JPS61126403A - Measuring method of interference - Google Patents

Measuring method of interference

Info

Publication number
JPS61126403A
JPS61126403A JP59247309A JP24730984A JPS61126403A JP S61126403 A JPS61126403 A JP S61126403A JP 59247309 A JP59247309 A JP 59247309A JP 24730984 A JP24730984 A JP 24730984A JP S61126403 A JPS61126403 A JP S61126403A
Authority
JP
Japan
Prior art keywords
light
wavelength
interference
light source
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59247309A
Other languages
Japanese (ja)
Inventor
Mitsufumi Katano
片野 光詞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59247309A priority Critical patent/JPS61126403A/en
Publication of JPS61126403A publication Critical patent/JPS61126403A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Abstract

PURPOSE:To suppress phase variation of interference light to within a practical range by setting the difference in overall optical path length between reference light and object light in specific relation with the wavelength of a coherent light source and its wavelength variation. CONSTITUTION:Luminous flux from a semiconductor laser 1 is passed through a collimator lens 2 and split by a beam splitter 3 into two; one forms an image on an image pickup tube 9 by being reflected by a reference plane mirror 4, and the other forms an image after being transmitted through an object lens, reflected by a reference plane mirror 6, and passed through an image forming lens 8, so that their images are observed through a monitor television 10. In this case, positions of the mirrors 4 and 6 are so set that the difference L in optical length between the reference light and object light bear a specific relation, shown by an inequality, with the wavelength lambda0 of the light source and its variation quantity DELTAlambda.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は2光束の干渉により生ぜしめた干渉縞より物体
の平面度、球面塵、或いはレンズの性能等を測定する干
渉測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an interference measurement method for measuring the flatness of an object, spherical dust, lens performance, etc. from interference fringes produced by interference of two light beams.

2ベーン 発明が解決しようとする問題点 半導体レーザーの発振波長は温度、駆動電流によって変
化する。第2図は駆動電流を一定にした場合の発振波長
の温度依存性を示しており、波長変化率は0.3〜1.
0人/℃程度である。波長がジャ 、−ンプしているの
は軸モードの飛びであり、発振波長の変化は温度の上昇
・下降とで異なり、ヒステリシスが存在する。又、第3
図は発振波長の電流依存性を示しており、波長変化率は
0.03〜0.1人/mA程度である。この場合にもモ
ードの飛び及びヒステリシスが存在する。
Problems to be solved by the two-vane invention The oscillation wavelength of a semiconductor laser changes depending on temperature and driving current. Figure 2 shows the temperature dependence of the oscillation wavelength when the drive current is constant, and the wavelength change rate is 0.3 to 1.
It is about 0 person/℃. The jump in wavelength is due to the jump in the axial mode, and the change in the oscillation wavelength differs depending on whether the temperature rises or falls, and there is hysteresis. Also, the third
The figure shows the current dependence of the oscillation wavelength, and the wavelength change rate is about 0.03 to 0.1 person/mA. In this case too, mode jumps and hysteresis exist.

このように半導体レーザーは発振波長が不安定である等
の理由により、干渉計測の光源として用いられることは
まれである。ということは、光源の波長変動が干渉光の
位相変動を生せしめることによる。このことは干渉縞が
静止せず不安定であることにほかならず、干渉計測にお
いては致命的な問題である。
As described above, semiconductor lasers are rarely used as light sources for interferometric measurements due to their unstable oscillation wavelength and other reasons. This is because fluctuations in the wavelength of the light source cause fluctuations in the phase of the interference light. This means that the interference fringes do not stand still and are unstable, which is a fatal problem in interferometric measurements.

第4図はトワイマン・グリーン干渉計を用いたレンズの
収差測定の構成図を示す。半導体レーザ3べ。
FIG. 4 shows a block diagram of lens aberration measurement using a Twyman-Green interferometer. Semiconductor laser 3be.

−1から出射した光束をコリメーターレンズ2で平行光
束にしたあとビームスプリッタ3で2光束に分割される
。一方は参照用の平面鏡4にて、他方は被検レンズ5を
通過したのち、被検レンズ5の焦点に球心を有する参照
球面鏡6にて各々反射し、再びビームスプリッタ3で同
一光路に導かれ干渉する。干渉光束7は結像レンズ8に
より撮像管9の撮像面に結像され、モニターテレビ10
で観察される。
The light beam emitted from -1 is made into a parallel light beam by a collimator lens 2, and then split into two beams by a beam splitter 3. One of them passes through a reference plane mirror 4, and the other passes through a test lens 5, and then is reflected by a reference spherical mirror 6 having a spherical center at the focal point of the test lens 5, and is guided again to the same optical path by a beam splitter 3. He interferes. The interference light beam 7 is imaged by the imaging lens 8 on the imaging surface of the imaging tube 9, and is displayed on the monitor television 10.
observed in

参照平面鏡4からの反射光(参照光)WRと参照球面鏡
6からの反射光(被検光)WIの撮像面上における複素
振幅分布をそれぞれ WR=A−exp(i k Ll) WI=B−exp(i k L2+φ)A、B:参照光
、被検光の振幅 に;波数(=2π/λ) λ;波長 り、;参照光の光学的光路長 L2;被検光の光学的光路長 φ;被検レンズの波面収差 とすると、干渉光の光強度工は I = l WR+WI l ” =A2+B2+2ABscos(−2−・(Ll−L2
)+φ)となり、干渉光強度は光学的光路長差(Ll−
L2)或いは1/λに対して余弦的に変化する。
The complex amplitude distributions on the imaging plane of the reflected light (reference light) WR from the reference plane mirror 4 and the reflected light (test light) WI from the reference spherical mirror 6 are respectively WR=A-exp(i k Ll) WI=B- exp(i k L2+φ)A, B: Amplitude of reference light, test light; Wave number (=2π/λ) λ: Wavelength; Optical optical path length L2 of reference light; Optical path length of test light If φ is the wavefront aberration of the tested lens, the light intensity of the interference light is I = l WR + WI l ” = A2 + B2 + 2ABscos (-2-・(Ll-L2
)+φ), and the interference light intensity is the optical path length difference (Ll−
L2) or changes cosineally with respect to 1/λ.

したがって、光源に波長変動があると干渉光強度が変動
することになり、干渉縞を二次元情報として得て、レン
ズの波面収差φを計測するうえで誤差が生ずることにな
る。
Therefore, if the wavelength of the light source fluctuates, the intensity of the interference light will fluctuate, resulting in an error in obtaining the interference fringes as two-dimensional information and measuring the wavefront aberration φ of the lens.

たとえば、光ディスクでは光学系の残存許容収差量を波
面収差λ/10以下に抑制する必要があるといわれてお
り(有本昭「光ビデオディスクにおける光学系の許容収
差量の検討」、光学;第12巻第6号、P、491.1
983年12月)、λ/10以下に収差除去された対物
レンズの波面収差を測定するには2710以上の測定精
度が必要となる。
For example, it is said that for optical discs, it is necessary to suppress the residual allowable aberration of the optical system to a wavefront aberration of λ/10 or less (Akira Arimoto, "Study of the allowable aberration of the optical system for optical video discs", Optics; Volume 12, No. 6, P, 491.1
(December 1983), measurement accuracy of 2710 or higher is required to measure the wavefront aberration of an objective lens whose aberrations have been removed to λ/10 or less.

2710以上の精度で測定しようとすると、種々の誤差
要因があるが、干渉縞の変動に起因する読み取り誤差を
λ/40とすると、第4図に示すような5ページ トワイマン・グリーン干渉計では干渉光の位相変動をπ
/1o以下に抑制する必要がある。   ゛半導体レー
ザーをあえて干渉用光源として用いるとすれば、温度、
駆動電流を一定に制御することにより発振波長の変動を
抑制するか、もしくは発振波長を帰還制御することによ
り発振波長の安定化を図るというひとつの解決法がある
When trying to measure with an accuracy of 2710 or more, there are various error factors, but if the reading error due to fluctuations in interference fringes is λ/40, then in a 5-page Twyman-Green interferometer as shown in Figure 4, The phase fluctuation of the interference light is π
It is necessary to suppress it to /1o or less.゛If we dare to use a semiconductor laser as an interference light source, the temperature,
One solution is to suppress fluctuations in the oscillation wavelength by controlling the drive current to a constant level, or to stabilize the oscillation wavelength by feedback controlling the oscillation wavelength.

光通信の分野では半導体レーザーの周波数安定化(周波
数=真空中の光速/波長)の研究が進められており、前
記の前者の、方式で温度変動が1/1sooot3eq
 、程度(6X10 −2X10 nm程度の波長変動
)、後者の方式で発振周波数変動が1MHz程度(λ=
 830 nm)半導体レーザーとして3X10−6n
m程度の波長変動)が実現きれている。
In the field of optical communications, research is underway on frequency stabilization of semiconductor lasers (frequency = speed of light in vacuum/wavelength), and the former method described above reduces temperature fluctuations to 1/1 soooot3eq.
, (wavelength variation of about 6X10 -2X10 nm), and in the latter method, the oscillation frequency variation is about 1MHz (λ =
830 nm) 3X10-6n as a semiconductor laser
wavelength fluctuation of about m) has been realized.

このように波長安定化された半導体レーザーを光源とし
て干渉計を構成すれば、波長変動にともナラ干渉光ノ位
相変化ハ2π・(L、−L2)/(1Cr8〜1O−7
)・λと々す、無視できる程度に微小となる。
If an interferometer is configured using a wavelength-stabilized semiconductor laser as a light source, the phase change of the Nara interference light will be 2π・(L, -L2)/(1Cr8~1O-7
)・λ, it becomes so small that it can be ignored.

しかし、このような波長安定化光源は光学系。However, such a wavelength-stabilized light source is an optical system.

6ページ 制御系の構成が複雑になる。6 pages The control system configuration becomes complicated.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で干渉光の位相変動を実用的な範囲に抑制する干渉測定
方法を提案することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to propose an interference measurement method that suppresses phase fluctuations of interference light within a practical range with a simple configuration.

問題点を解決するための手段 本発明は参照光と被検光の光学的光路長差を満足するよ
うに(Ll−L2)を設定することにより、光源の波長
変動にともなう干渉縞の位相変動を実用的な範囲に抑制
するものである。
Means for Solving the Problems The present invention eliminates phase fluctuations in interference fringes due to wavelength fluctuations of the light source by setting (Ll-L2) so as to satisfy the optical path length difference between the reference light and the test light. This is to keep the amount within a practical range.

作  用 波長λ。における干渉光の位相を2π(Ll−L2)/
λ。、波長がΔλ変化した時の干渉光の位相を化量をδ
−δ、−一定とすると光学的光路長差(Ll−L2)と
波長変化量Δλは第6図の様な関係にある。したがって
波長変化量をδ1以下に抑制する7ペー7 には(Ll−L2)およびΔλを第6図の斜線部に設定
すればよい。
Working wavelength λ. Let the phase of the interference light at 2π(Ll-L2)/
λ. , the phase of the interference light when the wavelength changes by Δλ is δ
When -δ and - are constant, the optical path length difference (Ll-L2) and the amount of wavelength change Δλ have a relationship as shown in FIG. Therefore, in order to suppress the amount of wavelength change to δ1 or less, (Ll-L2) and Δλ may be set in the shaded area in FIG.

干渉縞を2710以上の精度で読みとるために許容しう
る干渉縞の変動をλ/40とすると、トワイマン・グリ
ーン干渉計のように光束が光路を往復する場合はλ/2
が2πの位相に相当するから、位よいことになる。
Assuming that the permissible variation in interference fringes in order to read interference fringes with an accuracy of 2710 or higher is λ/40, when the light beam travels back and forth along the optical path as in a Twyman-Green interferometer, it is λ/2.
Since this corresponds to the phase of 2π, this is a good order.

半導体レーザーの波長変動を抑制しなくとも、干渉縞を
2次元情報として読み取り得る程度の短時間(撮像管で
1/6o秒程度)の波長変動は微小であり、例えば波長
λ。−8300人、波長変動Δλ ・−〇。1人とする
と、位相変化量をπ/10以下に抑制するには、曲成よ
り、光学的光路長差(Ll−L2)を3 、41MI以
下に設定すればよいことになる。
Even if the wavelength fluctuation of the semiconductor laser is not suppressed, the wavelength fluctuation is minute enough to read the interference fringes as two-dimensional information (approximately 1/6o seconds with an image pickup tube), for example, the wavelength λ. -8300 people, wavelength variation Δλ ・−〇. Assuming one person, in order to suppress the amount of phase change to π/10 or less, the optical path length difference (Ll-L2) should be set to 3.41 MI or less based on curve formation.

実施例 第1図は本発明の干渉測定方法の一実施例を示す構成図
である。半導体レーザー1から出射した光束はコリメー
タニレンズ2で平行光束と々す、ビームスプリッタ3で
2光束に分割される。一方の光束は参照平面鏡4にて、
他方の光束は被検レンズ5を透過したのち参照球面鏡6
にてそれぞれ反射され、再びビームスプリッタ3で重ね
合わされて干渉する。干渉光束7は結像レンズ8により
撮像管9に結像され、モニターテレビ1oにより干渉縞
を観察する。この時、波長変動量Δλを勘案して参照光
と被検光の光学的光路長差(Ll−L2)がΔλ・(L
l−L2)/λ。・(λ。+Δλ)<0.05を満足す
るように参照平面鏡4.参照球面鏡6の位置を設定する
ことにより本発明を実現することができる。
Embodiment FIG. 1 is a block diagram showing an embodiment of the interference measurement method of the present invention. A light beam emitted from a semiconductor laser 1 is collimated into a parallel light beam by a collimator lens 2, and is split into two light beams by a beam splitter 3. One of the light beams passes through the reference plane mirror 4,
The other beam passes through the test lens 5 and then passes through the reference spherical mirror 6.
The beams are reflected by the beam splitter 3, and are overlapped again by the beam splitter 3 to cause interference. The interference light beam 7 is imaged on an image pickup tube 9 by an imaging lens 8, and interference fringes are observed on a monitor television 1o. At this time, taking into account the amount of wavelength fluctuation Δλ, the optical path length difference (Ll−L2) between the reference light and the test light is Δλ・(L
l−L2)/λ.・Reference plane mirror 4. so as to satisfy (λ.+Δλ)<0.05. The present invention can be realized by setting the position of the reference spherical mirror 6.

発明の効果 以上述べてきたように、本発明によれば、きわめて簡易
な構成で、光源の波長変動にともなう干渉光の位相変動
を抑制することが可能で、実用的にきわめて有用である
Effects of the Invention As described above, according to the present invention, it is possible to suppress phase fluctuations of interference light due to wavelength fluctuations of a light source with an extremely simple configuration, and it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における干渉測定方法を示す
構成図、第2図は半導体レーザーの発振9ベーン 波長の温度依存性を示す図、第3図は半導体レーザーの
発振波長の駆動電流依存性を示す図、第4図はトワイマ
ン・グリーン干渉計の構成図、第6図は光路長差に対す
る干渉光の位相変化量を示す図である。 1・・・・・・半導体レーザー、2・・・・・・コリメ
ーターレンズ、3・・・・・・ビーブスプリッタ、4・
・・・・・参照平面鏡、5・・・・・・平面鏡。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名旧 )V麿ン)&護     (J’)Ylv営孝区 Oつ 城
Fig. 1 is a block diagram showing an interference measurement method in an embodiment of the present invention, Fig. 2 is a diagram showing the temperature dependence of the oscillation nine-vane wavelength of a semiconductor laser, and Fig. 3 is a diagram showing the drive current of the oscillation wavelength of the semiconductor laser. FIG. 4 is a diagram showing the dependence, FIG. 4 is a configuration diagram of a Twyman-Green interferometer, and FIG. 6 is a diagram showing the amount of phase change of interference light with respect to the optical path length difference. 1... Semiconductor laser, 2... Collimator lens, 3... Beam splitter, 4...
...Reference plane mirror, 5...Plane mirror. Name of agent: Patent attorney Toshio Nakao and one other person Formerly) V Maro & Mamoru (J') Ylv Otsujo, Yingko-ku

Claims (1)

【特許請求の範囲】[Claims]  半導体レーザーの如き波長変動特性を有する可干渉光
源より出射した光を2分し、一方を被検物に照射し、こ
の被検物を透過もしくは反射した被検光と、2分した他
方の参照光を同一光路に導き、前記2光束により生ぜし
めた干渉縞を2次元情報として得るに際し、参照光と被
検光の全光学的光路長差をL、波長λ_0の光源の波長
変動をΔλとしたとき、Δλ・L/λ_0(λ_0+Δ
λ)<0.05なる関係を満足するようにLを設定する
ことにより、光源の波長変動にともなう干渉縞の位相変
動を実用的な範囲に抑制したことを特徴とする干渉測定
方法。
The light emitted from a coherent light source with wavelength variation characteristics such as a semiconductor laser is divided into two parts, one part is irradiated onto a test object, and the test light that is transmitted or reflected by this test object is separated into two parts, and the other part is a reference light. When guiding light to the same optical path and obtaining interference fringes caused by the two light beams as two-dimensional information, let L be the total optical path length difference between the reference light and the test light, and let Δλ be the wavelength fluctuation of the light source with wavelength λ_0. When Δλ・L/λ_0(λ_0+Δ
An interference measurement method characterized in that phase fluctuations in interference fringes due to wavelength fluctuations of a light source are suppressed to a practical range by setting L so as to satisfy the relationship: λ) < 0.05.
JP59247309A 1984-11-22 1984-11-22 Measuring method of interference Pending JPS61126403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247309A JPS61126403A (en) 1984-11-22 1984-11-22 Measuring method of interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247309A JPS61126403A (en) 1984-11-22 1984-11-22 Measuring method of interference

Publications (1)

Publication Number Publication Date
JPS61126403A true JPS61126403A (en) 1986-06-13

Family

ID=17161488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247309A Pending JPS61126403A (en) 1984-11-22 1984-11-22 Measuring method of interference

Country Status (1)

Country Link
JP (1) JPS61126403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639803A (en) * 1986-06-30 1988-01-16 Nec Corp Method and device for three dimensional measurement
WO2012172769A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Modulated signal detection device and method of detecting modulated signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186005A (en) * 1982-04-26 1983-10-29 Sony Corp Device for measuring two luminous flux interference shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186005A (en) * 1982-04-26 1983-10-29 Sony Corp Device for measuring two luminous flux interference shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639803A (en) * 1986-06-30 1988-01-16 Nec Corp Method and device for three dimensional measurement
WO2012172769A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Modulated signal detection device and method of detecting modulated signal
US8488433B2 (en) 2011-06-17 2013-07-16 Panasonic Corporation Modulated signal detecting apparatus and modulated signal detecting method
JPWO2012172769A1 (en) * 2011-06-17 2015-02-23 パナソニック株式会社 Modulation signal detection apparatus and modulation signal detection method

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
US5159408A (en) Optical thickness profiler using synthetic wavelengths
US5153669A (en) Three wavelength optical measurement apparatus and method
JPH0830651B2 (en) Interferometer Laser surface roughness meter
JP2001141652A (en) Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
US5349399A (en) Intraocular length measuring instrument having phase compensating means
JPS61126403A (en) Measuring method of interference
JP2004045326A (en) Interferometer
JP3516875B2 (en) Interferometer
JPS60253945A (en) Shape measuring instrument
JPH07280535A (en) Three-dimensional shape measuring apparatus
JPH0567821A (en) Wavelength monitor for narrow-band laser
JP2020095229A (en) Heterodyne digital holography device
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JPH11287612A (en) Interferometer
JP3272436B2 (en) Distance measuring method and distance measuring device
JP2891715B2 (en) Fringe scanning interferometer
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPS63311104A (en) Semiconductor laser interferometer
JPH0626830A (en) Method and apparatus for measuring interference
JPH05264250A (en) Optical measuring device for surface form
JPH05277074A (en) Eye axis length measuring apparatus
Peng et al. Development of a compact phase-measuring ESPI system using single-mode fiber and diode laser
JP2004163334A (en) Interferometer and its light source device
JPH01270605A (en) Surface shape measuring device