JPH02159504A - Coordinates measuring apparatus - Google Patents

Coordinates measuring apparatus

Info

Publication number
JPH02159504A
JPH02159504A JP31359588A JP31359588A JPH02159504A JP H02159504 A JPH02159504 A JP H02159504A JP 31359588 A JP31359588 A JP 31359588A JP 31359588 A JP31359588 A JP 31359588A JP H02159504 A JPH02159504 A JP H02159504A
Authority
JP
Japan
Prior art keywords
light
beam splitter
measured
reflected
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31359588A
Other languages
Japanese (ja)
Other versions
JPH0612243B2 (en
Inventor
Mitsuo Goto
後藤 充夫
Yoshihisa Tanimura
吉久 谷村
Toshiro Kurosawa
黒澤 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokyo Seimitsu Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP31359588A priority Critical patent/JPH0612243B2/en
Publication of JPH02159504A publication Critical patent/JPH02159504A/en
Publication of JPH0612243B2 publication Critical patent/JPH0612243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To achieve a smaller size of the apparatus as a whole, an expansion of a measuring range and a reduction in errors by arranging first-third beam dividers and a reflecting mirror comprising at least double rectangular trihedron mirrors and mounted on a contractor or a measuring table. CONSTITUTION:In a laser interferometer 12, a laser light 18 emitted from a light source is divided into a transmission light 28 and a reflected light 30 with a beam splitter 20 and the transmission light 28 is made to irradiate a reflector 17 on an object to be measured to be turned to a reflected transmission light 28A in inversion and incident into a beam splitter 22 to be divided into a transmission light 28A' and reflected light 28A''. A position detector 32 as two-split photodiode for detecting a bearing of an object to be measured is arranged on an extension of the transmission light 28A to control a bearing of the interferometer. Then, the reflected lights 30 and 28A'' are incident into a beam splitter 24 to interfere and the number of interference fringes are counted with a control section 26 to measured a distance between the interferometer 12 and the object to be measured. The control section 26 computes and displays coordinates of the object to be measured with a data processor based on data of dimensions obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は座標測定装置に係り、特にレーザ干渉計を利用
した座標測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coordinate measuring device, and particularly to a coordinate measuring device using a laser interferometer.

〔従来の技術〕[Conventional technology]

一般に、レーザ干渉計はその精度を利用して長さ等をミ
クロン単位で測定できる測長器、変位測定システム等様
々な分野で導入され、利用されている。
In general, laser interferometers have been introduced and used in various fields such as length measuring instruments and displacement measurement systems that can measure length and the like in microns by taking advantage of their accuracy.

第6図は従来のレーザ干渉計の原理図である。FIG. 6 is a diagram showing the principle of a conventional laser interferometer.

第6図のレーザ干渉計はレーザ光を出射するレーザ光源
50、ビームスプリッタ52、被測定物に設置される可
動反射鏡54、参照反射鏡56、可動反射鏡54と参照
反射鏡56からの反射光とによって得られた干渉縞をカ
ウントして可動反射鏡の移t[+量を表示する図示しな
い表示部とによって構成される。
The laser interferometer shown in FIG. 6 includes a laser light source 50 that emits laser light, a beam splitter 52, a movable reflector 54 installed on the object to be measured, a reference reflector 56, and reflections from the movable reflector 54 and the reference reflector 56. and a display unit (not shown) that counts the interference fringes obtained by the light and displays the amount of movement t[+ of the movable reflecting mirror.

出射されたレーザ光58はビームスプリッタ52によっ
て光学的に分割され、反射光60と透過光62となる。
The emitted laser light 58 is optically split by a beam splitter 52 to become reflected light 60 and transmitted light 62.

そして、透過光62は移動する可動反射鏡54によって
反射され再びビームスプリッタ52に送られる。
The transmitted light 62 is then reflected by the moving movable reflecting mirror 54 and sent to the beam splitter 52 again.

参照反射鏡56によって反射された反射光60は、ビー
ムスプリッタ52で、可動反射鏡54によって反射した
透過光62と重ね合わされ、干渉縞が形成される。干渉
縞はフォトダイオード等により電気信号に光電変換され
、干渉縞の数をカウントし、表示部に可動反射鏡54の
移動量が表示される。
The reflected light 60 reflected by the reference reflecting mirror 56 is superimposed on the transmitted light 62 reflected by the movable reflecting mirror 54 at the beam splitter 52 to form interference fringes. The interference fringes are photoelectrically converted into electrical signals by a photodiode or the like, the number of interference fringes is counted, and the amount of movement of the movable reflecting mirror 54 is displayed on the display section.

また、被測定物に設置される可動反射鏡54として直角
3面プリズム、キャッツアイ、或いは第7図に示す直角
3面鏡64が使用されていた。
Further, as the movable reflecting mirror 54 installed on the object to be measured, a right-angled three-sided prism, a cat's eye prism, or a right-angled three-sided mirror 64 shown in FIG. 7 has been used.

2次元の座標測定装置においてレーザ干渉計を使用する
場合、定盤上の2′つの基準点にそれぞれレーザ干渉計
を配設して各々のレーザ干渉計から出射するレーザ光を
触子に取付けられた可動反射鏡54で反射させ、それぞ
れの干渉計から被測定物までの距離を測定する。2台の
レーザ干渉計間の距離は予め決まっているため、これら
のデータをもとに被測定物の座標が測定される。
When using a laser interferometer in a two-dimensional coordinate measuring device, the laser interferometer is placed at each of the 2' reference points on the surface plate, and the laser beam emitted from each laser interferometer is attached to a probe. The distance from each interferometer to the object to be measured is measured. Since the distance between the two laser interferometers is determined in advance, the coordinates of the object to be measured are measured based on this data.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のレーザ干渉計を用いた座標測定装
置は参照反射鏡を必要とするため、機器全体が大型にな
り、スペース効率が悪化するという欠点がある。
However, since a conventional coordinate measuring device using a laser interferometer requires a reference reflector, the entire device becomes large and space efficiency deteriorates.

また、従来の直角3面鏡64のレーザ光照射可能範囲(
測定可能範囲)は第8図に示されるように直角3面鏡6
4の方位を変化させない場合で、正面より±20°〜±
25°の範囲である。2次元座標測定装置の場合は2つ
の基準点く3次元座標測定装置では3つ)が必要なため
、第9図に示すように2台のレーザ干渉計66の測定可
能範囲67、レーザ干渉計68の測定可能範囲690重
複部分が測定可能範囲70となり、座標の測定範囲が非
常に狭いという問題がある。
In addition, the laser beam irradiation range of the conventional three-sided right-angled mirror 64 (
The measurable range) is as shown in FIG.
If the direction of 4 is not changed, ±20° to ± from the front.
The range is 25°. Two reference points are required for a two-dimensional coordinate measuring device (three for a three-dimensional coordinate measuring device), so as shown in FIG. There is a problem that the measurable range 690 of 68 overlaps with the measurable range 70, and the coordinate measurement range is extremely narrow.

また、前記の直角3面鏡10を使用した場合、誤差が低
減できない欠点がある。
Further, when the above-mentioned three-sided right-angled mirror 10 is used, there is a drawback that errors cannot be reduced.

本発明はこのような事情に鑑みてなされたもので、機器
全体が小型化されると共に座標測定可能範囲が広(、誤
差の少ない座標測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coordinate measuring device that can reduce the size of the entire device, has a wide coordinate measuring range (and has few errors).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記目的を達成する為に、レーザ光源より出
射されるレーザ光を第1の透過光とこれに直交する第1
の反射光とに分割する第1のビームスプリフタと、少な
くとも2連の直角3面鏡から成り触子又は測定テーブル
に取付けられた萌記第1の透過光を反射させる反射鏡と
、前記反射鏡によって反射された第1の透過光が入射し
第1の透過光を第2の透過光とこれに直交する第2の反
射光とに分割する第2のビームスプリフタと、第1の反
射光と第2の反射光とが入射し、第1の反射光と第2の
反射光とを干渉させる第3のビームスプリフタと、干渉
縞をカウントし反射鏡の移動量を測定して表示する制御
部とからなることを特徴とする。
In order to achieve the above object, the present invention combines a laser beam emitted from a laser light source into a first transmitted beam and a first transmitted beam perpendicular to the first transmitted beam.
a first beam splitter that splits the reflected light into a first beam splitter; a reflector that reflects the first transmitted light, which is made up of at least two sets of right-angled three-sided mirrors and is attached to a probe or measurement table; a second beam splitter into which the first transmitted light reflected by the mirror enters and splits the first transmitted light into a second transmitted light and a second reflected light perpendicular to the second transmitted light; A third beam splitter, into which the light and the second reflected light are incident, interferes with the first reflected light and the second reflected light, and a third beam splitter that counts interference fringes and measures and displays the amount of movement of the reflecting mirror. It is characterized by comprising a control section that performs the following functions.

〔作用〕[Effect]

本発明によれば、レーザ光を第1のビームスプリフタに
よって第1の透過光と第1の反射光とに分割し、第1の
透過光を触子または測定テーブルに取付けられた反射鏡
に照射して反射させ、この第1の反射光を第3のビーム
スプリフタに入射させるようにしている。
According to the present invention, a laser beam is split into a first transmitted light and a first reflected light by a first beam splitter, and the first transmitted light is sent to a reflector attached to a probe or a measuring table. The beam is irradiated and reflected, and this first reflected light is made to enter a third beam splitter.

また、可動反射鏡によって反射された第1の透過光を第
2のビームスプリッタへ入射させ、第2の透過光と第2
の反射光とに分割する。第2の反射光は第3のビームス
プリッタに入射し、第2の反射光と重ね合わされ干渉縞
を発生する。このように、参照鏡を使用しないため、光
学系の構造が簡単になると共に、レーザ干渉計の小型化
が可能である。
Further, the first transmitted light reflected by the movable reflecting mirror is made incident on the second beam splitter, and the second transmitted light and the second transmitted light are made to enter the second beam splitter.
and the reflected light. The second reflected light enters the third beam splitter and is superimposed on the second reflected light to generate interference fringes. In this way, since no reference mirror is used, the structure of the optical system is simplified and the laser interferometer can be downsized.

更に、座標測定装置用の反射鏡は、少なくとも2連の直
角3面鏡からなる。このため、座標測定の際は別個の直
角3面鏡に、レーザ光を各干渉計から照射して、得られ
た干渉縞をカウントして距離を測定し、そのデータをも
とに座標を算出することができる”。これにより、座標
測定可能範囲を拡大することができると共に、誤差の少
ない測定が可能である。
Furthermore, the reflecting mirror for the coordinate measuring device consists of at least two sets of right-angled three-sided mirrors. Therefore, when measuring coordinates, laser light is irradiated from each interferometer onto a separate three-sided right-angled mirror, the resulting interference fringes are counted and the distance is measured, and the coordinates are calculated based on that data. This makes it possible to expand the measurable range of coordinates and to perform measurements with fewer errors.

〔実施例〕〔Example〕

以下、添付図面に従って本発明に係る座標測定装置の好
ましい実施例を詳説する。
Hereinafter, preferred embodiments of the coordinate measuring device according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る座標測定装置の第1実施例を示す
斜視図である。第1図の3次元座標測定装置lOの測定
部本体部分は各基準点に配設された3台のレーザ干渉計
12・・・と、定!14、被測定物に接触することによ
って形状、寸法等の測定を行うプローブ(触子)16、
反射鏡17、X軸、Y軸及びZ軸方向の移動機構19.
21,23を主な構成としている。
FIG. 1 is a perspective view showing a first embodiment of a coordinate measuring device according to the present invention. The main body of the measuring unit of the three-dimensional coordinate measuring device IO shown in Fig. 1 includes three laser interferometers 12 installed at each reference point. 14. Probe 16 that measures the shape, dimensions, etc. by contacting the object to be measured;
Reflector 17, moving mechanism 19 in the X-axis, Y-axis, and Z-axis directions.
The main components are 21 and 23.

第2図はレーザ干渉計12の原理図である。第2図に示
されるように、レーザ干渉計12はレーザ光18を発射
する図示しない1ノ−ザ光源、干渉縞を形成する第1の
ビームスプリッタ20、第2のビームスプリッタ22、
第3のビームスプリッタ24からなる光学系と、干渉縞
をカウントする制御部26から構成されている。
FIG. 2 is a diagram showing the principle of the laser interferometer 12. As shown in FIG. 2, the laser interferometer 12 includes one laser light source (not shown) that emits a laser beam 18, a first beam splitter 20 that forms interference fringes, a second beam splitter 22,
It is composed of an optical system consisting of a third beam splitter 24 and a control section 26 that counts interference fringes.

レーザ光18の光軸上に1./−ザ光18を第1の透過
光28とこれに直交する第1の反射光30とに分割する
第1のビームスプリッタ20が配設される。第1の透過
光28は被測定物の反射鏡17に照射され、また第1の
反射光30はその先軸上に配設された第3のビームスプ
リッタ24へ導かれる。
1 on the optical axis of the laser beam 18. A first beam splitter 20 is provided that splits the light 18 into a first transmitted light 28 and a first reflected light 30 orthogonal thereto. The first transmitted light 28 is irradiated onto the reflecting mirror 17 of the object to be measured, and the first reflected light 30 is guided to the third beam splitter 24 disposed on the front axis thereof.

第1の透過光28は反射鏡17によって反射され、反射
透過光28Δとなり第1の透過光28と平省]にもどる
。第2のビー!・スプリッタ22は反射光28Aの光軸
りに配設され、反射透過光28Aを第2の透過光28Δ
′と、これに直交する第3のビームスブリック24に入
射する第2の反射光28A#とに分割する。
The first transmitted light 28 is reflected by the reflecting mirror 17, and becomes reflected transmitted light 28Δ, which returns to the first transmitted light 28 and the flat surface]. Second Bee! - The splitter 22 is arranged along the optical axis of the reflected light 28A, and converts the reflected transmitted light 28A into a second transmitted light 28Δ.
', and a second reflected light 28A# that enters the third beam brick 24 orthogonal thereto.

更に、反射透過光28Aの延長線トには被測定物の方位
を検出する2分割フォトダイードの位置検出器32が設
置され、干渉計12の方位を制御している。
Furthermore, a two-part photodiode position detector 32 for detecting the orientation of the object to be measured is installed on the extension line of the reflected and transmitted light 28A, and controls the orientation of the interferometer 12.

そして、第1の反射光30と第2の反射光28A′は第
3のビームスプリッタ24で干渉し、制御部26によっ
て干渉縞の数がカウントされ、各干渉別12と被測定物
との距離が測定される。制御部26は得られた各次元の
データをもとに図示しないデータブロセッザ等により、
被測定物の座標を演算]7表示する。
The first reflected light 30 and the second reflected light 28A' interfere with each other at the third beam splitter 24, and the number of interference fringes is counted by the control unit 26, and the distance between each interference group 12 and the object to be measured is is measured. Based on the obtained data of each dimension, the control unit 26 uses a data processor (not shown) or the like to
Calculate the coordinates of the object to be measured]7 Display.

前記のレーザ干渉計によれば、径照鏡を使用する必要が
ないので、レーザ干渉言4の小型化を図ることができ、
光学系の構造を簡単にすることが可能である。
According to the laser interferometer described above, since there is no need to use a beam mirror, the laser interferometer 4 can be made smaller.
It is possible to simplify the structure of the optical system.

第3図は本発明に係る3次元座標測定装置lOに使用さ
れる反射鏡17の斜視図である。第3図の反射鏡17は
L字面に形成された鏡34.36にL字面と直交する両
面鏡38.40を立設し−〔2連の直角3面鏡を形成し
、この2連の直角3面鏡を一対として4個の集合直角3
面鏡、を形成している。反射117はプローブ16に配
設され、プローブ16の動きに従って移動する。測定の
際はこれらの直角3面鏡各々に各レーザ干渉計12かみ
別個にレーザ光を照射するため、測定可能範囲が拡大さ
れる。そして、定般14上に置かれる図示しない被測定
物にプローブ16の先端を接触させながらプローブ16
を移動し、各測定点毎の座標データによって被測定物の
形状、寸法等を算出する。
FIG. 3 is a perspective view of the reflecting mirror 17 used in the three-dimensional coordinate measuring device IO according to the present invention. The reflecting mirror 17 in Fig. 3 is constructed by standing mirrors 34, 36 formed in an L-shaped surface and double-sided mirrors 38, 40 perpendicular to the L-shaped surface to form two sets of right-angled three-sided mirrors. A set of 4 right angles 3 with a pair of right angle three-sided mirrors
It forms a mirror. Reflector 117 is disposed on probe 16 and moves according to the movement of probe 16. During measurement, each of the 12 laser interferometers irradiates each of these three right-angled mirrors with laser light separately, so the measurable range is expanded. Then, while bringing the tip of the probe 16 into contact with an object to be measured (not shown) placed on the ruler 14, the probe 16 is
The shape, dimensions, etc. of the object to be measured are calculated based on the coordinate data of each measurement point.

第4図は本発明に係る座標測定装置の第2実施例を示す
斜視図である。第1図の3次元座標測定装置I L!:
の相違点はプローブ42を固定型とし、た点である。支
柱41に固定されたプローブ42の下方に、X軸、Y軸
、Z軸方向への移動機構43.45.47を有する測定
テーブル44を配設し、この測定テーブル44上に被測
定物を載せるようにしている。このため、測定の際は固
定されたプローブ42を測定テーブル44上の被測定物
に接触させながら、被測定物を測定テーブル44と共に
移動させて各次元毎のデータを得る。これらのデータを
もとに被測定物の形状、寸法等を算出するのは第1実施
例と同様である。更に、第2寅施例の特有の効果として
、レーザ干渉計12から出射されるレーザ光は被測定物
の形状により遮断されることがないため、測定中はレー
ザ光に注意を払う必要がな(なる。
FIG. 4 is a perspective view showing a second embodiment of the coordinate measuring device according to the present invention. The three-dimensional coordinate measuring device IL! shown in Figure 1. :
The difference is that the probe 42 is of a fixed type. A measurement table 44 having moving mechanisms 43, 45, 47 in the X-axis, Y-axis, and Z-axis directions is arranged below the probe 42 fixed to the support column 41, and the object to be measured is placed on this measurement table 44. I'm trying to post it. Therefore, during measurement, the fixed probe 42 is brought into contact with the object to be measured on the measurement table 44, and the object to be measured is moved together with the measurement table 44 to obtain data for each dimension. Calculating the shape, dimensions, etc. of the object to be measured based on these data is the same as in the first embodiment. Furthermore, as a unique effect of the second embodiment, the laser beam emitted from the laser interferometer 12 is not blocked by the shape of the object to be measured, so there is no need to pay attention to the laser beam during measurement. (Become.

また、第5図は2次元座標測定装置に使用される反射鏡
46の斜視図で、L字面に形成された鏡48に直交する
両面鏡50を立設して2連の直角3面鏡を形成している
。2次元座標測定装置においては2台のレーザ干渉計を
使用して各レーザ干渉計より各々の直角3面鏡にレーザ
光を照射するようにしている。これにより、照射可能範
囲が拡大されるのに伴い、被測定物に対する座標測定可
能範囲を拡げることができる。
FIG. 5 is a perspective view of a reflecting mirror 46 used in a two-dimensional coordinate measuring device, in which a double-sided mirror 50 is erected perpendicular to a mirror 48 formed in an L-shape to form two right-angled three-sided mirrors. is forming. In a two-dimensional coordinate measuring device, two laser interferometers are used, and each laser interferometer irradiates each right-angled three-sided mirror with laser light. Accordingly, as the irradiation range is expanded, the coordinate measurement range for the object to be measured can be expanded.

尚、2次元座標測定装置においては反射鏡46を定盤上
に固定し、レーザ干渉計を移動テーブル、又はプローブ
に配設するようにしてもよい。
In the two-dimensional coordinate measuring device, the reflecting mirror 46 may be fixed on a surface plate, and the laser interferometer may be arranged on a moving table or a probe.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る座標測定装置によれば
、参照反射鏡を用いないレーザ干渉計を使用しているの
で、座標測定袋装置全体の小型化を図ることができ、ス
ペース効率は向上する。また、各レーザ干渉計から照射
されるレーザ光は、それぞれ別個の反射鏡によって反射
されるため、測定可能範囲が拡大され名と共に、測定誤
差を低減することが可能である。
As explained above, according to the coordinate measuring device according to the present invention, since a laser interferometer that does not use a reference reflector is used, the entire coordinate measuring bag device can be downsized, and space efficiency is improved. do. Furthermore, since the laser beams emitted from each laser interferometer are reflected by separate reflecting mirrors, the measurable range is expanded, and measurement errors can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る座標測定装置の第1実施例を示す
斜視図、第2図は本発明に係る座標測定装置に使用され
るレーザ干渉計の原理図、第3図は本発明に係る反射鏡
の斜視図、第4図は本発明に係る座標測定装置の第2実
施例を示す斜視図、第5図は本発明に係る反射鏡の斜視
図、第6図は従来のレーザ干渉計の原理図、第7図は従
来の反射鏡の斜視図、第8図及び第9図は従来の反射鏡
に関する説明図である。 lO・・・3次元座標測定装置、 12・・・レーザ干
渉計、  14・・・定盤、  16・・・ブーローブ
、 17・・・反射鏡、 18・・・レーザ光、 19
・・・X軸移動機構、  20・・・第1のビームスプ
リッタ、  21・・・Y軸移動機構、 22・・・第
2のビームスプリッタ、  23・・・Z軸移動機構、
  24・・・第3のビームスプリフタ、 26・・・
制御部、 28・・・第1の透過光、 28A・・・反
射光、28A′・・・第2の透過光、 28八′・・・
第2の反射光、 30・・・第1の反射光、 34.3
6.48・・・L字面鏡、 38.40.50・・・両
面鏡、 42・・・固定プローブ、43・・・X軸移動
機構、 44・・・測定テーブル、45・・・Y軸移動
機構、46・・・2連直角3面鏡、 47・・・Z軸移
動機構。
FIG. 1 is a perspective view showing a first embodiment of the coordinate measuring device according to the present invention, FIG. 2 is a principle diagram of a laser interferometer used in the coordinate measuring device according to the present invention, and FIG. 3 is a perspective view showing the first embodiment of the coordinate measuring device according to the present invention. FIG. 4 is a perspective view of a second embodiment of the coordinate measuring device according to the present invention, FIG. 5 is a perspective view of the reflector according to the present invention, and FIG. 6 is a perspective view of a conventional laser interference device. FIG. 7 is a perspective view of a conventional reflecting mirror, and FIGS. 8 and 9 are explanatory diagrams of the conventional reflecting mirror. lO...Three-dimensional coordinate measuring device, 12...Laser interferometer, 14...Surface plate, 16...Boo lobe, 17...Reflector, 18...Laser light, 19
... X-axis moving mechanism, 20... First beam splitter, 21... Y-axis moving mechanism, 22... Second beam splitter, 23... Z-axis moving mechanism,
24...Third beam splitter, 26...
Control unit, 28...first transmitted light, 28A...reflected light, 28A'...second transmitted light, 288'...
Second reflected light, 30...First reflected light, 34.3
6.48... L-shaped mirror, 38.40.50... Double-sided mirror, 42... Fixed probe, 43... X-axis movement mechanism, 44... Measurement table, 45... Y-axis Movement mechanism, 46...2 right-angled three-sided mirror, 47...Z-axis movement mechanism.

Claims (1)

【特許請求の範囲】[Claims] (1)レーザ光源より出射されるレーザ光を第1の透過
光とこれに直交する第1の反射光とに分割する第1のビ
ームスプリッタと、 少なくとも2連の直角3面鏡から成り触子又は測定テー
ブルに取付けられた前記第1の透過光を反射させる反射
鏡と、 前記反射鏡によって反射された第1の透過光が入射し第
1の透過光を第2の透過光とこれに直交する第2の反射
光とに分割する第2のビームスプリッタと、 第1の反射光と第2の反射光とが入射し、第1の反射光
と第2の反射光とを干渉させる第3のビームスプリッタ
と、 干渉縞をカウントし反射鏡の移動量を測定して表示する
制御部と、 からなることを特徴とする座標測定装置。
(1) A first beam splitter that splits the laser light emitted from the laser light source into a first transmitted light and a first reflected light perpendicular to the first beam splitter, and at least two right-angled three-sided mirrors. or a reflecting mirror attached to a measurement table that reflects the first transmitted light; the first transmitted light reflected by the reflecting mirror is incident, and the first transmitted light is orthogonal to the second transmitted light; a second beam splitter which splits the reflected light into a second reflected light; a third beam splitter into which the first reflected light and the second reflected light enter and which interferes with the first reflected light and the second reflected light; A coordinate measuring device comprising: a beam splitter; and a control unit that counts interference fringes and measures and displays the amount of movement of a reflecting mirror.
JP31359588A 1988-12-12 1988-12-12 Coordinate measuring device Expired - Lifetime JPH0612243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31359588A JPH0612243B2 (en) 1988-12-12 1988-12-12 Coordinate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31359588A JPH0612243B2 (en) 1988-12-12 1988-12-12 Coordinate measuring device

Publications (2)

Publication Number Publication Date
JPH02159504A true JPH02159504A (en) 1990-06-19
JPH0612243B2 JPH0612243B2 (en) 1994-02-16

Family

ID=18043208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31359588A Expired - Lifetime JPH0612243B2 (en) 1988-12-12 1988-12-12 Coordinate measuring device

Country Status (1)

Country Link
JP (1) JPH0612243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242795A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Device for measuring three-dimensional shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242795A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Device for measuring three-dimensional shape

Also Published As

Publication number Publication date
JPH0612243B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US6870605B2 (en) Method of measuring length and coordinates using laser tracking interferometric length measuring instruments
US3765764A (en) Coordinate measuring instrument
EP0160999A2 (en) Position measuring device
US7027162B2 (en) System and method for three-dimensional measurement
EP0047237A1 (en) Coordinate locating device
EP2793042B1 (en) Positioning device comprising a light beam
US4334778A (en) Dual surface interferometer
CN116164673A (en) Straightness interferometry method based on optical interference principle
CN114252028B (en) Compact four-facula two-dimensional corner detection device combined with laser triangulation method
US4836678A (en) Double-path interferometer
JPH095059A (en) Flatness measuring device
JPH02159504A (en) Coordinates measuring apparatus
JPH03167404A (en) Method for measuring size of large object
US3419331A (en) Single and double beam interferometer means
JPH0754802Y2 (en) Contact type profilometer
JPH067290Y2 (en) Reflector for laser interferometer
JP3705863B2 (en) Height measuring device and height measuring method
JPH0233962B2 (en)
JP3806769B2 (en) Position measuring device
JPH11108614A (en) Light-wave interference measuring instrument
JPH01235807A (en) Depth measuring instrument
US4516854A (en) Interferometric angular measurement system
JP3107411B2 (en) Rotary laser light output device
JPS59136604A (en) Multiple optical path laser interferometer
JPH01142401A (en) Optical displacement measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term