JPH02158349A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH02158349A
JPH02158349A JP63313429A JP31342988A JPH02158349A JP H02158349 A JPH02158349 A JP H02158349A JP 63313429 A JP63313429 A JP 63313429A JP 31342988 A JP31342988 A JP 31342988A JP H02158349 A JPH02158349 A JP H02158349A
Authority
JP
Japan
Prior art keywords
film
resistor
coating liquid
resistor film
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63313429A
Other languages
Japanese (ja)
Inventor
Shinji Saito
斎藤 紳治
Masafumi Chiba
雅史 千葉
Keizaburo Kuramasu
敬三郎 倉増
Kazuyuki Okano
和之 岡野
Chiharu Hayashi
千春 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63313429A priority Critical patent/JPH02158349A/en
Publication of JPH02158349A publication Critical patent/JPH02158349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head superior in printing image quality, durability, and high speed properties with low cost by providing the following films on a substrate : a resistor film formed by applying and baking a coating liquid containing an organic acid salt of ruthenium and an organic substance having titanium in its structure ; a wiring conductive film for passing an electric current to the resistor film ; and a wear-resistant protective film covering the resistor film and the wiring conductive film. CONSTITUTION:In a construction in the vicinity of heating elements of a thermal head, a numeral 1 is an alumina substrate, 2 is glaze layer, 3a, 3b represent wiring conductive films, the 3a is a common electrode commonly connecting to respective ends of the heating elements, the 3b is a discrete electrode connecting to a semiconductor element 4, is a resistor film obtained by printing and calcining a coating liquid, and 5 is a wear-resistant protective film. The resistor film 4 is formed in the following method : 2-ethylhexanoic ruthenium and titanic tetra(n-butyl) are dissolved in a ketone solvent with a nitrocellulose in a 2:3 titanium/ ruthenium ratio to form the resistant coating liquid; this resistant coating liquid is printed all over the alumina substrate 1 provided with the glaze layer 2 thereon and calcined at 750 deg.C in atmosphere, this is exposed to light with a predetermined mask, and an unnecessary part is removed by etching to form a pattern. Then, this film becomes a resistor film having a superior adhesion, a small resistance temperature coefficient, and an appropriate value of resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は感熱記録用の端末やファクシミリなどに利用さ
れるサーマルヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal head used in thermal recording terminals, facsimile machines, and the like.

従来の技術 感熱記録方式は保守の容易なノ・−トコピーを得る方式
として各種の端末記録装置やファクシミリ等に利用され
ており、サーマルヘッドはそれらの中心的デバイスとし
て使われている。
Conventional thermal recording methods are used in various terminal recording devices, facsimile machines, etc. as a method for obtaining easy-to-maintain note copies, and thermal heads are used as the central device in these devices.

2ノ\−/ 一般にサーマルヘッドは成膜プロセスによシ薄膜型と厚
膜型にわかれる。薄膜型は半導体プロセスと同様の方法
で作成するもので、画質、消費電力、高速性に優れるが
、製造に真空装置が必要であるためコストが高くなる。
2ノ\-/ In general, thermal heads are divided into thin film types and thick film types depending on the film forming process. The thin-film type is produced using a method similar to a semiconductor process, and has excellent image quality, power consumption, and high speed, but costs are high because vacuum equipment is required for manufacturing.

一方厚膜型は印刷・焼成を行うことによシ安価に製造で
きるが、抵抗体膜がRuO2粉末とガラスフリットの混
合物による厚膜であるため性能面で劣っている。本発明
者等は上記問題点を解決するために、有機金属を含む塗
布液を塗布・焼成することによシ形成した薄膜抵抗体を
用いたサーマルヘッドを開発した。上記サーマルヘッド
は真空装置を用いずに薄膜型サーマルヘッドを作成でき
コストと性能を両立している。
On the other hand, the thick film type can be manufactured at low cost by printing and baking, but is inferior in performance because the resistor film is a thick film made of a mixture of RuO2 powder and glass frit. In order to solve the above problems, the present inventors have developed a thermal head using a thin film resistor formed by coating and baking a coating liquid containing an organic metal. The above-mentioned thermal head can create a thin film type thermal head without using a vacuum device, achieving both cost and performance.

発明が解決しようとする課題 サーマルヘッドによる感熱記録を高速化するためには数
m5ecの短パルスによシ記録を行わねばならない。そ
のためには抵抗体に大電力を加え400°C程度の熱を
発生させる。その場合、抵抗体膜の抵抗値が小さいと印
字に必要な電流値が犬3=−i きくなり、以下の二つの問題点が生じる。1つは電極の
抵抗値が無視できなくなり、電極の長さの差異により抵
抗体膜の発熱量に差がでて印字むらになることである。
Problems to be Solved by the Invention In order to speed up thermal recording using a thermal head, recording must be performed using short pulses of several m5ec. To do this, a large amount of power is applied to the resistor to generate heat of about 400°C. In this case, if the resistance value of the resistor film is small, the current value required for printing becomes large, causing the following two problems. One is that the resistance value of the electrode can no longer be ignored, and the difference in the length of the electrode causes a difference in the amount of heat generated by the resistor film, resulting in uneven printing.

2つめは駆動回路の電流容量を大きくしなければならな
いことである。以上の点からサーマルヘッド用薄膜抵抗
体は高温における安定性と高抵抗値を持つ必要がある。
The second problem is that the current capacity of the drive circuit must be increased. From the above points, thin film resistors for thermal heads need to have stability at high temperatures and high resistance values.

本発明で使用している酸化ルテニウム糸薄膜抵抗体は酸
化ルテニウム単独では500μΩ・m程度の抵抗率しか
なく、高速記録に必要な1にΩ/口〜3にΩ/口のシー
ト抵抗値を得るためには膜厚を5o八以下にしなければ
ならず、製造時の制御も困難で膜質も不安定になる。本
発明者等はアルカリ土類金属を構造中に有する有機物を
構造中にルテニウムを有する有機物を使った塗布液に添
加して焼成することによシ抵抗率を高めることを見出し
たのである。
The ruthenium oxide thread thin film resistor used in the present invention has a resistivity of only about 500 μΩ・m when ruthenium oxide is used alone, and achieves a sheet resistance value of 1 to 3 Ω/mm, which is necessary for high-speed recording. In order to achieve this, the film thickness must be 50.8 or less, which makes control during manufacturing difficult and the film quality unstable. The present inventors have discovered that the resistivity can be increased by adding an organic material having an alkaline earth metal in its structure to a coating solution using an organic material having ruthenium in its structure and firing the coating solution.

しかしこの場合3つの問題点がある。第1の問題点はス
パッタ蒸着のように活性化した高エネルギーの粒子によ
り成膜されるわけではないので、密着性を増す要因であ
る相互拡散や中間化合物の生成が起こりにくく、密着性
が悪いことである。
However, there are three problems in this case. The first problem is that unlike sputter deposition, the film is not formed using activated high-energy particles, so interdiffusion and the formation of intermediate compounds, which are factors that increase adhesion, are less likely to occur, resulting in poor adhesion. That's true.

第2の問題点は抵抗温度係数が大きすぎることで、アル
カリ土類金属を添加物として使った場合1にΩ2/[]
〜3にΩ/口のシート抵抗値を示す抵抗膜の抵抗温度係
数は±300〜11000I)I)/’Cとなる。抵抗
温度係数が負に大きすぎると、抵抗体は定電圧で駆動さ
れているので電力が増大し、駆動回路が過負荷になり発
熱量が増大しすぎて抵抗体膜の破断が起きやすくなる。
The second problem is that the temperature coefficient of resistance is too large, and when alkaline earth metals are used as additives, Ω2/[]
The temperature coefficient of resistance of the resistive film, which shows the sheet resistance value of Ω/hole in ~3, is ±300 to 11000I)I)/'C. If the temperature coefficient of resistance is too negative, the resistor is driven with a constant voltage, so the power increases, the drive circuit becomes overloaded, the amount of heat generated increases too much, and the resistor film is likely to break.

まだ、正に大きすぎると逆に発熱量が不足してしまう。However, if it is too large, the amount of heat generated will be insufficient.

高速型サーマルヘッドでは抵抗温度係数は一500〜+
11000pI)/°Cの範囲に納まっている必要があ
り、0に近いほど正確な印字ができる。
For high-speed thermal heads, the temperature coefficient of resistance is -500 to +
It must be within the range of 11,000 pI)/°C, and the closer it is to 0, the more accurate printing will be.

第3の問題点は塗布液を塗布した後の焼成工程で生じる
。一般に有機金属の熱分解は400°C程度で終了し、
形成された膜は100八程度の粒径を持つ微粒子による
焼結体構造を取る。焼成温度をさらに上げていくと、酸
化ルテニウム単独の場合、400〜800人にまで微粒
子が成長し、π℃5ヘー/ °C以上の焼成温度では酸化ルテニウムの気化も起こる
ため、空隙が多くなシ膜の均質性が損われる。
The third problem occurs in the baking process after applying the coating liquid. Generally, the thermal decomposition of organic metals ends at around 400°C.
The formed film has a sintered body structure made up of fine particles having a particle size of about 1,008. If the firing temperature is further increased, in the case of ruthenium oxide alone, fine particles will grow to 400 to 800 particles, and at a firing temperature of π°C 5 h/°C or higher, ruthenium oxide will also vaporize, so there will be many voids. The homogeneity of the film is impaired.

アルカリ土類金属を加えた場合さらにそれが顕著になシ
、400〜600’Cで多元系酸化物が形成されると、
特定温度で極端な粒成長が起こって粒径が1000人程
度になシ、粒子どうしの接触も少ないため抵抗値が高く
なりすぎ抵抗値のバラツキも大きい。
This becomes even more pronounced when alkaline earth metals are added, and when multi-element oxides are formed at 400-600'C,
Extreme grain growth occurs at a certain temperature, resulting in a grain size of about 1,000 particles, and since there is little contact between grains, the resistance value becomes too high and the resistance value varies widely.

それゆえに本発明の目的は上記酸化ルテニウム系薄膜抵
抗体の問題点を解決した高性能で安価々サーマルヘッド
を提供しようとするものである。
Therefore, an object of the present invention is to provide a high-performance, inexpensive thermal head that solves the problems of the ruthenium oxide thin film resistor described above.

課題を解決するだめの手段 上記課題を解決するために、本発明は、ルテニウムの有
機酸塩と構造中にチタンを有する有機物を含む塗布液を
、スピンコート,ディップ,、印刷等の方法を用いて塗
布・焼成して抵抗体膜を形成する構成としたものである
Means for Solving the Problems In order to solve the above problems, the present invention uses a method such as spin coating, dipping, printing, etc. to apply a coating solution containing an organic salt of ruthenium and an organic substance having titanium in its structure. The structure is such that a resistor film is formed by coating and baking the resistor film.

作用 上記構成にすることによシ、抵抗温度係数が小さく、緻
密で均一な構造となるので印字性能、耐6へ一ノ 人件にすぐれ、しかも真空装置を用いないので安価なサ
ーマルヘッドを提供することができる。
Effect: By having the above structure, the temperature coefficient of resistance is small, the structure is dense and uniform, so printing performance is excellent, and the durability is 6 to 10000. be able to.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

すなわち本発明は、ルテニウムの有機酸塩と構造中にチ
タンを有する有機物を含む塗布液を、スピンコート,デ
ィップ,、印刷等の方法を用いて塗布・焼成して抵抗体
膜を形成することを特徴とする。
That is, the present invention involves forming a resistor film by applying and baking a coating liquid containing an organic salt of ruthenium and an organic substance having titanium in its structure using a method such as spin coating, dipping, or printing. Features.

2エチルへキサン酸ルテニウムとチタン酸テトラnブチ
ルをケトン系の溶媒に溶かして作成した塗布液を、アル
ミナ上にγ30°C以上の軟化点を有するガラスグレー
ズを形成したいわゆるグレーズドアルミナ基板上に塗布
し、40o°Cで焼成して作成した薄膜を走査型電子顕
微鏡で観察したところ、緻密な焼結体構造をしておシ微
粒子の粒径は100八程度であった。焼成温度が500
〜1000’Cである場合も粒径は20○〜400八ま
でおおきくなるものの緻密な焼結体構造はその寸まであ
った。X線回折パターンを測定したところルチル型の結
晶構造を持つ固溶体に々っでいることがわかった。Ru
O2とTiO2は共にルチノト型の結晶構造を持ちイオ
ン半径も同程度であるためこのように固溶体を形成しや
すいと考えられ、これが膜の気化や異常粒成長が起こら
ず緻密な構造が保たれている原因と考えられる。
A coating solution prepared by dissolving ruthenium 2-ethylhexanoate and tetra-n-butyl titanate in a ketone solvent is applied onto a so-called glazed alumina substrate, which is a glass glaze with a softening point of γ30°C or higher formed on alumina. When the thin film produced by firing at 40° C. was observed with a scanning electron microscope, it was found to have a dense sintered structure and the particle size of the fine particles was about 100. Firing temperature is 500℃
Even when the temperature was ~1000'C, the grain size increased to 20~400°C, but the dense sintered structure remained close to that level. When the X-ray diffraction pattern was measured, it was found that the material was a solid solution with a rutile crystal structure. Ru
Since both O2 and TiO2 have a rutinoto-type crystal structure and the ionic radius is about the same, it is thought that they are likely to form a solid solution in this way, and this allows the film to maintain a dense structure without vaporization or abnormal grain growth. This is thought to be the cause.

また、抵抗膜の密着性は焼成温度(4O0〜1000’
C)を問わず良好で、2エチル−・キサン酸ルテニウム
のみを用いて作成したRuO2膜とLヒ較すると、Ru
O2膜はベンコツトや黄銅針でこ甘ると簡単に取れるが
、本発明によるRu−T1−0膜はこれらでこすっても
取れることはなか−・だ。
In addition, the adhesion of the resistive film is determined by the firing temperature (4O0~1000'
It is good regardless of C), and when compared with L and RuO2 film made using only ruthenium 2-ethyl-xanoate, Ru
The O2 film can be easily removed by scrubbing with a scraper or a brass needle, but the Ru-T1-0 film of the present invention cannot be removed even if rubbed with these tools.

了50°Cで焼成した膜について深さ方向の組成分析を
オージェ電子分光分析により調べたところ、基板のガラ
ス成分の拡散は両者とも同程度であった。
When the composition in the depth direction of the films fired at 50°C was investigated by Auger electron spectroscopy, the diffusion of the glass component of the substrate was found to be the same in both films.

よって、Ru−Ti−Q膜のほうが密着性が良い原因は
Tiが界面で基板成分との中間化合物を形成しているこ
とであると考えられる。
Therefore, it is thought that the reason why the Ru-Ti-Q film has better adhesion is that Ti forms an intermediate compound with the substrate component at the interface.

抵抗温度係数については、シート抵抗値が1にΩ/口〜
6にΩ/口(膜厚1000人)である膜については±2
001)I)m/°C以内であった。
Regarding the temperature coefficient of resistance, the sheet resistance value is 1 Ω/mouth ~
±2 for membranes that are 6Ω/mouth (film thickness 1000 people)
001) I) m/°C or less.

以上の実施例においては2エチルへキサン酸ルテニウム
及びチタン酸テトラnブチルを用いているが、チタンを
構造中に有する有機物としてチタニウム(IV)オキシ
オクチレートあるいはチタニウムNV)オキシアセチル
アセトナート、ルテニウムの有機酸塩としてナフテン酸
ルテニウム、を用いても同様の効果及び数値が得られた
In the above examples, ruthenium 2-ethylhexanoate and tetra-n-butyl titanate are used, but as an organic substance having titanium in its structure, titanium (IV) oxyoctylate or titanium NV) oxyacetylacetonate, ruthenium Similar effects and numerical values were obtained using ruthenium naphthenate as the organic acid salt.

これらのことから、本発明による塗布液を用いて焼成す
ると、膜質、密着性にすぐれ、抵抗温度係数が小さく適
度な抵抗値を持つ抵抗体膜を作成することができる。そ
してこれを使うことによって安価で高性能の薄膜型サー
マルヘッドを作成することができる。
For these reasons, when the coating liquid according to the present invention is fired, it is possible to create a resistor film with excellent film quality and adhesion, a small resistance temperature coefficient, and an appropriate resistance value. By using this, it is possible to create an inexpensive, high-performance thin-film thermal head.

サーマルヘッドの作成例について以下具体的に説明する
An example of creating a thermal head will be specifically described below.

第1図は本実施例により作成したサーマルヘッドの発熱
体近傍の斜視図を示す。第1図において、1はアルミナ
基板、2はグレーズ層、3a、sb9ベー/ は配線用導体膜でちゃ、32Lは発熱体の一端を共通し
て接続する共通電極、3bは半導体素子と接続する個別
電極である。4は本発明による塗布液を印刷焼成して得
られた抵抗体膜、5は耐摩耗保護膜である。次に抵抗体
膜4について詳述する。
FIG. 1 shows a perspective view of the vicinity of the heating element of the thermal head produced according to this example. In Figure 1, 1 is an alumina substrate, 2 is a glaze layer, 3a and sb9 are conductor films for wiring, 32L is a common electrode that commonly connects one end of the heating element, and 3b is connected to a semiconductor element. Individual electrodes. 4 is a resistor film obtained by printing and baking a coating solution according to the present invention, and 5 is an abrasion-resistant protective film. Next, the resistor film 4 will be explained in detail.

2エチルヘキサン酸ルテニウムとチタン酸テトラnブチ
ルをチタンとルテニウムが2:3になるようにニトロセ
ルロースと供にケトン系の溶剤に溶かしてこれを抵抗塗
布液とした。この抵抗塗布液を730’C以上の軟化点
を持つグレーズ層2を形成したアルミナ基板1上の全面
に印刷して、750°C2大気中で焼成した。抵抗体膜
4の焼成は、抵抗体としての熱的安定性や金レジネート
を使って形成する金電極との密着性を得るために、70
0〜800°Cで行う必要がある。焼成した抵抗体膜4
はシート抵抗値が1.5にΩ/口、膜厚が1Q○〇八で
あった。薄膜型サーマルヘッドの薄膜抵抗体に必要とさ
れるシート抵抗値は、仕様により異なるが、100〜3
にΩ/口である。本発明による抵抗体膜4 (Ftuj
OO、TixOy )は組成をX =2010ヘーノ 〜60at%とすることによシ上記範囲の抵抗値を得る
ことができる。次に、金レジネート(エンゲルハルト社
製)を同様に全面に印刷し、750°Cで焼成した。こ
の後、フォトレジストを塗布して、所定のマスクで露光
して不要部分をエンチング除去することで図面に示すパ
ターンを形成した(図面の耐摩耗保護膜5の無い部分)
。さらに、紙と接触する部分に硬質ガラスを主成分とす
る印刷ペーストを印刷し、750°Cで焼成して耐摩耗
保護膜5を形成し、図面に示すサーマルヘッドを作成し
た。なお図面では、説明の都合上耐摩耗保護膜5を一部
形成していない図としている。
Ruthenium di-ethylhexanoate and tetra-n-butyl titanate were dissolved in a ketone solvent together with nitrocellulose so that the ratio of titanium to ruthenium was 2:3, and this was used as a resistance coating liquid. This resistive coating liquid was printed on the entire surface of the alumina substrate 1 on which the glaze layer 2 having a softening point of 730'C or higher was formed, and baked at 750°C in the atmosphere. The resistor film 4 is fired at 70% in order to obtain thermal stability as a resistor and adhesion with the gold electrode formed using gold resinate.
It is necessary to carry out at 0-800°C. Baked resistor film 4
The sheet resistance value was 1.5 Ω/hole, and the film thickness was 1Q○08. The sheet resistance value required for the thin film resistor of a thin film type thermal head varies depending on the specifications, but is 100 to 3
niΩ/mouth. Resistor film 4 according to the present invention (Ftuj
OO, TixOy) can obtain a resistance value within the above range by setting the composition to X=2010Heno~60at%. Next, gold resinate (manufactured by Engelhard) was similarly printed on the entire surface and baked at 750°C. After that, a photoresist was applied and exposed using a predetermined mask to remove unnecessary parts by etching to form the pattern shown in the drawing (the part without the wear-resistant protective film 5 in the drawing).
. Furthermore, a printing paste containing hard glass as a main component was printed on the portion that would come into contact with the paper, and baked at 750°C to form an abrasion-resistant protective film 5, thereby producing the thermal head shown in the drawings. Note that in the drawings, the wear-resistant protective film 5 is partially omitted for convenience of explanation.

このようにして作成した本実施例のサーマルヘッドの抵
抗温度係数は一130ppm/°Cであった。
The temperature coefficient of resistance of the thermal head of this example prepared in this manner was -130 ppm/°C.

2エチルヘキサン酸バリウムをチタン酸テトラnブチル
の代わシに加えて同様の抵抗値を持つサーマルヘッドを
作成した場合、抵抗温度係数は一360ppm/°Cで
ある。両者をパルス幅1m5ec 、パルス周期10m
5ecで連続パルス印加を行い耐久性を比較してみた。
When a thermal head having a similar resistance value is prepared by adding barium di-ethylhexanoate instead of tetra-n-butyl titanate, the temperature coefficient of resistance is -360 ppm/°C. Pulse width 1m5ec, pulse period 10m for both
Continuous pulse application was performed at 5 ec to compare durability.

6X10’回パルスを印加した11△ さい抵抗値変動10%与える抵抗体膜の単位面積当たり
の電力(破断電力、単位W/my2)をくらべると、R
u−Ba −0系が40W/my2、Ru−Ti−0系
が63 W /my2 となり耐久性が大きく向上した
1、又、抵抗値のバラツキもB4サイズ、8本/馴で比
べるとRu −Ba−0系が±10係以内、Ru−Ti
−0系が±3チ以内となり、本発明によるサーマルヘッ
ドのほうが優れていた。とれは抵抗温度係数が小さく緻
密で均一な構造をRu −Ti −0係の抵抗体膜がも
っているためと考えられる。以上のようなことから印字
画質もRu−Ti −0系の方が優れていた。
Comparing the power per unit area (rupture power, unit W/my2) of the resistor film that gives a resistance value variation of 10% with 11△ pulses applied 6X10' times, R
The u-Ba -0 series was 40 W/my2, and the Ru-Ti-0 series was 63 W/my2, greatly improving durability1.Also, when comparing the resistance value variation in B4 size and 8 pieces/familiar, Ru- Ba-0 system within ±10 coefficient, Ru-Ti
-0 series was within ±3 inches, and the thermal head according to the present invention was superior. This is thought to be due to the fact that the Ru-Ti-0 resistor film has a small temperature coefficient of resistance and a dense and uniform structure. From the above, the Ru-Ti-0 system was also superior in print image quality.

発明の効果 以上のように本発明によるサーマルヘッドは印字画質、
耐久性、高速性に優れ、真空装置を用いて作成された他
の薄膜型サーマルヘッドに比べてコストが安いという特
徴を持ち工業的利用価値の極めて高いものである。
As described above, the thermal head according to the present invention has improved print image quality,
It has excellent durability, high speed, and low cost compared to other thin film thermal heads made using vacuum equipment, making it extremely valuable for industrial use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサーマルヘッドの一実施例を示す
斜視図である。 1 ・・・アルミナ基板、2・・・・クレーズ層、31
L。 3b ・・・配線用導体膜、4 ・・抵抗体膜、5 ・
・耐摩耗性保護膜。
FIG. 1 is a perspective view showing an embodiment of a thermal head according to the present invention. 1... Alumina substrate, 2... Craze layer, 31
L. 3b... Conductor film for wiring, 4... Resistor film, 5.
・Abrasion-resistant protective film.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも表面が絶縁性を有する基板上に、ルテニウム
の有機酸塩と構造中にチタンを有する有機物を含む塗布
液を、スピンコート,ディップ,印刷等の方法を用いて
塗布・焼成して形成した抵抗体膜と、この抵抗体膜に通
電するための配線用導体膜と、前記抵抗体膜及び配線用
導体膜を被膜した耐摩耗保護膜よりなるサーマルヘッド
A resistor formed by applying and baking a coating liquid containing an organic salt of ruthenium and an organic substance having titanium in its structure on a substrate whose surface has at least an insulating property, using a method such as spin coating, dipping, or printing. A thermal head comprising a body film, a wiring conductor film for supplying current to the resistor film, and an abrasion-resistant protective film covering the resistor film and the wiring conductor film.
JP63313429A 1988-12-12 1988-12-12 Thermal head Pending JPH02158349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313429A JPH02158349A (en) 1988-12-12 1988-12-12 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313429A JPH02158349A (en) 1988-12-12 1988-12-12 Thermal head

Publications (1)

Publication Number Publication Date
JPH02158349A true JPH02158349A (en) 1990-06-18

Family

ID=18041192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313429A Pending JPH02158349A (en) 1988-12-12 1988-12-12 Thermal head

Country Status (1)

Country Link
JP (1) JPH02158349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151983A (en) * 2019-03-20 2020-09-24 ローム株式会社 Thermal print head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151983A (en) * 2019-03-20 2020-09-24 ローム株式会社 Thermal print head

Similar Documents

Publication Publication Date Title
JP2715304B2 (en) MIM type electron-emitting device
US5189284A (en) Resistor, process for producing the same, and thermal head using the same
JPH02158349A (en) Thermal head
JP2507040B2 (en) Printed circuit paste and method of forming printed circuit
JPS62292453A (en) Thermal head
JPH02155201A (en) Thermal head
JPH043901A (en) Thin film resistor of ruthenium oxide and manufacture thereof
JP2548314B2 (en) Manufacturing method of thermal head
JP2002067366A (en) Heating resistor for thermal print head, thermal print head, and method of manufacturing the heating resistor
JP2932661B2 (en) Manufacturing method of thermal head
JPH0782921B2 (en) Method of manufacturing thermal head
JPH01304702A (en) Manufacture of resistor, paste resistor, and resistive elements and thermal head
JP2615633B2 (en) Manufacturing method of thermal head
JP2933135B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
KR920005760B1 (en) Thermal head and production thereof
JPH021338A (en) Thermal head
JPH03243361A (en) Manufacture of thermal head
JPS62261192A (en) Thin film electronic circuit device
JP2022031017A (en) Resistor and method for manufacturing resistor
JP2022031016A (en) Resistor and method for manufacturing resistor
JPH0725174B2 (en) Method for manufacturing thick film type thermal head
JPS6255712B2 (en)
JP2743384B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
JP2817151B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
JPH0755564B2 (en) Thermal head and manufacturing method thereof