JPH02157601A - Reference optical path length extending method for laser measuring instrument - Google Patents

Reference optical path length extending method for laser measuring instrument

Info

Publication number
JPH02157601A
JPH02157601A JP63311629A JP31162988A JPH02157601A JP H02157601 A JPH02157601 A JP H02157601A JP 63311629 A JP63311629 A JP 63311629A JP 31162988 A JP31162988 A JP 31162988A JP H02157601 A JPH02157601 A JP H02157601A
Authority
JP
Japan
Prior art keywords
optical path
path length
mirror
beam splitter
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311629A
Other languages
Japanese (ja)
Inventor
Kenji Aiko
健二 愛甲
Hideo Takizawa
滝沢 英郎
Tadashi Suda
須田 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP63311629A priority Critical patent/JPH02157601A/en
Publication of JPH02157601A publication Critical patent/JPH02157601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the occurrence of a measurement error low and to reduce the size of the measuring instrument by providing an extending means which extends the optical path length of a laser beam between a beam splitter and a reference mirror and nearly equalizing the length of a reference optical path to that of a measurement optical path. CONSTITUTION:The laser beam of an LD 1 is split by a beam splitter 2 and one beam is projected in the direction of the reference mirror 3. Extension mirrors 6a and 6b are provided at proper positions of the beam splitter 2 and reference mirror 3 and set at proper angles and then the projected beam travels forward and backward between them to reach the reference mirror 3. The optical path length is extended corresponding to the reciprocation and the extended reference optical path length Ly' is about three times as large as the original optical path length Ly. The Ly' is nearly equalized to the measurement optical path length Lx by setting the Ly properly. Both beams which are reflected by the reference mirror 3 and measurement mirror 4 return to the beam splitter 2 and are put together and photodetected by a photodetector 5, which outputs a signal corresponding to the position shift of interference fringes formed as the measurement mirror 4 moves.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザ測長器における光路長の延長方法に
関し、詳しくはレーザビームを分割するビームスプリッ
タと基準ミラー間の光路長を実効的に延長する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for extending the optical path length in a laser length measuring device, and more specifically, a method for effectively increasing the optical path length between a beam splitter that splits a laser beam and a reference mirror. It is about how to extend it.

[従来の技術] 第4図はレーザ測長器の原理を説明する概略の構成を示
すもので、L D 1 よりのレーザビームはビームス
プリッタ2により2分割されて、一方のビームは直角方
向の適当な位置に設けられた基準ミラー3に投光される
。他方のビームは前方の被測定の移動体に固定されたf
lll+定ミラー4に投光され、測定ミラーと基準ミラ
ーによりそれぞれ反射されたビームA、Bはビームスプ
リッタ2において合成される。両ビームA、 Bは同一
光源によるので互いに干渉して干渉縞を生ずる。ここで
、被測定体の移動により測定ミラーが移動すると、干渉
縞の位置が移動し、これを受光器5により検出すると、
干渉縞の強度変化に相当する信号Sがえられる。信号S
の波数をカウントすることにより移動距離が測定される
ものである。
[Prior Art] Fig. 4 shows a schematic configuration to explain the principle of a laser length measuring device, in which the laser beam from L D 1 is split into two by a beam splitter 2, and one beam is split into two in the perpendicular direction. The light is projected onto a reference mirror 3 provided at an appropriate position. The other beam is fixed to the moving object to be measured in front.
Beams A and B, which are projected onto the constant mirror 4 and reflected by the measurement mirror and the reference mirror, are combined at the beam splitter 2. Since both beams A and B are from the same light source, they interfere with each other and produce interference fringes. Here, when the measurement mirror moves due to the movement of the object to be measured, the position of the interference fringes moves, and when this is detected by the light receiver 5,
A signal S corresponding to the intensity change of the interference fringes is obtained. Signal S
The distance traveled is measured by counting the number of waves.

さて、LDI は温度、注入電流により発振波長が変化
する。波長が変化するときは測定ミラーが移動しないと
きでも上記と同様に干渉縞の位置が変化する。以下これ
について数式により説明する。
Now, the oscillation wavelength of LDI changes depending on temperature and injection current. When the wavelength changes, the position of the interference fringes changes as described above even when the measurement mirror does not move. This will be explained below using mathematical formulas.

いま、LDの発振するレーザビームを sinωt          ・・・・・・(1)(
ω=2πC/λ0.λ0 :波長、C:光速)とする。
Now, the laser beam oscillated by the LD is sinωt...(1)(
ω=2πC/λ0. λ0: wavelength, C: speed of light).

第4図のように両ビームA、Hに対する光路長をそれぞ
れLx、Lyとするとき、両ビームの合成ビームCの強
度は時間変化を省略して次式で表される。
As shown in FIG. 4, when the optical path lengths for both beams A and H are Lx and Ly, respectively, the intensity of the combined beam C of both beams is expressed by the following equation, omitting the time variation.

C= (A2 +B2 )/2+ABcos Φo ・
・・・・(2)ΦO=2πΔL/λ0       ・
・・・・・(3)ここでΔLは両ビームの光路差である
C= (A2 +B2)/2+ABcos Φo・
...(2) ΦO=2πΔL/λ0 ・
(3) Here, ΔL is the optical path difference between both beams.

ΔL=Lx −Ly          ・・・・・・
(4)LDの発振波長λ0がなんらかの理由でδλ変化
したときは、式(2)の第2項および式(3)のΦ0は
次式のΦ0′となる: Φ0′→Φo  (1−δλ/λ0) =ΦO−2πΔLδλ/λo2・・・・・・(5)すな
わち、波長がδλだけ変化するとき、2πΔLδλ/λ
o2      ・・・・・・(6)の位相変化が生ず
る。いま、δλが時間的に変動するときは、式(6)に
従って位相が変動するので、第4図の干渉縞の位置が動
揺し、これが恰も被測定体が移動したものとして受光器
5に検出される。
ΔL=Lx −Ly ・・・・・・
(4) When the LD's oscillation wavelength λ0 changes by δλ for some reason, the second term of equation (2) and Φ0 of equation (3) become Φ0′ of the following equation: Φ0′→Φo (1−δλ /λ0) = ΦO−2πΔLδλ/λo2 (5) In other words, when the wavelength changes by δλ, 2πΔLδλ/λ
o2...The phase change (6) occurs. Now, when δλ changes over time, the phase changes according to equation (6), so the position of the interference fringes in FIG. be done.

これは明らかに測定誤差となる。This clearly results in a measurement error.

式(6)に示されるように、1τ1差の原因となる位相
変化は光路差ΔLに正比例するので、ΔLを0とすれば
誤差もまたOとなる。しかし、ΔLはLXとLyの差で
あって、一方のLxは変量であるので常に等しくするこ
とはできず、可及的に小さくして誤差を減少させること
ができる。
As shown in equation (6), the phase change that causes the 1τ1 difference is directly proportional to the optical path difference ΔL, so if ΔL is set to 0, the error also becomes O. However, ΔL is the difference between LX and Ly, and since Lx is a variable, it cannot always be made equal, but it can be made as small as possible to reduce the error.

さて、第4図において測定ミラー4の測定光路長Lxに
対して基準ミラー3の基準光路長Lyをほぼ等しくとる
ことは可能であるが、レーザ測長器に対する被測定体の
位置はある程度制約されているのでLxはある程度以−
ドには短くできない。
Now, in FIG. 4, it is possible to make the reference optical path length Ly of the reference mirror 3 almost equal to the measurement optical path length Lx of the measurement mirror 4, but the position of the object to be measured with respect to the laser length measuring device is restricted to some extent. Since Lx is
It cannot be shortened to C.

従って、Lyをこれに等しくするときは測長器に対して
は過大となり、測長器の小型化を妨げる。
Therefore, when Ly is made equal to this value, it becomes too large for the length measuring device, which prevents downsizing of the length measuring device.

これに対して、光路長Lyをなんらかの手段で実効的に
延長することができれば、上記と同様の効果が得られる
筈である。
On the other hand, if the optical path length Ly can be effectively extended by some means, the same effect as described above should be obtained.

この発明は以上に鑑みてなされたもので、基準光路長を
延長して、測定光路長とほぼ等しくする延長方法を提供
することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide an extension method for extending the reference optical path length so as to make it approximately equal to the measurement optical path length.

[課題を解決するための手段コ この発明は、LDのレーザビームをビームスプリッタに
より分割し、一方を適当な位置に固定された基準ミラー
に、他方を披14111定の移動体に取り付けられた測
定ミラーにそれぞれ投光し、各ミラーにより反射された
両レーザビームをビームスプリンタで合成し、両ビーム
の干渉縞をカウントして移動体の変位を計測するレーザ
ーヤ1長器における基準光路長の延長方法であって、ビ
ームスプリッタと基準ミラーとの間にレーザビームの光
路長を延長する延長手段を設けて、延長された基準光路
長と、ビームスプリッタと測定ミラーとの間の測定光路
長とをほぼ等しくするものである。
[Means for Solving the Problems] This invention splits the laser beam of an LD using a beam splitter, one of which is attached to a reference mirror fixed at an appropriate position, and the other is attached to a measuring device attached to a fixed moving body. A method for extending the reference optical path length in a laser beam length device, in which the laser beams are projected onto each mirror, the two laser beams reflected by each mirror are combined using a beam splinter, and the interference fringes of both beams are counted to measure the displacement of a moving body. An extension means for extending the optical path length of the laser beam is provided between the beam splitter and the reference mirror, so that the extended reference optical path length and the measurement optical path length between the beam splitter and the measurement mirror are approximately equal to each other. It is to make them equal.

上記の光路長の延長手段の実施態様め−・つは、ビーム
スプリッタと基準ミラーのそれぞれの位置に、レーザビ
ームを往復させる延長ミラーを設ける。また他の実施態
様は、ビームスプリッタと基準ミラーの間に、適当な屈
折率を何する光学媒体を挿入して等測的に光路長を屈折
率倍する。
A preferred embodiment of the above-mentioned optical path length extension means is to provide extension mirrors for reciprocating the laser beam at respective positions of the beam splitter and the reference mirror. In another embodiment, an optical medium having a suitable refractive index is inserted between the beam splitter and the reference mirror to equimetrically multiply the optical path length by the refractive index.

[作用] 以−りのこの発明による基型光路長の延長方法によれば
、延長手段により基準光路長が測定光路長とほぼ等しく
なって、温度、注入電流などによるLDの発振波長の変
動による干渉縞の位相動揺が無くなるか、または減少し
てこれによる測定誤差の問題が解消される。
[Function] According to the method for extending the standard optical path length according to the present invention, the reference optical path length is made almost equal to the measurement optical path length by the extension means, and the fluctuation of the LD's oscillation wavelength due to temperature, injection current, etc. The phase fluctuation of the interference fringes is eliminated or reduced, thereby eliminating the problem of measurement errors.

なお、光路長の延長手段は延長ミラーによる方法、また
は光学媒体による方法も延長作用には変わりはないので
、実際に適合するものによればよく、場合によっては両
者を組合わせて使用することもIJJ能であり、その場
合は両者の相乗効果がある。
Note that there is no difference in the lengthening effect whether the optical path length is extended using an extension mirror or an optical medium, so whatever is actually suitable may be used, and in some cases, a combination of both may be used. IJJ ability, in which case there is a synergistic effect between the two.

[実施例] 第1図は、この発明による基準光路長の延長方法の第1
の実施例の構成図で、LDlのレーザビームはビームス
プリッタ2により分割されて、方は基準ミラー3の方向
に投光される。ビームスプリッタ2と基準ミラー3の適
当な箇所にそれぞれ延長ミラー8a、6bが取り付けら
れる。ミラーの角度を適当に設定すると、投光されたビ
ームはこれらの間を往復して基準ミラーに達する。従っ
て往復分だけ光路長が延長され、延長された基準光路長
Ly’は元の光路長Lyの約3倍となる。
[Example] FIG. 1 shows the first method of extending the reference optical path length according to the present invention.
In the configuration diagram of the embodiment, the laser beam of LD1 is split by a beam splitter 2, and one is projected toward a reference mirror 3. Extension mirrors 8a and 6b are attached to appropriate locations on the beam splitter 2 and the reference mirror 3, respectively. When the angles of the mirrors are set appropriately, the projected beam travels back and forth between them and reaches the reference mirror. Therefore, the optical path length is extended by the round trip, and the extended reference optical path length Ly' becomes about three times the original optical path length Ly.

Lyを適当に設定して、Ly′が測定光路長Lxとほぼ
等しくする。基準ミラーと測定ミラーにより反射した両
ビームはビームスプリッタ2に矢って合成されて受光器
5に受光される。測定ミラー4の移動に伴って生ずる干
渉縞の位置変化に対応した信号が受光器より出力される
。この場合は両光路長がほぼ等しいので、波長変化によ
る誤差は小さいか、またはOに減少する。
Ly is set appropriately so that Ly' is approximately equal to the measurement optical path length Lx. Both beams reflected by the reference mirror and the measurement mirror are directed to the beam splitter 2, where they are combined and received by the light receiver 5. A signal corresponding to a change in the position of the interference fringes that occurs as the measurement mirror 4 moves is outputted from the light receiver. In this case, since both optical path lengths are approximately equal, the error due to wavelength change is small or reduced to 0.

第2図は第2の実施例を示すもので、ビームスプリッタ
2と基準ミラー3の間に屈折率naの光学媒体7を挿入
して光路長を等測的にn6倍する。
FIG. 2 shows a second embodiment, in which an optical medium 7 with a refractive index na is inserted between the beam splitter 2 and the reference mirror 3, and the optical path length is isometrically multiplied by n6.

たとえば、屈折率として約1.5のものを使用すれば、
Ly ”F l 、5 Lyとなり、これを上記と同様
にL×にほぼ等しく設定する。
For example, if you use a refractive index of about 1.5,
Ly ”F l , 5Ly, which is set approximately equal to L× in the same way as above.

第3図は第3の実施例を示し、上記の第1と第2の実施
例の組み合わせである。この場合は、光路長は往復で約
3倍、屈折率で約1.5倍となり、相乗効果で約4.5
倍となるので光学媒体7の長さが著しく短縮できる。な
お、光学媒体7の両面は適当な角度に仕上げて、これに
アルミニュームを蒸着してミラー6を形成する。
FIG. 3 shows a third embodiment, which is a combination of the first and second embodiments described above. In this case, the optical path length will be approximately 3 times the round trip, the refractive index will be approximately 1.5 times, and the synergistic effect will be approximately 4.5 times.
Since the length of the optical medium 7 is doubled, the length of the optical medium 7 can be significantly shortened. Note that both sides of the optical medium 7 are finished at appropriate angles, and aluminum is deposited thereon to form the mirror 6.

[発明の効果] 以りの説明により明らかなように、この発明のレーザ測
長器における基準光路長の延長方法によれば、空間的に
短い基準光路長が延長手段で延長されて、iil’l定
光路長色光路長しくされて、LDの発振波長の変動に起
因する測定IL−L差の発生が小さ(押さえられて信頼
性が向、トするとともに、レーザ測長器の小型化に寄与
する効果には大きいものがある。
[Effects of the Invention] As is clear from the following explanation, according to the method for extending the reference optical path length in a laser length measuring device of the present invention, the spatially short reference optical path length is extended by the extension means, and the iil' l Constant optical path length By increasing the color optical path length, the occurrence of the measurement IL-L difference due to fluctuations in the LD's oscillation wavelength is reduced (reduced, reliability is improved, and the size of the laser length measuring device is reduced. The contributing effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明によるレーザ測長器の基準光路長の
延長方法の第1の実施例の構成図、第2図は、この発明
によるレーザ測長器の基準光路長の延長方法の第2の実
施例の構成図、第3図は、この発明によるレーザ測長器
の基準光路長の延長方法の第3の実施例の構成図、第4
図は、従来のレーザ測長器の測長原理と波長変化により
生ずる測定誤差の説明図である。 1・・・半導体レーザ素子(LD)、 2・・・ビームスプリッタ、3・・・基準ミラー4・・
・測定ミラー    5・・・受光器、8a、6b・・
・延長ミラー、7・・・光学媒体。
FIG. 1 is a block diagram of a first embodiment of the method for extending the reference optical path length of a laser length measuring device according to the present invention, and FIG. FIG. 3 is a block diagram of the third embodiment of the method for extending the reference optical path length of a laser length measuring device according to the present invention, and FIG.
The figure is an explanatory diagram of the length measurement principle of a conventional laser length measuring device and measurement errors caused by wavelength changes. 1... Semiconductor laser element (LD), 2... Beam splitter, 3... Reference mirror 4...
・Measurement mirror 5...Receiver, 8a, 6b...
- Extension mirror, 7... optical medium.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体レーザ素子(以下LDと略記)の出力する
レーザビームをビームスプリッタで分割し、該分割され
た一方を適当な位置に固定された基準ミラーに、他方を
被測定の移動体に取り付けられた測定ミラーにそれぞれ
投光し、該基準ミラーと測定ミラーによりそれぞれ反射
された両レーザビームを上記ビームスプリッタにおいて
合成し、該両レーザビームの干渉縞をカウントして上記
移動体の変位を計測するレーザ測長器において、上記ビ
ームスプリッタと基準ミラーとの間にレーザビームの光
路長を延長する延長手段を設けて、該延長された基準光
路長と、上記ビームスプリッタと測定ミラーとの間の測
定光路長とをほぼ等しくすることを特徴とする、レーザ
測長器における基準光路長の延長方法。
(1) A laser beam output from a semiconductor laser device (hereinafter abbreviated as LD) is split by a beam splitter, one of the splits is attached to a reference mirror fixed at an appropriate position, and the other is attached to a moving object to be measured. The two laser beams reflected by the reference mirror and the measurement mirror are combined in the beam splitter, and the interference fringes of the two laser beams are counted to measure the displacement of the moving body. In the laser length measuring device, an extension means for extending the optical path length of the laser beam is provided between the beam splitter and the reference mirror, and a distance between the extended reference optical path length and the beam splitter and the measurement mirror is provided. A method for extending a reference optical path length in a laser length measuring device, characterized by making the optical path length substantially equal to the measurement optical path length.
(2)上記光路長の延長手段は、上記ビームスプリッタ
と基準ミラーのそれぞれの位置に、上記レーザビームを
往復させる延長ミラーを設けた、請求項1記載のレーザ
測長器における基準光路長の延長方法。
(2) Extension of the reference optical path length in the laser length measuring instrument according to claim 1, wherein the optical path length extension means is provided with an extension mirror for reciprocating the laser beam at each position of the beam splitter and the reference mirror. Method.
(3)上記光路長の延長手段は、上記ビームスプリッタ
と基準ミラーの間に、適当な屈折率を有する光学媒体を
挿入して光路長を等価的に該屈折率倍する、請求項1記
載のレーザ測長器における基準光路長の延長方法。
(3) The optical path length extending means inserts an optical medium having an appropriate refractive index between the beam splitter and the reference mirror to equivalently multiply the optical path length by the refractive index. How to extend the reference optical path length in a laser length measuring device.
JP63311629A 1988-12-09 1988-12-09 Reference optical path length extending method for laser measuring instrument Pending JPH02157601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311629A JPH02157601A (en) 1988-12-09 1988-12-09 Reference optical path length extending method for laser measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311629A JPH02157601A (en) 1988-12-09 1988-12-09 Reference optical path length extending method for laser measuring instrument

Publications (1)

Publication Number Publication Date
JPH02157601A true JPH02157601A (en) 1990-06-18

Family

ID=18019564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311629A Pending JPH02157601A (en) 1988-12-09 1988-12-09 Reference optical path length extending method for laser measuring instrument

Country Status (1)

Country Link
JP (1) JPH02157601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041424U (en) * 1990-04-18 1992-01-08
US6552801B1 (en) 1998-11-26 2003-04-22 Ando Electric Co., Ltd. Optical interferometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041424U (en) * 1990-04-18 1992-01-08
US6552801B1 (en) 1998-11-26 2003-04-22 Ando Electric Co., Ltd. Optical interferometer

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
JPH04331333A (en) Wavelength change measuring device
JPH02157601A (en) Reference optical path length extending method for laser measuring instrument
JP2547826B2 (en) Interferometer using multimode semiconductor laser
US5760903A (en) Light measuring apparatus
JPH0781884B2 (en) Optical displacement measuring device
JPH0235248B2 (en)
US6064482A (en) Interferometric measuring device for form measurement on rough surfaces
JPS6355035B2 (en)
JPH06317478A (en) Optical wavelength/frequency detector
JPH0463305A (en) Polarizing beam splitter and laser interference measuring meter
JP2891715B2 (en) Fringe scanning interferometer
JP2809727B2 (en) Fabry-Perot resonator
JP2000121322A (en) Laser length measuring machine
JP2000065931A (en) Laser-interference measuring apparatus
SU1095034A1 (en) Device for measuring linear displacements
JP2001141414A (en) Laser length measuring apparatus
JPH06123607A (en) Length measuring device
JPH02280392A (en) Multiple reflection interferometer and stabilized laser light source using former
JP2712509B2 (en) Reflection film characteristic measuring device
JP2000074617A (en) Laser interferometer
WO1996031752A1 (en) Apparatus for the measurement of angular displacement
JPH06213619A (en) Interferometer
JPH0216969B2 (en)
JPS61126403A (en) Measuring method of interference