JPS59136604A - Multiple optical path laser interferometer - Google Patents

Multiple optical path laser interferometer

Info

Publication number
JPS59136604A
JPS59136604A JP58011071A JP1107183A JPS59136604A JP S59136604 A JPS59136604 A JP S59136604A JP 58011071 A JP58011071 A JP 58011071A JP 1107183 A JP1107183 A JP 1107183A JP S59136604 A JPS59136604 A JP S59136604A
Authority
JP
Japan
Prior art keywords
light
optical path
beams
plane
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58011071A
Other languages
Japanese (ja)
Inventor
Masahiro Okaji
岡路 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58011071A priority Critical patent/JPS59136604A/en
Publication of JPS59136604A publication Critical patent/JPS59136604A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02018Multipass interferometers, e.g. double-pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To improve resolving power for measuring length by disposing a quarter-wave plate between a composite prism which reflects two split beams by a plural number of times between two plane reflection mirrors and makes the same incident to a synthetic optical system and the plane reflection mirrors. CONSTITUTION:Laser incident light 1 is split to two parallel beams 2, 2 by a beam splitter (BS). The split beams are repeatedly reflected via a lambda/4 plate 13 between the respective faces in a composite prism 12 having reflection faces 26, 27 intersecting orthogonally with each other and plane mirrors 14, 15 in the sequence shown by the numbers in round circles. The inclination with the mirrors 14, 15 is absorbed by the reflections and the beams 29, 29 passing the same optical path as the optical path of incident light 2, 2 are emitted. The emitted beams are again made incident to the BS11 by which the beams are combined to exit light 30 parallel with the light 1. Since the plate 13 rotates 90 deg. the plane of polarization of the reflected light twice before and after by the plate 13, the loss of the light in the optical path is hardly generated. The length of the optical path is increased by multiplexing the optical path and the resolving power for measuring length is improved.

Description

【発明の詳細な説明】 本発明は、例えば工作機械における姿勢測定や精密位置
決め、超微小変位の測定等に使用される多重光路レーザ
干渉計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-optical laser interferometer used, for example, in attitude measurement, precision positioning, and measurement of ultra-fine displacement in machine tools.

一般に、精密測定にはマイケルソン型の光干渉計が多用
されているが、このようなマイケルソン干渉計において
は、反射鏡が傾くとそれに対応して本来の等浮子渉縞が
変化し、それが…1j長における大きな誤差要因となる
。上記反射鏡の傾きがさらに増大すると干渉縞の検出さ
え困難になる。このような反射鏡の傾きにより反射光の
波面が傾くのを防ぐためには、一般にコーナーキー−ブ
プリズムが用いられるが、高精度のコーナーキー−ププ
リズムの製作は容易ではなく、従って高価なものになる
という欠点がある。また、光干渉法による熱膨張率の測
定のように、被測定物と反射鏡の接触面が厳密に一致す
ることを必要条件とする測定等においては、コーナーキ
ー−ブプリズムを使用することができない。
In general, Michelson type optical interferometers are often used for precision measurements, but in such Michelson interferometers, when the reflecting mirror is tilted, the original equi-floating interference fringes change accordingly. ... becomes a major error factor in the 1j length. If the inclination of the reflecting mirror further increases, even detection of interference fringes becomes difficult. In order to prevent the wavefront of the reflected light from being tilted due to the tilt of the reflecting mirror, a corner-keep prism is generally used, but manufacturing a corner-keep prism with high precision is not easy and is therefore expensive. There is a drawback. Additionally, corner keve prisms cannot be used in measurements that require the contact surfaces of the object to be measured and the reflecting mirror to exactly match, such as the measurement of the coefficient of thermal expansion using optical interferometry. .

本発明の目的は、前記コーナーキー−ブプリズムを用い
たりすることなく、安価で使用箇所の制限の少ない平面
鏡を用いつつも、傾きによる測長誤差を事実上無視でき
る程度にし7て高精度な測長をn」能にした多重光路レ
ーザー干渉計を得ることにある。
An object of the present invention is to use a plane mirror that is inexpensive and has few restrictions on where it can be used, without using the corner keve prism, and to make length measurement errors due to inclination virtually negligible, thereby enabling high-precision measurement. The object of the present invention is to obtain a multi-path laser interferometer with a length n''.

また、本発明の他の目的は、マイケルノン型の干渉計に
おける光路を多重化して光路長を逓倍(2倍、4倍、ま
だは8倍)することにより測長分解能を著しく向上させ
た多重光路レーザー干渉計を得ることにある。
Another object of the present invention is to multiplex the optical path in a Michaelnon interferometer and multiply the optical path length (2 times, 4 times, still 8 times) to significantly improve the length measurement resolution. The objective is to obtain an optical path laser interferometer.

上記目的を達成するため、本発明の多重光路レーザー干
渉計は、レーザー光源からの入射光をそれに平行な2本
の光線に分割すると共に同一光路を戻ってくる上記2本
の光線を合成して射出光とする光学系と、上記光学系で
分割された2本の光線を2枚の平面反射鏡との間で複数
(ロ)反射を繰り返させた後再び上記光学系に入射させ
る複合プリズムと、上記複合プリズムと一対の平面反射
鏡との間に配設された4分の1波長板とにより構成され
る。
In order to achieve the above object, the multi-path laser interferometer of the present invention splits the incident light from a laser light source into two parallel light beams, and combines the two light beams returning along the same optical path. an optical system that emits light; and a compound prism that causes the two light beams split by the optical system to undergo multiple (b) reflections between two flat reflecting mirrors and then enter the optical system again. , and a quarter wavelength plate disposed between the above-mentioned composite prism and a pair of plane reflecting mirrors.

以下、本発明の実施例について説明するに先立ち、まず
、第1因6に基づいて本発明の詳細な説明する。
Hereinafter, before describing embodiments of the present invention, the present invention will first be described in detail based on the first factor 6.

第1図の原理説明図において、lは互いに直交する二つ
の偏光半透面2,2をもった偏光ビームスプリッタ−1
3は4分の1波長板、4は平面反射鏡で、それらを同図
に示す位置関係に配設した場合、図示したようにレーザ
ーの入射光■と射出光■、■は常に平行になる。即ち、
上記光学系において、入射光■が平面反射鏡4に対して
垂直である場合には、入射光■と同一の光路を戻る反射
光■によって同図に破線で示す反射光■、■、■及び射
出光■が得られ、この射出光■け入射光■と平行となっ
゛ている。また平面反射鏡4が時計方向に角匿θだけ傾
くと、その平面反射鏡4からの反射光は同じく時計方向
に角度2θだけ傾いたものとなシ、それが偏光ビームス
プリッタ−1の偏光半透面2,2で順次反射した後(反
射光■、■)、平面反射鏡4で上記とは逆に反時言1方
向に角度2θだけ傾き、それにより射出光■は入射光■
と平行なものとなる。
In the principle explanatory diagram of FIG.
3 is a quarter-wave plate, and 4 is a plane reflecting mirror. When these are arranged in the positional relationship shown in the figure, the laser incident light ■ and the emitted light beams ■ and ■ will always be parallel as shown in the figure. . That is,
In the above optical system, when the incident light (■) is perpendicular to the plane reflecting mirror 4, the reflected light (■) returns along the same optical path as the incident light (■), and the reflected lights (■, ■, ■) shown by broken lines in the same figure and An emitted light (2) is obtained, and this emitted light (1) is parallel to the incident light (2). Furthermore, when the plane reflector 4 is tilted clockwise by an angle θ, the reflected light from the plane reflector 4 is also tilted clockwise by an angle 2θ. After being sequentially reflected by the transparent surfaces 2 and 2 (reflected light ■, ■), the plane reflecting mirror 4 tilts in the counterclockwise direction by an angle 2θ, contrary to the above, so that the emitted light ■ becomes the incident light ■
It becomes parallel to .

これによって明らかなように、上記ブC学系はコーナー
キー−ブプリズムと同様に機能し、従ってこの光学系を
利用することによりマイケルノン型の光干渉計における
反射鏡の傾きの問題を解決することができる。
As is clear from this, the BuC optical system described above functions similarly to a corner key prism, and therefore, by utilizing this optical system, the problem of the tilt of the reflecting mirror in the Michelnon type optical interferometer can be solved. I can do it.

なお、図中の矢印は光の進行方向を示し、また矢印の後
方の交差線及び丸印は、それらの印を付された光が紙面
に平行な偏光及び紙面に垂直な偏光であることを示して
いる。また、4分の1波長板3は、それによって平面反
射鏡4への入射光及び反射光の偏光面を前後二回にわた
り90°回転させるので、光路中で光の損失を殆んど生
じさせない。
Note that the arrows in the figure indicate the direction of travel of the light, and the intersecting lines and circles behind the arrows indicate that the light marked with these marks is polarized light parallel to the paper surface and polarization perpendicular to the paper surface. It shows. In addition, the quarter-wave plate 3 rotates the plane of polarization of the incident light and the reflected light on the plane reflecting mirror 4 by 90 degrees twice, causing almost no loss of light in the optical path. .

次に、上述した原理に基づく本発明の実施例を第2図な
いし第6図に基づいて説明する。
Next, embodiments of the present invention based on the above-described principle will be described with reference to FIGS. 2 to 6.

第2図及び第6図に示す光学系において、11はビーム
スプリッタ−112は複合プリズム、13!−14分の
1波長板、14 、15はそれぞれ平面反射鏡を示して
いる。
In the optical system shown in FIGS. 2 and 6, 11 is a beam splitter, 112 is a composite prism, 13! -14 wavelength plates, 14 and 15 each indicate a plane reflecting mirror.

上記ビームスプリッタ−II ?′i、図示しないレー
ザー光源からの入射光■を二つの平行な光線■。
The above beam splitter-II? 'i, Incident light (■) from a laser light source (not shown) is converted into two parallel beams (■).

■に分割し、且つ同一光路を戻ってくる反射光を合成し
て射出光[相]とするもので、半透鏡16と全反射鏡1
7を備えた光学系として構成している。
(2) and synthesizes the reflected light that returns along the same optical path to form the emitted light [phase].
It is configured as an optical system equipped with 7.

上記ビームスプリッタ−11の次段に配設される複合プ
リズム12は、第4図に示すように、互いに直交する一
対の偏光半透面21 、22をそれぞれ入射光のに対し
て45°傾斜させて設けた多重反射部20と、その多重
反射部20における光源側に配設した一対の直角プリズ
ム24 、25とにより構成されている。
As shown in FIG. 4, the composite prism 12 disposed next to the beam splitter 11 has a pair of polarizing semi-transparent surfaces 21 and 22 orthogonal to each other tilted at 45 degrees with respect to the incident light. It is composed of a multiple reflection section 20 provided as a mirror, and a pair of right angle prisms 24 and 25 disposed on the light source side of the multiple reflection section 20.

上記直角プリズム24は、互いに直交する全反射面26
と全反射面27とを入射光■の方向に対して45°傾斜
させ、上記多重反射部20における一方の偏光半透面2
2に対応する位置に、光源側から見て全反射面26と全
反射面27との間の稜線28が多重反射部20における
一対の偏光半透面21 、22間の稜線2.つに対し、
て直交する方向に向くようにして配設したものであり、
また、前記直角プリズム25は、互いに直交する全反射
面29 、30をそれぞれ入射光■に対して45°傾斜
させ、上記多重反射部20における一方の偏光半透面2
】の半分に対応をせて、その一対の全反射面29 、3
0間の稜線31を多重反射部20における稜線23と平
行にして配設したものである。而して、上記複合プリズ
ム12ば、ビームスプリッタ−11から入射する一対の
入射光■、■を上記偏光半透面21 、22と平面反射
鏡14.15との間でに’?+ b返して反射させて、
光路長を8倍に増大すると共に平面反射1j414,1
sの傾きを吸収して、入射光■、■と平行な光+?!e
)、[相]を射出するものとして構成している。また、
上記4分の1の波長板13及び平面反射鏡14 、15
は、それぞれ入射光■と垂直な向きに配設している。
The right angle prism 24 has total reflection surfaces 26 orthogonal to each other.
and the total reflection surface 27 are tilted at 45 degrees with respect to the direction of the incident light (1), and one polarization semi-transparent surface 2 in the multiple reflection section 20 is formed.
2, the ridge line 28 between the total reflection surface 26 and the total reflection surface 27 when viewed from the light source side is located at the position corresponding to the ridge line 2. For one,
It is arranged so that it faces perpendicularly to the
In addition, the right-angle prism 25 has total reflection surfaces 29 and 30 that are orthogonal to each other, each inclined at 45 degrees with respect to the incident light (1), and one polarization semi-transparent surface 2 in the multiple reflection section 20.
], and the pair of total reflection surfaces 29, 3
The ridgeline 31 between 0 and 0 is arranged parallel to the ridgeline 23 of the multiple reflection section 20. Then, the composite prism 12 separates the pair of incident lights (1) and (2) coming from the beam splitter 11 between the polarizing semi-transparent surfaces 21, 22 and the plane reflecting mirrors 14 and 15. + b Return and reflect,
Increasing the optical path length by 8 times and plane reflection 1j414,1
By absorbing the slope of s, light parallel to the incident light ■, ■ is generated +? ! e
), [phase] is configured to be injected. Also,
The quarter wavelength plate 13 and the plane reflecting mirrors 14 and 15
are arranged in a direction perpendicular to the incident light (2).

上記構成の多重光路レーザー干渉計においては、レーザ
ー光源からの入射光1をビームスプリッタ−11に入射
すれば、その入射光■は半透鏡16と全反射鏡17によ
り二つの平行な光線■、■に分割され、それぞれ複合プ
リズム12に入射する。複合プリズム12に入射した一
対の光線■、■は、それぞれ同図に丸竹番号で示した順
序で複合プリズム12における各面と平面反射鏡x4.
15との間で繰り返して反射し、それらの反射によって
平面反射鏡14゜15の傾きが吸収され、入射光■、■
と同じ光路を通る光線[相]、@となって射出し、再び
ビームスブ1) 7ター11に入射して合成され、入射
光■と平行な射出光■となって射出する。
In the multi-path laser interferometer with the above configuration, when the incident light 1 from the laser light source is incident on the beam splitter 11, the incident light (1) is divided into two parallel beams (2) and (2) by the semi-transparent mirror 16 and the total reflection mirror 17. and each enters the composite prism 12. A pair of light rays (■, ■) incident on the composite prism 12 are transmitted to each surface of the composite prism 12 and to the plane reflecting mirror x4.
15, and the inclination of the plane reflecting mirror 14°15 is absorbed by these reflections, and the incident light
The light ray [phase] passing through the same optical path as the beam exits as @, enters the beam sub 1) again and is synthesized, and exits as the emitted light ■ which is parallel to the incident light ■.

上記干渉計においては、複合プリズム12を、多重反射
部20と一対の直角プリズム24 、25とを組み合わ
せたものとして構成し、それによシ第1図に示した2次
元空間における入射光と射出光とを平行にする機能を6
次元的に拡張したので、平面反射鏡14 、15が任意
の軸のまわpでいずれの方向に傾いても、入射光■と射
出光[相]とは常に平行になる。[凱上記のように、光
線が複合プリズム12と平面反射鏡14 、15との間
で、継、横両方向のそれぞれについて偶数回(2回ある
いは4回)繰り返して反射するようにしだので、反射光
の光軸に横ずれが生じることがない。
In the above interferometer, the composite prism 12 is configured as a combination of a multiple reflection section 20 and a pair of right angle prisms 24 and 25. The function to make parallel to 6
Since it has been expanded dimensionally, even if the plane reflecting mirrors 14 and 15 are tilted in any direction around an arbitrary axis p, the incident light (1) and the outgoing light [phase] will always be parallel. [Kai] As mentioned above, the light rays are reflected repeatedly between the composite prism 12 and the plane reflecting mirrors 14 and 15 an even number of times (two or four times) in both the horizontal and vertical directions, so the reflection There is no lateral shift in the optical axis of light.

上記干渉i−tにおける平面反射鏡14 、15の傾き
に伴う副長誤差は、傾き角の2乗及び2枚の平面反射鏡
14 、15の間隔の変化量(光路長差)のみに比例す
るものとなる。而して、上記傾きに伴うmll −1j
誤差は非常に小烙く、実用上無視できるものであるだめ
、予め2枚の鏡14 、15を近づけて光路長差をほぼ
零に設定しておけば、2枚の鋭14 、15の動きに際
して、その傾きに拘わシなく、間隔の変化分(並進成分
)のみを検出することができる。逆に、平面反射鏡14
 、15の両方あるいはいずれか一方が傾いても、干渉
光の位相が変化しない場合には、2枚の会HH1< 、
 15の位置が一致して光路長が等しいことになる。と
のことを利用すれば、上記干渉計によって、2枚の鏡1
4 、15の傾きに拘わりなくそれらの鏡14 、15
が一致して光路長差が零になる点を検出することができ
る。従って、上記干渉計は、精密位置決め等を行う場合
の基準、即ち安定した正確な基点を得るのに非常に有用
である。
The sub-length error associated with the inclination of the plane reflecting mirrors 14 and 15 in the interference it is proportional only to the square of the inclination angle and the amount of change in the interval between the two plane reflecting mirrors 14 and 15 (optical path length difference). becomes. Therefore, mll −1j due to the above slope
The error is very small and can be ignored in practical terms, so if the two mirrors 14 and 15 are brought close together and the optical path length difference is set to almost zero, the movement of the two mirrors 14 and 15 can be reduced. At this time, only the change in the interval (translational component) can be detected, regardless of its inclination. On the contrary, the plane reflector 14
, 15, if the phase of the interference light does not change even if either one or both of
15 coincide with each other, and the optical path lengths become equal. Using this fact, the above interferometer can measure the two mirrors 1
Regardless of the inclination of mirrors 4 and 15, those mirrors 14 and 15
It is possible to detect a point where the optical path length difference becomes zero when the optical path length difference becomes zero. Therefore, the above-mentioned interferometer is very useful for obtaining a reference when performing precision positioning, that is, a stable and accurate base point.

第5図及θ第6図は、本発明の第2実施例における並進
成分検出部及び回転成分検出部を示している。
5 and 6 show a translational component detection section and a rotational component detection section in a second embodiment of the present invention.

上記並進成分検出部は、平面反射鏡44の傾きに拘わら
ずその並進成分のみを検出するためのもので、第5図に
示すように、複合プリズム41.4分の1波長板42及
び平面反射鏡43 、44によって構成され、上記複合
プリズム41は、光線を分割、合成するだめの半透鏡4
6及び全反射鏡47を備えたプリズム部45と、互いに
直交する偏光半透面49 、50を有する多重反射部4
8とを備えたものとして構成している。
The above-mentioned translational component detection section is for detecting only the translational component of the plane reflection mirror 44 regardless of its inclination, and as shown in FIG. Comprised of mirrors 43 and 44, the compound prism 41 is a semi-transparent mirror 4 that splits and combines light rays.
6, a prism section 45 having a total reflection mirror 47, and a multiple reflection section 4 having polarization semi-transparent surfaces 49 and 50 orthogonal to each other.
8.

まだ、第6図の回転成分検出部は、第5図に示す並進成
分析出部に対して紙面上で重ね合わせ、複合プリズム4
1.4分の1波長板42、及び平面反射鏡44を共通化
して用いると共に、平面反射鏡43を第7図に示すよう
に不必要部分を欠除した平面鏡とし、平面反射鏡44の
並進変位に拘わらずその回転成分即ち傾きの大きさのみ
を検出するものである。
Still, the rotational component detection section shown in FIG. 6 is superimposed on the paper with the translational component analysis detection section shown in FIG.
1. The quarter wavelength plate 42 and the plane reflecting mirror 44 are commonly used, and the plane reflecting mirror 43 is a plane mirror with unnecessary parts removed as shown in FIG. 7, and the translation of the plane reflecting mirror 44 is Regardless of the displacement, only the rotational component, ie, the magnitude of the inclination, is detected.

このような構成の干渉計において、レーザー光源からの
入射光を二つに分割してキれらを第5図及び第6図に示
すようにプリズム41に互いに平行な一対の入射光■、
■とじて入射すれば、それらの入射光はそれぞれ二つの
光線■、■に分割された後、上記多重反射部48の偏光
半透面49 、50と平面反射鏡43 、44との間で
光路長を2逓倍する反射を繰シ返し、入射光■、■と平
行な射出光■、■となって射出する。これにより、一方
の平面反射鏡43が固定状態にあるとすれば、上記射出
光■。
In an interferometer with such a configuration, the incident light from the laser light source is divided into two parts, and the divided parts are divided into a pair of parallel incident lights to the prism 41 as shown in FIGS. 5 and 6.
(1) If the incident light enters the mirror, the incident light is split into two beams (2) and (2), respectively, and then passes along the optical path between the polarization semi-transparent surfaces 49, 50 of the multiple reflection section 48 and the plane reflecting mirrors 43, 44. The reflection that doubles the length is repeated, and the emitted light beams ■ and ■ are emitted parallel to the incident beams ■ and ■. As a result, if one of the plane reflecting mirrors 43 is in a fixed state, the above-mentioned emitted light (2).

■によって平面反射鏡44の並進成分及び回転成分がそ
れぞれ独立に検出される。従って、上記干渉側は精密微
動テーブル等の運動の総合的測定に極めて有用である。
The translational component and rotational component of the plane reflecting mirror 44 are detected independently by (2). Therefore, the interference side is extremely useful for comprehensive measurement of movements of precision fine movement tables and the like.

このような本発明によれば、以下のような効果を期待す
ることができる。
According to the present invention, the following effects can be expected.

(1)  レーザー光線を繰り返して反射させる平面反
射鏡が傾いても、干渉光の波面が傾かず、光軸の移動も
生じない。
(1) Even if the plane reflector that repeatedly reflects the laser beam is tilted, the wavefront of the interference light will not tilt and the optical axis will not shift.

(2)測長誤差を平面反射鏡の傾きの2乗にしか比例し
ないようにし、たので、通常のマイクルソン型干渉計で
は測定不可能な条件下、即ち一対の平面反射鏡の一方あ
るいは両方が傾いて互いのY行性が悪くなるような運動
を行う場合においても、信頼性の高い副長が可能である
(2) Since the length measurement error is made proportional to only the square of the inclination of the plane reflector, it is possible to perform measurements under conditions that cannot be measured with a normal Michelson interferometer, that is, one or both of the pair of plane reflectors. A highly reliable sub-head is possible even when performing a movement in which the Y-axis is tilted and the Y-direction of each other is deteriorated.

(3)  レーザー光線を偏光ビームスプリッタ−と平
面反射鏡との間で多重反射させるようにしたので、光路
長を2倍、4倍あるいは8倍に逓倍化でき、且つ光ヘテ
ロダイン干渉法の適用が可能であるため、超高分解能の
測長が可能である。
(3) Since the laser beam is multiple-reflected between the polarizing beam splitter and the plane reflecting mirror, the optical path length can be multiplied by 2, 4, or 8 times, and optical heterodyne interferometry can be applied. Therefore, ultra-high resolution length measurement is possible.

(4)  コーナーキー−ププリズムと同様の機能を持
つ光学系を用いたので、光学的調整を極めて容易に行う
と七ができる。
(4) Since an optical system having the same function as a corner-keep prism is used, optical adjustments can be made extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図及び第6図は本発
明の実施例のそれぞれ平面図及び正面図、第4図はその
プリズムの斜視図、第5図及び第6図は本発明の第2実
施例のそれぞれ異なる部位における断面図、第7図は上
記第2実施例における平面反射鏡の正面図である。 指定代理人
FIG. 1 is a diagram explaining the principle of the present invention, FIGS. 2 and 6 are a plan view and a front view of an embodiment of the invention, respectively, FIG. 4 is a perspective view of the prism, and FIGS. 5 and 6 are FIG. 7 is a cross-sectional view of different parts of the second embodiment of the present invention, and FIG. 7 is a front view of the plane reflecting mirror in the second embodiment. designated agent

Claims (1)

【特許請求の範囲】[Claims] 1、 レーザー光源からの入射光をそれに平行な2本の
光線に分割すると共に同一光路を戻ってくる上記2本の
光線を合成して射出光とする光学系と、上記光学系で分
割畑れだ2本の光線を2枚の平面反射鏡との間で複数回
反射を縁り返させた後再び上記光学系に入射させる複合
プリズムと、上記複合プリズムと一対の平面反射鏡との
間に配設された4分の1波長板とにより構成したことを
特徴とする多重光路レーザー干渉計。
1. An optical system that splits the incident light from a laser light source into two parallel light rays and combines the two light rays that return along the same optical path to form an output light, and the above optical system splits the field of light into two parallel light rays. A composite prism that causes the two light beams to be reflected multiple times between two flat reflecting mirrors and then enters the optical system again; A multi-path laser interferometer comprising a quarter-wave plate arranged.
JP58011071A 1983-01-26 1983-01-26 Multiple optical path laser interferometer Pending JPS59136604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011071A JPS59136604A (en) 1983-01-26 1983-01-26 Multiple optical path laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011071A JPS59136604A (en) 1983-01-26 1983-01-26 Multiple optical path laser interferometer

Publications (1)

Publication Number Publication Date
JPS59136604A true JPS59136604A (en) 1984-08-06

Family

ID=11767741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011071A Pending JPS59136604A (en) 1983-01-26 1983-01-26 Multiple optical path laser interferometer

Country Status (1)

Country Link
JP (1) JPS59136604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235506A (en) * 1985-12-19 1987-10-15 ジゴ− コ−ポレ−シヨン Differential plane-mirror interferometer system
EP1265081A3 (en) * 2001-06-06 2004-07-28 Agilent Technologies Inc. (a Delaware Corporation) Multi-axis interferometer with integrated optical structure and method for manufacturing rhomboid assemblies
JP2007040715A (en) * 2005-07-29 2007-02-15 Ulvac-Riko Inc Michelson optical interferometer, thermal expansion meter using optical interferometer, and thermal expansion amount measuring method
JP2017173078A (en) * 2016-03-23 2017-09-28 国立研究開発法人宇宙航空研究開発機構 Light interference length measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990957A (en) * 1972-12-28 1974-08-30
JPS49135646A (en) * 1973-04-26 1974-12-27
JPS5025246A (en) * 1973-06-28 1975-03-17
JPS5025247A (en) * 1973-06-30 1975-03-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990957A (en) * 1972-12-28 1974-08-30
JPS49135646A (en) * 1973-04-26 1974-12-27
JPS5025246A (en) * 1973-06-28 1975-03-17
JPS5025247A (en) * 1973-06-30 1975-03-17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235506A (en) * 1985-12-19 1987-10-15 ジゴ− コ−ポレ−シヨン Differential plane-mirror interferometer system
EP1265081A3 (en) * 2001-06-06 2004-07-28 Agilent Technologies Inc. (a Delaware Corporation) Multi-axis interferometer with integrated optical structure and method for manufacturing rhomboid assemblies
EP1621848A1 (en) * 2001-06-06 2006-02-01 Agilent Technologies Inc. (a Delaware Corporation) Multi-axis interferometer with integrated optical structure and method for manufacturing rhomboid assemblies
JP2007040715A (en) * 2005-07-29 2007-02-15 Ulvac-Riko Inc Michelson optical interferometer, thermal expansion meter using optical interferometer, and thermal expansion amount measuring method
JP2017173078A (en) * 2016-03-23 2017-09-28 国立研究開発法人宇宙航空研究開発機構 Light interference length measuring device

Similar Documents

Publication Publication Date Title
US4859066A (en) Linear and angular displacement measuring interferometer
US4883357A (en) Dual high stability interferometer
US6806960B2 (en) Compact beam re-tracing optics to eliminate beam walk-off in an interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
US6208424B1 (en) Interferometric apparatus and method for measuring motion along multiple axes
EP0250306B1 (en) Angle measuring interferometer
JP2579226B2 (en) Optical device for interferometer
US5847828A (en) Michelson interferometer using matched wedge-shaped beam splitter and compensator
US20120032067A1 (en) Two dimensional encoder system and method
US7158236B2 (en) Heterodyne laser interferometer for measuring wafer stage translation
EP0244275B1 (en) Angle measuring interferometer
US7542149B2 (en) Optics system for an interferometer that uses a measuring mirror, a reference mirror and a beam deflector
US7426039B2 (en) Optically balanced instrument for high accuracy measurement of dimensional change
US3622244A (en) Dual axes interferometer
JPH07101166B2 (en) Interferometer
US7362447B2 (en) Low walk-off interferometer
US4334778A (en) Dual surface interferometer
JPH07239208A (en) Device for measuring application of interference
US5028137A (en) Angular displacement measuring interferometer
US4836678A (en) Double-path interferometer
JPS59136604A (en) Multiple optical path laser interferometer
JP2630345B2 (en) Straightness interferometer system and optical components
EP0461773A2 (en) Linear pitch, and yaw displacement measuring interferometer
US3419331A (en) Single and double beam interferometer means
US6876451B1 (en) Monolithic multiaxis interferometer