JPH02155943A - Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resin - Google Patents
Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resinInfo
- Publication number
- JPH02155943A JPH02155943A JP30942988A JP30942988A JPH02155943A JP H02155943 A JPH02155943 A JP H02155943A JP 30942988 A JP30942988 A JP 30942988A JP 30942988 A JP30942988 A JP 30942988A JP H02155943 A JPH02155943 A JP H02155943A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- adhesive
- tetrafluoroethylene
- etfe
- polyphenylene sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 title claims abstract description 54
- 239000004734 Polyphenylene sulfide Substances 0.000 title claims abstract description 53
- 229920000069 polyphenylene sulfide Polymers 0.000 title claims abstract description 53
- 229920005989 resin Polymers 0.000 title claims abstract description 36
- 239000011347 resin Substances 0.000 title claims abstract description 36
- 239000000853 adhesive Substances 0.000 claims abstract description 55
- 230000001070 adhesive effect Effects 0.000 claims abstract description 55
- 239000011882 ultra-fine particle Substances 0.000 claims abstract description 20
- 238000000465 moulding Methods 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims description 28
- 239000011342 resin composition Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000012790 adhesive layer Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 239000002952 polymeric resin Substances 0.000 claims 1
- 229920003002 synthetic resin Polymers 0.000 claims 1
- 238000013329 compounding Methods 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 12
- 238000011049 filling Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004840 adhesive resin Substances 0.000 description 3
- 229920006223 adhesive resin Polymers 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 229920013632 Ryton Polymers 0.000 description 1
- 239000004736 Ryton® Substances 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000005147 X-ray Weissenberg Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
【発明の詳細な説明】
(イ) 産業上の利用分野
この発明はボリフェニレンサルファド (以下PPSと
略称)樹脂及び四フッ化エチレン−エチレン共重合体(
以下ETFEと略称する)樹脂との接着を可能にする接
着性樹脂組成物及びそれを用いた積層物に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field This invention relates to polyphenylene sulfide (hereinafter abbreviated as PPS) resin and tetrafluoroethylene-ethylene copolymer (
The present invention relates to an adhesive resin composition that enables adhesion to a resin (hereinafter abbreviated as ETFE) and a laminate using the same.
(ロ) 従来の技術
ETFEは耐熱性、耐薬品性、柔軟性、耐候性、電気特
性、耐候性、耐汚染性、耐摩擦性等において優れた性質
を持ち、またPPSは高融点をもつ耐熱性、耐薬品性、
高弾性の樹脂として知られており、両者を接合して、よ
り高機能材料を得る事も期待されているが、両者を結合
できる接着剤は殆ど知られていない。(b) Conventional technology ETFE has excellent properties such as heat resistance, chemical resistance, flexibility, weather resistance, electrical properties, weather resistance, stain resistance, and abrasion resistance, and PPS has a high melting point and is heat resistant. chemical resistance,
It is known as a highly elastic resin, and it is expected that a more highly functional material can be obtained by bonding the two, but there are almost no known adhesives that can bond the two.
(ハ) 発明が解決しようとする問題
PPS成彫成上物TFE成形物との接着を可能にする接
着剤と接着方法を得る。(c) Problems to be Solved by the Invention: To obtain an adhesive and an adhesive method that enable bonding of PPS molded products with TFE molded products.
(ニ) 問題点を解決するため−の手段上記目的に対し
鋭意研究の結果、ETFEとPPSを特定の配合比で混
合し、更に無機固体微粒子を配合したものが本発明の目
的を達成することを見出だし、本発明を完成した。(d) Means for solving the problem As a result of intensive research for the above purpose, it was found that a mixture of ETFE and PPS in a specific mixing ratio and further blending of inorganic solid fine particles achieves the object of the present invention. They discovered this and completed the present invention.
すなわち、本発明は、ETFEとPPSを混合して得ら
れる樹脂組成物、及びこれらの組成物に更に無機固体微
粒子を混合して得られる樹脂をもちいる接着方法と、こ
れら組成物により接着されたETFE樹脂とPPS樹脂
とからなる積層物を要旨とする。That is, the present invention provides a bonding method using a resin composition obtained by mixing ETFE and PPS, a resin obtained by further mixing these compositions with inorganic solid fine particles, and a bonding method using a resin composition obtained by mixing ETFE and PPS. The gist is a laminate made of ETFE resin and PPS resin.
以下、本発明の接着性樹脂組成物の各成分について説明
する。Each component of the adhesive resin composition of the present invention will be explained below.
本発明におけるETFEは下記のような分子構造を有す
るポリマーであり、四フフ化エチレンとエチレンを七ツ
マ−とする交互共重合体で、その共重合比は、はぼ1で
ある。ETFE in the present invention is a polymer having the following molecular structure, and is an alternating copolymer of tetrafluoroethylene and ethylene as heptamers, and the copolymerization ratio thereof is about 1.
(−CH2−CH2−CF2− CF2−)n−上記の
分子構造を有するETFEとして射出成形、押し出し成
形用グレード等のものが使用できる。 このようなET
FEとしては我が国では、旭化成(株) 「アフロンC
OP」、ダイキン工業(株) [ネオフロンETFEJ
、外国製品としてHochst (西ドイツ連邦)
rHostaflon ETJ、Du pont、
Chew、 (アメリカ) r Tefzel
J等が市販品として知られている。(-CH2-CH2-CF2-CF2-)n-As the ETFE having the above molecular structure, injection molding, extrusion molding grade, etc. can be used. ET like this
In Japan, Asahi Kasei Corporation's ``Afron C'' is an FE.
OP”, Daikin Industries, Ltd. [Neofron ETFEJ
, as a foreign product Hochst (West German Confederation)
rHostaflon ETJ, Du Pont,
Chew, (USA) r Tefzel
J etc. are known as commercial products.
本発明におけるPPSは下記のような分子構造を有する
ポリマーである。PPS in the present invention is a polymer having the following molecular structure.
(−C6H4−5−)n− C6H4−はベンゼン環である。(-C6H4-5-)n- C6H4- is a benzene ring.
上記の分子構造を有するPPSとして射出成形、押し出
し成形用グレード等のものが使用出来るこのようなPP
Sとしてはトープレン(株)「トープレンPPS」、旭
硝子(株) 「ポリフェニレンサルファイド」、信越化
学(株)「信越PPS」、保土谷化学(株) 「サステ
ィール」などがあり、外国製品としては Ph1lip
s Che、Co。As PPS having the above molecular structure, injection molding, extrusion molding grade, etc. can be used.
Examples of S include "Toprene PPS" by Topren Co., Ltd., "Polyphenylene Sulfide" by Asahi Glass Co., Ltd., "Shin-Etsu PPS" by Shin-Etsu Chemical Co., Ltd., and "Sasteel" by Hodogaya Chemical Co., Ltd., and foreign products include Ph1lip.
s Che, Co.
(アメリカ) r RYTON J等が市販品とし
て知られている。(USA) r RYTON J etc. are known as commercial products.
本発明における超微粒子はETFE、PPSとの融解、
混合において化学的、形態的に安定していることが必要
である。The ultrafine particles in the present invention are ETFE, melted with PPS,
It is necessary that the mixture be chemically and morphologically stable.
超微粒子と称する理由は粒子の粒径が10μm以下であ
ることが必要なためで、より好ましくは1〜0.01μ
層のものである。 この性質を有する材料としては電磁
気製品用各種酸化鉄、酸化クロム、真空蒸着による金属
粉体、研磨材または製造原料である酸化アルミニウム、
無機ガラス質粉体、セラミック原料である窒化ホウ素等
、そのほか酸化珪素類粉体、工場廃棄物であるフライア
ッシュ等をあげることができる。The reason why it is called ultrafine particles is that the particle size of the particles must be 10 μm or less, and more preferably 1 to 0.01 μm.
It is a layer thing. Materials with this property include various iron oxides for electromagnetic products, chromium oxide, metal powders produced by vacuum evaporation, aluminum oxide used as abrasives or manufacturing raw materials,
Examples include inorganic glass powder, boron nitride, which is a ceramic raw material, silicon oxide powder, and fly ash, which is a factory waste.
接着用組成物の製法はETFE、PPS及び充填物等と
の融解混合により、樹脂組成物を得、得られた樹脂塊を
更にヒートプレスを用いてシート状にし接着剤として使
用する。The adhesive composition is produced by melt-mixing ETFE, PPS, filler, etc. to obtain a resin composition, and then the resulting resin mass is further formed into a sheet using a heat press and used as an adhesive.
混合における原料の調整は重量により行うのが正確であ
るが、超微粒子は種類によって比重が著しく異なり、ま
たETFEはモノマーの共重合比の若干の相違により、
比重は変化する。 配合比率を重量比率により範囲を限
定するのは樹脂グレド、超微粒子の各種について記述す
る必要が生じるので、本発明ではポリマーについの配合
割合は重量でなく高分子についての容積比率で示す必要
がある。It is accurate to adjust the raw materials during mixing by weight, but the specific gravity of ultrafine particles varies significantly depending on the type, and ETFE has a slight difference in the copolymerization ratio of monomers.
Specific gravity changes. Limiting the blending ratio by weight ratio requires description of each type of resin grade and ultrafine particles, so in the present invention, the blending ratio for the polymer needs to be expressed not by weight but by the volume ratio of the polymer. .
本発明の特許請求範囲に記載したETFEのPPSに対
する樹脂混合率(以下樹脂混合率と略称する。)は次の
定義を用いる。 PPS、ETFE容積は高分子とし
ての真容積のことである。The following definition is used for the resin mixing ratio of ETFE to PPS (hereinafter abbreviated as resin mixing ratio) described in the claims of the present invention. PPS and ETFE volume refers to the true volume as a polymer.
樹脂混合率= 100 X ETFE容積/(ET
FE十pps )容積 %
充填率=100x 微粒子容積/(超微粒子子ETF
E + PPS )容積 %被着材をPPS、
ETFEの成形物とし、接着剤がPPSとETFEの超
微粒子を充填していない混合樹脂であるときの接着可能
な樹脂混合範囲は 広いが得られる接着力は低く、引っ
張り接着力として10!kkg/cm” であり、実
用上の強さとしては充分ではなかった。!定結果は実施
例の中で参考として示しである。Resin mixing ratio = 100 x ETFE volume/(ET
FE 10pps) Volume % Filling rate = 100x Fine particle volume/(Ultrafine particle ETF
E + PPS) volume %adherent is PPS,
When it is a molded product of ETFE and the adhesive is a mixed resin that is not filled with PPS and ETFE ultrafine particles, the range of resin mixture that can be bonded is wide, but the adhesive strength obtained is low, with a tensile adhesive strength of 10! kg/cm", and was not strong enough for practical use. The results are shown for reference in the examples.
超微粒子の充填効果は充填率 2xより認めら15X以
上では接着力は低下し、PPSの粘度に関係するが充填
率が大きくなると、接着剤凝固層が硬く、脆くなり、接
着力は低下し、 実際上20 X 以下である。
充填率は2.5 ないし5% の場合が最も好ましい
範囲である。The filling effect of ultrafine particles is recognized from the filling rate of 2x, and at 15x or more, the adhesive force decreases.It is related to the viscosity of PPS, but as the filling rate increases, the adhesive coagulated layer becomes hard and brittle, and the adhesive force decreases. In practice it is less than 20×.
The most preferable range is a filling rate of 2.5 to 5%.
この場合の接着力が期待できる樹脂混合率(ETFE/
(ETFE+PP5) X 100容積z)ノ範囲は1
0 ないし70 %であり、好ましくは15ないし
60 %である。 この場合、接着力として約30
Kg/cm2かえられている。In this case, the resin mixture ratio (ETFE/
(ETFE+PP5) x 100 volume z) range is 1
0 to 70%, preferably 15 to 60%. In this case, the adhesive strength is approximately 30
Kg/cm2 has been changed.
混合比率の最適条件は微粒子の種類、粒径、形によって
若干、差がある。The optimum conditions for the mixing ratio differ slightly depending on the type, particle size, and shape of the fine particles.
混合温度も接着温度もPPS、ETFEが共に融解する
温度以上でなくてはならない、 ppsの融点は 2
82℃付近であり、ETFEは255ないし265℃付
近であり340℃ 以上で熱分解を開始するから、好ま
しくは305ないし340 ℃の範囲である。 実際
の加熱では 熱伝達の時間の短縮のため、更に高い温度
雰囲気のなかで加熱する場合もあり上限の温度は約 4
00℃ である。The mixing temperature and adhesion temperature must be higher than the temperature at which both PPS and ETFE melt. The melting point of pps is 2.
The temperature is around 82°C, and since ETFE starts thermal decomposition at around 255 to 265°C and 340°C or higher, the temperature is preferably in the range of 305 to 340°C. In actual heating, in order to shorten the heat transfer time, heating may be performed in an even higher temperature atmosphere, and the upper limit temperature is approximately 4.
00℃.
接着剤の製造方法としては熱融解混線できる装置、例え
ばスクリュウ型押し出し装置、二軸ローラー、ワイゼン
ベルグポンプ等はいづれも混合に使用可能である。 融
解混合により作製された樹脂混合物をプレスその他の成
形装置を用い被着材の形態に適した接着剤を作製するこ
とができる。As a method for producing the adhesive, any device capable of thermal melting and mixing, such as a screw type extrusion device, a twin-screw roller, a Weissenberg pump, etc., can be used for mixing. An adhesive suitable for the form of the adherend can be produced by using a press or other molding device from a resin mixture produced by melt-mixing.
接着剤の製法、接着方法、接着力の測定について実施例
に詳しく記載しである。The manufacturing method of the adhesive, the adhesion method, and the measurement of adhesive strength are described in detail in Examples.
接着性に対する超微粒子充填効果は既に研究発表されて
いるが、本発明では高分子の混合状態の安定化であると
考えることができる。Research has already been published on the effect of ultrafine particle filling on adhesiveness, but in the present invention it can be considered to be the stabilization of the mixed state of polymers.
PPSはETFEに対し相溶性は無い高分子として知ら
れている。 しかし機械的に混合すると混合体を作製す
ることができるが混合状態は熱力学的に不安定で、融解
状態では互いに分離し、同じ高分子同士が集合する傾向
をもつ、 この為、接着の際の接着剤、被着材の先端部
分の融解温度が高過ぎたり、接着作業時間が長くなると
高分子の分離が発生し、PPS、ETFE高分子の絡み
合いが少なくなり接着力の著しい低下の原因となる。
実験の結果超微粒子の充填は接着力低下の防止、接着可
能混合比率範囲の拡大に有効なことが分かった。PPS is known as a polymer that is not compatible with ETFE. However, although it is possible to create a mixture by mechanically mixing, the mixed state is thermodynamically unstable, and in the molten state, they separate from each other, and the same polymers tend to aggregate together.For this reason, when adhering If the melting temperature of the tip of the adhesive or adherend is too high or the bonding time is too long, polymer separation will occur, and the entanglement of PPS and ETFE polymers will decrease, causing a significant decrease in adhesive strength. Become.
As a result of experiments, it was found that filling with ultrafine particles is effective in preventing a decrease in adhesive strength and expanding the range of adhesion-capable mixing ratios.
例えば、超微粒子充填は無しで樹脂混合率50%(ET
FE/PP5=1 )の場合は接着力は約10 Kg
7cm2であるが超微粒子として磁性材料用酸化鉄微粉
体(化学構造はFe2O3、粒径0.5μ■ 、フェラ
イト微粒子と称する)を各高分子にほぼ等しく混合され
るように注意して充填した場合充填率3%で接着力的3
3 Kg/ cm” であり、PPSプラスチック成
形物の表面をこの接着剤を使用してETFEフィルムで
被覆することが可能であることが分かった。For example, without ultrafine particle filling, the resin mixing ratio is 50% (ET
If FE/PP5=1), the adhesive strength is approximately 10 kg.
7cm2, but when iron oxide fine powder for magnetic materials (chemical structure is Fe2O3, particle size 0.5μ■, called ferrite fine particles) is filled as ultrafine particles with care so that it is mixed almost equally into each polymer. Adhesive strength 3 with a filling rate of 3%
3 Kg/cm", and it was found that it was possible to coat the surface of PPS plastic moldings with an ETFE film using this adhesive.
(ホ) 作用 ETFE成形物とPPS成形物を接着により結合する。(e) Effect The ETFE molded product and the PPS molded product are bonded together.
(へ) 実施例
接着剤、被着材作製の為の原料である樹脂としてETF
Eにはダイキン(株)[ネオフロンETFE EP 5
20 J 、PPSにはトーブレン(株)「トープレン
T−4」を使用した。(f) Example adhesive, ETF as a resin that is a raw material for producing adherends
E is Daikin Co., Ltd. [Neofron ETFE EP 5
20 J, and "Toprene T-4" manufactured by Tovren Co., Ltd. was used as the PPS.
超微粒子としてはフェライト微粒子(戸田工業株式会社
7− F e 20 S −K F A −N H1
平均粒径 0.5〜0.6μm 以下フェライトをFe
Oと略称)、及びアルミナ超微粒子(Baikowsk
ieChimie BP BAIKALOX A−12
5、平均粒径 0.01μm以下アルミナをAIOと略
称)、その他を使用した。As ultrafine particles, ferrite fine particles (Toda Kogyo Co., Ltd. 7-Fe20S-KFA-N H1) are used.
Average grain size 0.5~0.6μm or less Ferrite is Fe
abbreviated as O), and alumina ultrafine particles (Baikowsk
ieChimie BP BAIKALOX A-12
5. Alumina with an average particle size of 0.01 μm or less (abbreviated as AIO), and others were used.
接着剤の作製の為の樹脂等の混合にはワイゼンベルグ型
樹脂混合押し出し装置を使用し、所定の混合比について
各原料の比重より供給量を定め次の手順で混合を行った
。 まづワイゼンベルグ混合押し出し装置の固定板、回
転板の表面温度320℃に保ち、回転板と固定板の間隙
2m園 とし、回転板の回転を開始し、予め固体状態で
混合された原料をホッパーより供給する。 一般に比重
の異なるもの、ベレットと粉体のように形や大きさの異
なるまのの均一な混合は困難なので少量単位で供給する
必要があり、実験に用いた装置の円板の直径は12cm
装置内容積は約10ccであるので、高分子の容積量と
して5cc を単位として供給し、開始時にはノズル
孔に栓をし、混合が充分なころを見計って栓を開き押し
出しを開始した。 更に混合を充分に行うために押し出
し物の再押し出しを行った。A Weissenberg-type resin mixing and extrusion device was used to mix the resins and the like for producing the adhesive, and the supply amount was determined based on the specific gravity of each raw material at a predetermined mixing ratio, and the mixing was performed in the following procedure. First, the surface temperature of the fixed plate and rotating plate of the Weisenberg mixing and extrusion device was maintained at 320°C, the gap between the rotating plate and the fixed plate was set to 2 m, and the rotating plate started rotating, and the raw materials mixed in a solid state were transferred from the hopper. supply In general, it is difficult to uniformly mix materials with different specific gravities, pellets, and powders of different shapes and sizes, so it is necessary to supply them in small quantities.The diameter of the disk of the device used in the experiment was 12 cm.
Since the internal volume of the apparatus was about 10 cc, the volume of polymer was supplied in units of 5 cc, the nozzle hole was plugged at the start, and when mixing was sufficient, the plug was opened to start extrusion. Furthermore, the extrudate was extruded again to ensure sufficient mixing.
押し出し物はヒートプレスにより厚さ0.31のシート
状に成形され、接着用シートとして使用した。The extrudate was formed into a sheet with a thickness of 0.31 by heat press, and used as an adhesive sheet.
接着力評価のためのテストピースの作製には予め、被着
材としてETFE類及びPPS成形物より、その先端が
径が6謹l 長さ6〜9c鵬の棒状物を作製し、先端部
分を接着用部分、他の先端に近い部分は引っ張り試験の
際の把持部分とな。To prepare a test piece for evaluating adhesive strength, a rod-shaped object with a tip diameter of 6 cm and a length of 6 to 9 cm was prepared in advance from ETFE and PPS molded materials as adherends, and the tip was The adhesive part and the other part near the tip will be used as the gripping part during the tensile test.
材質の異なる被着材の棒の接着には接着用シトから直径
5■簡 のシートを切りだし、表面平滑な加熱金属板と
薄いPTFEシートを用い、ETFE棒の先端に接着剤
を融着する。 このときの金属板の表面温度は300な
いし330℃であり、先端と接着材の融着は確認されね
ばならない、 次にエヤーバーナーを用い、2ケの棒、
すなわち溶着剤を先端に融着したETFE棒とPPS棒
の先端を加熱し、その先端が共に融解しているのを確認
してから先端を接触させ軽くおして融着させ、その状態
を保って冷却し接着を完了する。To bond sticks of different adherend materials, cut a sheet with a diameter of 5cm from an adhesive sheet, use a heated metal plate with a smooth surface and a thin PTFE sheet, and fuse the adhesive to the tip of the ETFE stick. . The surface temperature of the metal plate at this time is 300 to 330°C, and the fusion of the tip and adhesive must be confirmed. Next, using an air burner, 2 rods,
In other words, heat the tips of the ETFE rod and the PPS rod, which have the welding agent fused to the tips, and after confirming that the tips are both melted, bring the tips into contact and press lightly to fuse them together, then cool while maintaining that state. and complete the gluing.
接着力測定のためには接着した棒の軸がほぼ同一直線上
にある必要があるが、先端の融解部分の長さが長くあっ
たり、押し合う力が強すぎると融解部分で流れ生じ試験
用のテストピースは作製できないから接着には若干の注
意がいる。 接着力の測定はテンシロンUTM 3型を
用い、引っ張り速度4■履/分とし、引っ張り強さを測
定し、接着力は強さを破断面面積で除した数値を用いた
。 このような試験では接着面が最も弱く、接着剤には
伸びが無いとして取り扱う事ができる。 接着剤作製の
際に樹脂の流れに異方性が生じ、接着の際に円型の接着
材が楕円形に変化する場合等があり、破断面面積は近似
的に円または楕円として計算した。 データはばらつき
が多いので、接着できた試料5本のうち、上位3本の平
均値で示す事とした。 接着力の測定結果を以下にまと
めた。In order to measure adhesive strength, the axes of the glued rods need to be on almost the same straight line, but if the length of the melted part at the tip is too long or the pressing force is too strong, the melted part may flow and cause problems during the test. Since it is not possible to make a test piece, some care must be taken when adhering. The adhesive force was measured using a Tensilon UTM 3 model at a tensile rate of 4 shoes/min, and the adhesive force was determined by dividing the strength by the area of the fractured surface. In such tests, the adhesive surface is the weakest, and the adhesive can be treated as having no elongation. There are cases where anisotropy occurs in the resin flow during adhesive preparation, and a circular adhesive changes into an elliptical shape during bonding, so the fracture surface area was calculated approximately as a circle or an ellipse. Since there is a lot of variation in the data, we decided to show the average value of the top three out of the five samples that could be bonded. The measurement results of adhesive strength are summarized below.
(1) 被着材をETFEとPPS成形物とし、接着
剤をETFEとPPSとの混合樹脂を用いた場合の接着
力測定結果を図に示す。(1) The figure shows the adhesive force measurement results when the adherend was a molded product of ETFE and PPS and the adhesive was a mixed resin of ETFE and PPS.
図中の○は充填剤なし、これは参考のためである、・4
.tAlo超微粒子3.85ないし4 Vol %を充
填した場合で縦軸は、引っ張り接着力(にg/c+n”
)、横軸は樹脂混合率(ETFE) /(ETFE +
PP5)の容積%で示しである。○ in the figure indicates no filler, this is for reference only,・4
.. When filled with 3.85 to 4 Vol % of tAlo ultrafine particles, the vertical axis represents the tensile adhesive force (g/c+n”
), the horizontal axis is the resin mixture ratio (ETFE) / (ETFE +
It is expressed in volume % of PP5).
(2) 充填率3%とし、あらかじめFeO超微粒子充
填ETFEベレットを作製し、樹脂混合率50 %の接
着剤による接着を試みた結果、接着力は33 Kg /
c m”であり、充填剤なしに較べ2倍以上の強さであ
り、また実用可能の強さであった(3) 前記超微粒子
以外の粒子について前記と同様、接着を試みた結果、接
着に有効であった粒子を例示する。 樹脂混合率は50
%である。(2) An ETFE pellet filled with FeO ultrafine particles was prepared in advance with a filling rate of 3%, and an attempt was made to bond it with an adhesive with a resin mixture rate of 50%. As a result, the adhesive strength was 33 kg /
cm'', which was more than twice as strong as that without filler, and the strength was practically usable. Examples of particles that were effective for
%.
()内は平均または平均粒径、単位はμ■。The numbers in parentheses are the average or average particle diameter, and the unit is μ■.
粉砕ガラスピーズ(0,2)、シリカ粉体(2〜0゜5
)、ニッケル(0,3) 、ニッケルー鉄合金(0,3
)、研磨材用宝石(1以下)。Crushed glass peas (0,2), silica powder (2~0°5
), nickel (0,3), nickel-iron alloy (0,3
), abrasive jewelry (1 or less).
(4) 比較の為に、平均粒径 50μ烏のフェライト
、ガラスピーズを充填したETFEとPPSとの混合樹
脂組成物を接着剤として同じ方法でPPSとPVDF成
形物の接着を試みたが、特別の性能向上は認められなか
った。(4) For comparison, we attempted to bond PPS and PVDF molded objects in the same way using a mixed resin composition of ETFE and PPS filled with ferrite and glass beads with an average particle size of 50 μm as an adhesive. No performance improvement was observed.
(ト) 発明の効果
以上、本発明の接着性樹脂組成物はETFE類とPPS
樹脂成形物との接着を可能とするもので、ETFE、P
PSの繊維強化成形物の接着についても可能である。(G) In addition to the effects of the invention, the adhesive resin composition of the present invention is a combination of ETFEs and PPS.
It enables adhesion to resin molded products, such as ETFE, P
It is also possible to bond PS fiber-reinforced molded products.
従がって、耐熱性、耐薬品性、耐候性、摺動特性、電気
特性等に優れた性質を持つETFEを強力で高弾性を高
温度でも保つ事の出来るが耐候性に弱点をもつPPS表
面に積層することによりPPS材料の屋外使用を容易に
することができる。Therefore, ETFE, which has excellent properties such as heat resistance, chemical resistance, weather resistance, sliding properties, and electrical properties, is used instead of PPS, which is strong and can maintain high elasticity even at high temperatures, but has a weak point in weather resistance. Lamination on the surface can facilitate outdoor use of PPS materials.
このほか、本発明の積層複合物は、各種工業材料に用い
ることができるが、特に構造物用材料、電子材料等に有
用である。In addition, the laminated composite of the present invention can be used for various industrial materials, and is particularly useful for structural materials, electronic materials, etc.
図は被着材をETFEとPPS成形物とし、接着剤をE
TFEとPPSとの混合樹脂を用いた場合の接着力測定
結果。
縦軸は引っ張り接着力、羊位はキログラム/平方センチ
(Kg/cm”)。
横軸は接着剤の樹脂混合率(ETFE) /(ETFE
+PPS )の容積%で示しである。
図中の印Oは充填剤なし、印・はアルミナ超微粒子(A
IO> 3.85 ないし4 Vol % を充
填した場合について示しである。In the figure, the adherends are ETFE and PPS molded products, and the adhesive is E
Adhesive force measurement results when using a mixed resin of TFE and PPS. The vertical axis is the tensile adhesive force, and the weight is kilograms per square centimeter (Kg/cm"). The horizontal axis is the resin mixture ratio of the adhesive (ETFE) / (ETFE).
+PPS) is expressed as volume %. In the figure, O indicates no filler, and O indicates ultrafine alumina particles (A
The figure shows the case where IO>3.85 to 4 Vol% is filled.
Claims (3)
−エチレン共重合体と超微粒子の3成分を混合して得ら
れる樹脂組成物(1) A resin composition obtained by mixing three components: polyphenylene sulfide, tetrafluoroethylene-ethylene copolymer, and ultrafine particles.
−エチレン共重合体と超微粒子の3成分を混合して得ら
れる樹脂組成物を接着剤として使用し、ポリフェニレン
サルファイド樹脂成形物と四フッ化エチレン−エチレン
共重合樹脂成形物を被着材とし、被着材の接合予定部分
及び接着剤をポリフェニレンサルファイド、及び四フッ
化エチレン−エチレン共重合体の融点以上、400℃以
下の温度で融解し、融解状態で接着剤を用い被着材を接
合し、接合した状態を保って冷却するポリフェニレンサ
ルファイド樹脂成形物と四フッ化エチレン−エチレン共
重合樹脂成形物の接着方法。(2) A resin composition obtained by mixing three components: polyphenylene sulfide, tetrafluoroethylene-ethylene copolymer, and ultrafine particles is used as an adhesive, and a polyphenylene sulfide resin molded product and tetrafluoroethylene-ethylene copolymer are used as adhesives. The polymer resin molded product is used as an adherend, and the part of the adherend to be joined and the adhesive are melted at a temperature above the melting point of polyphenylene sulfide and tetrafluoroethylene-ethylene copolymer and below 400°C, and in a molten state. A method for adhering polyphenylene sulfide resin moldings and tetrafluoroethylene-ethylene copolymer resin moldings, which involves joining adherends using an adhesive and cooling them while maintaining the joined state.
−エチレン共重合体と超微粒子を混合した樹脂組成物を
接着層としてポリフェニレンサルファイド樹脂と四フッ
化エチレン−エチレン共重合樹脂とを結合した積層構造
物。(3) A laminated structure in which polyphenylene sulfide resin and tetrafluoroethylene-ethylene copolymer resin are bonded together using a resin composition in which polyphenylene sulfide, tetrafluoroethylene-ethylene copolymer, and ultrafine particles are mixed as an adhesive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30942988A JPH02155943A (en) | 1988-12-07 | 1988-12-07 | Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30942988A JPH02155943A (en) | 1988-12-07 | 1988-12-07 | Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02155943A true JPH02155943A (en) | 1990-06-15 |
Family
ID=17992900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30942988A Pending JPH02155943A (en) | 1988-12-07 | 1988-12-07 | Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02155943A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0874023A1 (en) * | 1996-11-14 | 1998-10-28 | Asahi Glass Company | Polymer alloy of ethylene/tetrafluoroethylene copolymer |
WO2001032782A1 (en) * | 1999-11-04 | 2001-05-10 | Daikin Industries, Ltd. | Molded elastomer for semiconductor production apparatus and crosslinkable fluoroelastomer composition |
US6818706B2 (en) | 2001-02-21 | 2004-11-16 | Nexans | Polymer mixture |
JP2018502945A (en) * | 2014-12-04 | 2018-02-01 | ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation | Adhesive arrangement |
-
1988
- 1988-12-07 JP JP30942988A patent/JPH02155943A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0874023A1 (en) * | 1996-11-14 | 1998-10-28 | Asahi Glass Company | Polymer alloy of ethylene/tetrafluoroethylene copolymer |
EP0874023A4 (en) * | 1996-11-14 | 2000-03-01 | Asahi Glass Co Ltd | Polymer alloy of ethylene/tetrafluoroethylene copolymer |
WO2001032782A1 (en) * | 1999-11-04 | 2001-05-10 | Daikin Industries, Ltd. | Molded elastomer for semiconductor production apparatus and crosslinkable fluoroelastomer composition |
US6803402B2 (en) | 1999-11-04 | 2004-10-12 | Daikin Industries, Ltd. | Elastomer molded article and crosslinkable fluorine-containing elastomer composition for semi-conductor production apparatuses |
US6818706B2 (en) | 2001-02-21 | 2004-11-16 | Nexans | Polymer mixture |
JP2018502945A (en) * | 2014-12-04 | 2018-02-01 | ティーイー・コネクティビティ・コーポレイションTE Connectivity Corporation | Adhesive arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906373B1 (en) | Thermally enhanced electrically insulative adhesive paste | |
TW201704413A (en) | High thermally conductive low pressure moldable hotmelt | |
US20120160829A1 (en) | Polyarylene ether ketone composition for induction welding | |
EP1528090A4 (en) | Epoxy resin powder coating material | |
JPH02155943A (en) | Bonding of polyphenylene sulfide resin to tetrafluoroethylene-ethylene copolymer resin | |
US5091463A (en) | Resin composition for adhering polyarylene sulfide and polyvinylidene fluoride, method of adhering them and their laminated structure | |
JPS58174474A (en) | Hot-melt adhesive | |
JP2003171640A (en) | Polyester-based hot-melt adhesive composition, and metal adhesive composition, adhesive sheet or film, and metal adhesive film or sheet using the same | |
JPH04202329A (en) | Production of tetrafluoroethylene copolymer powder | |
JPS62127194A (en) | Production of anisotropic conductive solder joining material | |
US5153060A (en) | Resin composition for adhering polyarylene sulfide and polyvinylidene fluoride, method of adhering them and their laminated structure | |
JPH0493381A (en) | Hot-melt adhesive and method of peeling | |
JPH0375240A (en) | Sealing material | |
JPH058230B2 (en) | ||
JP2003040619A (en) | METHOD FOR SURFACE-TREATED CaF2 POWDER, RESIN COMPOSITE AND STRUCTURAL MEMBER USING IT | |
JPH032654B2 (en) | ||
JPH04198265A (en) | Resin composition for sealing electronic part | |
JPH032052B2 (en) | ||
JPH02155970A (en) | Adhesion of polyethylene with polypropylene | |
JPH01141935A (en) | Bonding of polyethylene resin with polystyrene resin | |
JP2004107588A (en) | Resin composition for high-frequency thermal bonding | |
JPH02163129A (en) | Adhesion of rigid polyvinyl chloride molded article and polyethylene molded article or the like | |
JPH07150123A (en) | Polyester hot melt adhesive composition | |
Korenberg et al. | Toughness of syndiotactic polystyrene (sPS)/epoxy blends. | |
JPS6161829A (en) | Method of joining polymer material and/or metallic material |