有する長尺の繊維強化複合材を得ても良い
In addition, as another manufacturing method of the present invention, the reinforcing fiber 1 holding the mixed composition 2 is placed in a mold having a slit of a desired shape and heated to a temperature equal to or higher than the melting temperature of the powdered thermoplastic resin. By passing, the molten resin, the fine filler, the mixed composition 2, and the reinforcing fibers 1 may be integrated, and a long fiber-reinforced composite material having a desired cross-sectional shape may be obtained.

本発明によって得られた繊維強化複合材は、強化繊維l
を構成するフィラメントが開繊した状態で一方向に配向
しているため強化繊維1の曲げ方向の強度が高く、また
繊維状微小充填材がランダムに配向した状態で樹脂によ
り一体化しているため強化繊維lの長手方向に沿った割
れ進展がなく、繊維間方向、つまり繊維強化複合材の幅
及び厚み方向の強度も高いものである。
The fiber-reinforced composite material obtained by the present invention has reinforcing fibers l
The strength of the reinforcing fiber 1 in the bending direction is high because the filaments constituting it are oriented in one direction in an open state, and the fibrous microfiller is randomly oriented and integrated by the resin, so it is reinforced. There is no crack propagation along the longitudinal direction of the fibers 1, and the strength in the inter-fiber direction, that is, the width and thickness direction of the fiber reinforced composite material is also high.

このようにして得られた繊維強化複合材は、種々の形状
に成形することができ、単独であるいは複数枚を積層し
、又は他の部材と積層して板材、管等に用いることがで
きる。
The fiber-reinforced composite material thus obtained can be molded into various shapes, and can be used alone, in a stack of multiple sheets, or in a stack with other members to make plates, pipes, etc.

(実施例) 以下に本発明を実施例に基づいて詳細に説明する。(Example) The present invention will be explained in detail below based on examples.

実】l粗L 〈使用材料〉 強化繊維としてガラス繊維ロービング(フィラメント径
22μm 、 4400g/km)を1本用いた。粉体
状熱可塑性樹脂と繊維状微小充填材との混合組成物とし
て下記配合で混合したものを用いた。
[Material] One glass fiber roving (filament diameter 22 μm, 4400 g/km) was used as the reinforcing fiber. A mixed composition of a powdered thermoplastic resin and a fibrous microfiller was used in the following formulation.

ステアリルアルコール ポリオレフィンワックス ・・・ 1重量部 ・・・ 1重量部 く製造条件〉 第1図に示した装置を用いて薄帯状の繊維強化複合材(
プリプレグとも称される)を製造した。
Stearyl alcohol polyolefin wax... 1 part by weight... 1 part by weight Manufacturing conditions> A thin strip-shaped fiber reinforced composite material (
(also called prepreg) was produced.

容器20は硬質ポリ塩化ビニル製のものを用い、容器2
0内に上記混合組成物2を投入した。コンプレッサーに
より容器20底部の通気孔25がら空気を容器20内へ
噴出させて流動床26を形成した。
The container 20 is made of hard polyvinyl chloride.
The above-mentioned mixed composition 2 was put into the container. A fluidized bed 26 was formed by blowing air into the container 20 through the vent hole 25 at the bottom of the container 20 using a compressor.

上記ロービング1の引き取り速度は、ピンチロール11
にて150ca+/sinの一定速度とした。加熱炉6
0は表面温度約340℃に設定された赤外線ヒーターを
有するものを用いた。加熱ロール61の温度は190℃
に設定した。
The pick-up speed of the roving 1 is as follows:
The speed was set at a constant speed of 150 ca+/sin. Heating furnace 6
0 was equipped with an infrared heater whose surface temperature was set to about 340°C. The temperature of the heating roll 61 is 190°C
It was set to

得られた薄帯状の繊維強化複合材は幅約301nfl+
、厚み約0.5 mmであった。また、連続製造中に繊
維強化複合材は、その強化繊維間方向に分かれることも
なかった。
The resulting ribbon-shaped fiber reinforced composite material has a width of approximately 301nfl+
, and the thickness was about 0.5 mm. Further, during continuous production, the fiber-reinforced composite material did not separate in the direction between its reinforcing fibers.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み2.0 mの一方向強化板を得、この強化板の曲
げ試験及びデュポン衝撃試験を行ったところ、曲げ強度
は40kg/IIw+”であり、衝撃強度は55kg−
C11であった。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectionally reinforced plate with a thickness of 2.0 m. When this reinforced plate was subjected to a bending test and a DuPont impact test, the bending strength was 40 kg/IIw + ”, and the impact strength is 55kg-
It was C11.

11拠l く使用材料〉 強化繊維としてガラス繊維ロービング(フィラメント径
22μ餉、4400g/km)を1本用いた。粉体状熱
可塑性樹脂と繊維状微小充填材との混合組成物として、
下記配合で混合したものを用いた。
11 Materials used> One glass fiber roving (filament diameter 22μ, 4400g/km) was used as the reinforcing fiber. As a mixed composition of powdered thermoplastic resin and fibrous microfiller,
A mixture of the following composition was used.

ナイロン−6(平均粒子径80μm)・・・90重量部
チタン酸カリウムウィスカー (平均長さ50μm直径1μl11)   ・・・10
重量蔀く製造条件〉 実施例1と同様に、容器20内に流動床26を形成した
装置を用い、以下の条件で薄帯状の繊維強化複合材を製
造した。ロービング1の引き取り速度は、ピンチロール
11にて150cm/minの一定速度とした。加熱炉
60は表面温度約380°Cに設定された赤外線ヒータ
ーを有するものとした。加熱ロール61の温度は225
°Cに設定した。
Nylon-6 (average particle size 80 μm)...90 parts by weight Potassium titanate whiskers (average length 50 μm diameter 1 μl11)...10
Manufacturing conditions for weight> In the same manner as in Example 1, a ribbon-shaped fiber reinforced composite material was manufactured under the following conditions using an apparatus in which a fluidized bed 26 was formed in a container 20. The roving 1 was taken at a constant speed of 150 cm/min by the pinch roll 11. The heating furnace 60 was equipped with an infrared heater whose surface temperature was set to about 380°C. The temperature of the heating roll 61 is 225
It was set at °C.

得られた薄帯状繊維強化複合材は幅約40mm、厚み約
0.5 mmであった。また、連続製造中に薄帯状繊維
強化複合材は、その強化繊維間方向に分かれることもな
かった。
The obtained ribbon-shaped fiber reinforced composite material had a width of about 40 mm and a thickness of about 0.5 mm. Further, during continuous production, the ribbon-shaped fiber-reinforced composite material did not separate in the direction between its reinforcing fibers.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み2.0 trttaの一方向強化板を得、この強
化板の曲げ試験及びデュポン衝撃試験を行ったところ、
曲げ強度は55kg/mm″であり、衝撃強度は65k
g−Cffiであった。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectionally reinforced plate with a thickness of 2.0 trtta, and this reinforced plate was subjected to a bending test and a DuPont impact test.
Bending strength is 55kg/mm'' and impact strength is 65k
It was g-Cffi.

災施尉主 〈使用材料〉 強化繊維としてPAN系炭素炭素繊維ロービングィラメ
ント径8μm、フィラメント数6000本)を1本用い
た。粉体状熱可塑性樹脂と繊維状微小充填材との混合組
成物として、下記配合で混合したものを用いた。
<Materials used> One PAN-based carbon fiber roving filament (diameter 8 μm, number of filaments 6000) was used as the reinforcing fiber. A mixed composition of a powdered thermoplastic resin and a fibrous microfiller was used in the following formulation.

〈製造条件〉 実施例1と同様に、容器20内に流動床26を形成した
装置を用い、以下の条件で薄帯状の繊維強化複合材を製
造した。ロービング1の引き取り速度は、ピンチロール
11にて120cm/sinの一定速度とした。加熱炉
60は表面温度約350℃に設定された赤外線ヒーター
を有するものとした。加熱ロール61は200°Cに設
定した。
<Manufacturing Conditions> Similarly to Example 1, a ribbon-shaped fiber reinforced composite material was manufactured under the following conditions using an apparatus in which a fluidized bed 26 was formed in a container 20. The roving 1 was taken at a constant speed of 120 cm/sin by the pinch roll 11. The heating furnace 60 was equipped with an infrared heater whose surface temperature was set to about 350°C. The heating roll 61 was set at 200°C.

得られた薄帯状の繊維強化複合材は幅約20mm、厚み
約0.5日であった。また、連続製造中に繊維強化複合
材は、その強化繊維間方向に分かれることもなかった。
The obtained ribbon-shaped fiber-reinforced composite material had a width of about 20 mm and a thickness of about 0.5 days. Further, during continuous production, the fiber-reinforced composite material did not separate in the direction between its reinforcing fibers.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み2.0 amの一方向強化板を得、この強化板の
曲げ試験及びデュポン衝撃試験を行ったところ、曲げ強
度は65kg/+vm”であり、衝撃強度は65kg−
ctaであった。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectionally reinforced plate with a thickness of 2.0 am. When this reinforced plate was subjected to a bending test and a DuPont impact test, the bending strength was 65 kg/+vm. ”, and the impact strength is 65kg-
It was cta.

1較■ 〈使用材料〉 強化繊維としてPAN系炭素炭素繊維ロービングィラメ
ント径8μm、フィラメント数6000本)を1本用い
た。粉体状熱可塑性樹脂と繊維状微小充填材の混合組成
物として、下記配合で混合したものを用いた。
Comparison 1 ■ <Materials used> One PAN-based carbon fiber roving filament (diameter: 8 μm, number of filaments: 6000) was used as the reinforcing fiber. A mixed composition of a powdered thermoplastic resin and a fibrous microfiller was used in the following formulation.

(以下余白) ブチル錫含硫黄系安定剤   ・・・ 3重量部ステア
リルアルコール    ・・・ 1重量部ポリオレフィ
ンワックス   ・・・ 1重量部〈製造条件〉 実施例1と同様に、容器20内に流動床26を形成した
装置を用い、以下の条件で薄帯状の繊維強化複合材を製
造した。
(Leaving space below) Butyltin sulfur-containing stabilizer: 3 parts by weight Stearyl alcohol: 1 part by weight Polyolefin wax: 1 part by weight <Manufacturing conditions> As in Example 1, a fluidized bed was placed in the container 20. A ribbon-shaped fiber-reinforced composite material was manufactured using the apparatus in which No. 26 was manufactured under the following conditions.

ロービングlの引き取り速度は、ピンチロール11にて
120cm10+inの一定速度とした。加熱炉60は
表面温度約350″Cに設定された赤外線ヒーターを有
するものとした。加熱ロール61は200°Cに設定し
た。
The roving l was taken at a constant speed of 120 cm 10+in by the pinch roll 11. The heating furnace 60 had an infrared heater set at a surface temperature of about 350''C. The heating roll 61 was set at 200°C.

得られた薄帯状の繊維強化複合材は幅約30皿、厚み約
IIII!iであった。また、繊維強化複合材は連続製
造中に強化繊維の繊維方向に沿って分かれる割れ進展が
あった。
The resulting thin strip-shaped fiber-reinforced composite material has a width of about 30 plates and a thickness of about III! It was i. In addition, the fiber-reinforced composite material developed cracks that split along the fiber direction of the reinforcing fibers during continuous manufacturing.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み2.Ormの一方向強化板を得、この強化板の曲
げ試験及びデュポン衝撃試験を行ったところ、曲げ強度
は15kg/mm”であり、衝撃強度は5kg−c涌で
あった。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to a thickness of 2. A unidirectional reinforced plate of Orm was obtained, and this reinforced plate was subjected to a bending test and a DuPont impact test, and the bending strength was 15 kg/mm'' and the impact strength was 5 kg-c.

(発明の効果) このように、本発明の製造方法によれば、強化繊維のフ
ィラメントが一方向に揃えられていて曲げ方向の強度が
高く、しかも微小充填材が配向しない状態で熱可塑性樹
脂とともに一体化されていて幅方向及び厚み方向の強度
も高く、繊維の長手方向に沿った割れ等の生じない繊維
強化複合材を得ることができる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, the reinforcing fiber filaments are aligned in one direction and have high strength in the bending direction, and in addition, the fine filler is not oriented and can be used together with the thermoplastic resin. It is possible to obtain a fiber-reinforced composite material that is integrated, has high strength in the width direction and thickness direction, and does not cause cracks or the like along the longitudinal direction of the fibers.

4  パ  の   な蕾゛H 第1図は本発明に用いる製造装置の一実施例を示す概略
図である。
Figure 1 is a schematic diagram showing an embodiment of the manufacturing apparatus used in the present invention.

1・・・強化繊維、2・・・混合組成物。1... Reinforcing fiber, 2... Mixed composition.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 1、粉体状熱可塑性樹脂と繊維状微小充填材の混合組成
物の中を、多数の連続するフィラメントより構成される
ロービング状の強化繊維を通過させてフィラメント間に
混合組成物を保持させた後、これを熱可塑性樹脂の溶融
温度以上に加熱し、次いで冷却することを特徴とする繊
維強化複合材の製造方法。
1. A roving-shaped reinforcing fiber composed of a large number of continuous filaments was passed through a mixed composition of a powdered thermoplastic resin and a fibrous microfiller to hold the mixed composition between the filaments. A method for producing a fiber-reinforced composite material, which comprises heating the material to a temperature higher than the melting temperature of the thermoplastic resin, and then cooling the material.
JP31670488A 1988-12-15 1988-12-15 Production of fiber reinforced composite Pending JPH02160509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31670488A JPH02160509A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31670488A JPH02160509A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Publications (1)

Publication Number Publication Date
JPH02160509A true JPH02160509A (en) 1990-06-20

Family

ID=18079972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31670488A Pending JPH02160509A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Country Status (1)

Country Link
JP (1) JPH02160509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509199A (en) * 1998-01-16 2002-03-26 ネオプレク・アーゲー Fiber coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509199A (en) * 1998-01-16 2002-03-26 ネオプレク・アーゲー Fiber coating method

Similar Documents

Publication Publication Date Title
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
US5206085A (en) Preformed yarn useful for forming composite articles and process for producing same
JPS62135537A (en) Flexible composite material and production thereof
JP3068186B2 (en) Fiber reinforced porous sheet
JP3830307B2 (en) Method for producing molding material impregnated with thermoplastic resin
JPH02160509A (en) Production of fiber reinforced composite
JPH0144144B2 (en)
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JPH02160510A (en) Production of fiber reinforced composite
US5194106A (en) Method of making fiber reinforced porous sheets
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JP3234262B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JPH02160511A (en) Production of fiber reinforced composite
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JPH02160512A (en) Prepreg sheet and production thereof
JPH0615729A (en) Composite sheet for thermoforming
JP3027540B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin composite
JPH02160508A (en) Production of fiber reinforced composite
JP3667932B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced sheet
JPH0143412Y2 (en)
JPH05337972A (en) Production of glass fiber reinforced thermoplastic resin composite
JPH0580331B2 (en)
JPH04135743A (en) Production of fiber composite sheet
JP2023001961A (en) Method of manufacturing long-fiber reinforced resin