JPH0215562A - Electrolyte stirring device of storage battery - Google Patents

Electrolyte stirring device of storage battery

Info

Publication number
JPH0215562A
JPH0215562A JP63165451A JP16545188A JPH0215562A JP H0215562 A JPH0215562 A JP H0215562A JP 63165451 A JP63165451 A JP 63165451A JP 16545188 A JP16545188 A JP 16545188A JP H0215562 A JPH0215562 A JP H0215562A
Authority
JP
Japan
Prior art keywords
electrolyte
cell
battery
gas
liquid circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63165451A
Other languages
Japanese (ja)
Inventor
Akifumi Tanaka
田中 昌文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63165451A priority Critical patent/JPH0215562A/en
Publication of JPH0215562A publication Critical patent/JPH0215562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/73Electrolyte stirring by the action of gas on or in the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PURPOSE:To uniformize the concentration of electrolyte across the upper and lower parts of a storage battery, by stirring the electrolyte through utilization of gas generated from the battery. CONSTITUTION:A gas generating electrode 11 arranged within an electrolyte circulating tube 13 in the forefront cell 1a is connected via a switching element 14 to a battery terminal on a negative potential side from the forefront cell 1a, and the switching element 14 is turned on by using a signal outputted from a potential detecting electrode 12 which detects battery charging conditions when the battery is set in its charging condition. Then, electrolyte in the electrolyte circulating tube 13 is moved upstream and circulated by using gas generated from the gas generating electrode 11. The gas stayed on an electrolyte level in the cell is sequentially fed to an electrolyte circulating tube 8 in a second rank cell 1b to move the electrolyte upstream and circulate it in chain-reacting relation so that the gas is discharged out of the exhaust portion 5 of a terminal cell 1c. This makes it possible to uniformize the specific gravity of the electrolyte across the upper and lower parts of the battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蓄電池の電解液撹拌装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an electrolyte stirring device for a storage battery.

従来の技術とその問題点 @電池にとって電解液は反応物質であるため1、極板の
活物質と同様、その電解?^が蓄電池内でいかに利用さ
れるかによって蓄電池容量を大幅に左右することは周知
の通りである。
Conventional technology and its problems @Since the electrolyte is a reactive substance for batteries, 1. Like the active material of the electrode plate, its electrolysis? It is well known that the capacity of a storage battery is greatly influenced by how it is used in the storage battery.

また鉛蓄電池の場合、充放電時には蓄電池上部の電解液
がよく利用されるため、蓄電池上部の電解液比重は低く
なり、蓄電池下部には常に比重の高い電解液が残留する
。これらの電解液の濃度差を解消するため、過充電を加
えてガスを発生させ、このガスの撹拌作用により上下比
重の均一化を計っている。この場合、蓄電池形状が上下
に低いものでは過充電によって比教的簡単に電解液の均
一化が計れるが、電気車用蓄電池等の背の高いものでは
少々の過充電では均一にならないのが常である。
In addition, in the case of lead-acid batteries, the electrolyte at the top of the battery is often used during charging and discharging, so the specific gravity of the electrolyte at the top of the battery is low, and the electrolyte with high specific gravity always remains at the bottom of the battery. In order to eliminate the concentration difference between these electrolytes, overcharging is applied to generate gas, and the stirring action of this gas is used to equalize the upper and lower specific gravity. In this case, if the storage battery is vertically low, you can easily equalize the electrolyte by overcharging, but if the battery is tall, such as an electric car storage battery, even a small amount of overcharging will not always make the electrolyte uniform. It is.

この結果、極板の上部では低比重電解液のため容量が低
下し、また下部では常に比重の高い酸化性に富む電解液
か残留するため、極板下端部が腐蝕され、短寿命を招く
結果となっている。この様な理由で蓄電池は充電毎に過
充電か実施され、電力が浪費されると共に、蓄電池の寿
命も短くしている。
As a result, the capacity decreases due to the low specific gravity electrolyte in the upper part of the electrode plate, and the high specific gravity and highly oxidizing electrolyte always remains in the lower part, which corrodes the lower edge of the electrode plate and shortens its life. It becomes. For this reason, the storage battery is overcharged every time it is charged, which wastes power and shortens the life of the storage battery.

また、据置用蓄電池の場合、蓄電池に各種負荷が接続さ
れ、中には大幅な電圧変動を嫌う負荷があるため過充電
ができず、充電電圧を一定値でカットする定電圧充電シ
ステムかとられることかあり、この種用途の蓄電池にお
いては上述した現象はさらに順著となる。また、これら
の問題点を解消するため、12〜24時間の長時間にわ
たる均等充電を実施しても、均等充電電圧は低いため、
上記問題点を充分に解決することかできなかった。
In addition, in the case of stationary storage batteries, various loads are connected to the storage battery, and some loads do not like large voltage fluctuations, so overcharging is not possible, so a constant voltage charging system is used that cuts the charging voltage at a constant value. However, in storage batteries for this type of use, the above-mentioned phenomenon becomes even more pronounced. In addition, in order to solve these problems, even if equal charging is carried out over a long period of 12 to 24 hours, the equal charging voltage is low, so
It was not possible to fully solve the above problems.

問題点を解決するための手段 本発明は上記した如き欠点を解消した蓄電池の電解液撹
拌装置を提供するものである。即ち、本発明は複数個の
セルで構成された集合電池において、各セル内の電解液
中に上下方向にa循環用簡を設け、先頭セルの液循環用
筒内に配置したガス発生電極をスイッチング素子を介し
て該先頭セルより11電位側のセルの電池端子に接続し
、電池が充電状態になった時、前記スイッチング素子を
充電状態を検出する電位検出電極よりの信号でON状態
にするように構成し、前記ガス発生電極より発生ずるガ
スで液循環用筒内の電解液を上昇循環させ、セル内の電
解液面上に滞留するガスを順次次位セルの凛循環用筒に
供給して連鎖的に電解液を上昇循環させ、終端セルには
ガスを外部l\放出する排気部を設けたことを特徴とす
るものである。
Means for Solving the Problems The present invention provides an electrolyte stirring device for a storage battery that eliminates the above-mentioned drawbacks. That is, the present invention provides an assembled battery composed of a plurality of cells, in which a circulation pipe is provided vertically in the electrolyte in each cell, and a gas generating electrode is arranged in the liquid circulation cylinder of the first cell. It is connected to the battery terminal of a cell on the 11th potential side from the leading cell through a switching element, and when the battery is in a charging state, the switching element is turned on by a signal from a potential detection electrode that detects the charging state. The electrolyte in the liquid circulation cylinder is upwardly circulated by the gas generated from the gas generating electrode, and the gas remaining on the electrolyte surface in the cell is sequentially supplied to the Rin circulation cylinder of the next cell. The electrolyte is circulated upward in a chain manner, and the terminal cell is provided with an exhaust section for discharging gas to the outside.

実  繕  例 以下、本発明を図面を用いて具体的に説明する。Actual repair example Hereinafter, the present invention will be specifically explained using the drawings.

図は本発明電解液攪拌装置の一実施例を示ず概略断面図
である0図において1a〜ICは本発明集合電池を構成
するセルで、この実施例では3セルの場合を想定してい
る。2は蓋、3は前記蓋の液口部、4は液[1部に取付
けた密封栓、5は終端セルICに取付けた排気栓、6は
電槽内の陰極板、7は陽極板、8は電槽内の電解液中に
上下方向に直立させた液ll7i環用筒、9は前記筒の
側部に設けたガス送入口、10は前位のセルより次位の
セルへガスを移動させるチューブ、11はガス発生電極
で、初段セルla内に直立する液循環用筒13内に挿入
され、電極先端は前記筒13の下端部に達している。1
2は電位検出電極で、初段セル1aの電解液と常時接触
させ、初段セルの電解液電位が検出できるようにしてい
る。14はスイッチング部で、電位検出電極12により
オン、オフすると共にガス発生型allに流れる電流を
抑制している。
The figure does not show an embodiment of the electrolyte stirring device of the present invention, but is a schematic cross-sectional view.In Figure 0, 1a to IC are cells constituting the assembled battery of the present invention, and this embodiment assumes a case of 3 cells. . 2 is a lid, 3 is a liquid opening part of the lid, 4 is a sealing plug attached to the liquid part [1], 5 is an exhaust plug attached to the terminal cell IC, 6 is a cathode plate in the container, 7 is an anode plate, Reference numeral 8 denotes a tube for the liquid ring which is vertically placed in the electrolyte in the battery container, 9 is a gas inlet provided on the side of the tube, and 10 is a tube for supplying gas from the previous cell to the next cell. The tube to be moved, 11, is a gas generating electrode, which is inserted into a liquid circulation cylinder 13 standing upright in the first stage cell la, and the tip of the electrode reaches the lower end of the cylinder 13. 1
Reference numeral 2 denotes a potential detection electrode, which is kept in constant contact with the electrolytic solution of the first stage cell 1a, so that the potential of the electrolytic solution of the first stage cell can be detected. Reference numeral 14 denotes a switching section which is turned on and off by the potential detection electrode 12 and suppresses the current flowing through the gas generating type ALL.

次に上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

蓄電池群を充電すると各セルの端子電圧、電解液の電位
は上昇する。この電位の上昇を初段セル1aの電解液中
に挿入した補助電極12で検出し、充電電圧が所定の電
圧に達するとスイッチング部14内のトランジスタをO
N状態にし、ガス発生電極11に電流を流し、該電極の
先端から電気分解によるガスを発生させる。この発生ガ
スが液循環用筒13内を上昇すると、筒内の見掛けの電
解液比重が低下するため、電槽底部の重い比重の電解液
が筒内を上昇し、上部開孔部より電解液がガスと共に流
出する。従って、初段セル1aの電解液は充電によるガ
ラシンクに加え、該筒13内を電槽底部、から上部へ電
解液が移動することによってm打され、電解液の上下比
重は均一化される。
When the storage battery group is charged, the terminal voltage of each cell and the potential of the electrolyte increase. This increase in potential is detected by the auxiliary electrode 12 inserted into the electrolyte of the first stage cell 1a, and when the charging voltage reaches a predetermined voltage, the transistor in the switching section 14 is turned off.
The gas generating electrode 11 is brought into an N state, and a current is passed through the gas generating electrode 11 to generate gas by electrolysis from the tip of the electrode. When this generated gas rises inside the liquid circulation cylinder 13, the apparent specific gravity of the electrolyte in the cylinder decreases, so the electrolyte with a heavy specific gravity at the bottom of the container rises inside the cylinder, and the electrolyte flows through the upper opening. flows out along with the gas. Therefore, the electrolytic solution in the first stage cell 1a is added to the glass sink due to charging, and the electrolytic solution moves from the bottom of the container to the top in the cylinder 13, thereby making the electrolyte's upper and lower specific gravity uniform.

尚、前記した電位検出電極12は初段セル1aの電解液
中に挿入して電位を検出しているが、電池端子と接続し
て電圧を検出してもよい。
Although the potential detection electrode 12 described above is inserted into the electrolytic solution of the first stage cell 1a to detect the potential, it may also be connected to a battery terminal to detect the voltage.

初段セル1aは湾口部3の液栓を密封栓3としているた
め、セル内で発生したガスは連結チューブ10を通り、
次位のセルの液循環用筒8の側部に設けたガス送入口9
より簡8内に排気される。
Since the first stage cell 1a uses a liquid stopper at the bay mouth part 3 as a sealing stopper 3, the gas generated within the cell passes through the connecting tube 10,
Gas inlet 9 provided on the side of the liquid circulation cylinder 8 of the next cell
It is exhausted within 8 minutes.

この場合、前記した液循環用筒13内を上昇するガスと
同様、このガスで液循環用筒8内の電解液の見掛けの比
重を低下させ、電槽底部の比重の重い電解液を上方に吸
上げ、セル内の電解液上下比重を均一にする。
In this case, similar to the gas rising in the liquid circulation tube 13 described above, this gas lowers the apparent specific gravity of the electrolyte in the liquid circulation tube 8, and moves the electrolyte with a heavy specific gravity at the bottom of the container upward. Suction to equalize the upper and lower specific gravity of the electrolyte in the cell.

各セルで発生したガスは順次連結チューブ10、液循環
用筒8を通り、最終的に終端セルの排気栓5を通って外
部に排出される。
The gas generated in each cell sequentially passes through the connecting tube 10, the liquid circulation tube 8, and is finally exhausted to the outside through the exhaust plug 5 of the terminal cell.

発明の効果 本発明電解液撹拌装置は電池の発生ガスを利用して電解
液を撹拌するものであり、撹拌速度が速く、また蓄電池
上下の温境差を均一にする冷却効果も期待できる。さら
に、本発明は初段セルの液循環簡にガス発生電極を装着
し、各セルの液循環簡をチューブで接続するだけの簡単
な構造であるため、あらゆる電池に装着か可能である。
Effects of the Invention The electrolyte stirring device of the present invention uses the gas generated by the battery to stir the electrolyte, has a high stirring speed, and can also be expected to have a cooling effect that equalizes the temperature difference between the top and bottom of the storage battery. Furthermore, the present invention has a simple structure in which a gas generating electrode is attached to the liquid circulation unit of the first stage cell and the liquid circulation unit of each cell is connected with a tube, so that it can be attached to any battery.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明電解液撹拌装置の一実施例のを示す概要図で
ある。
The figure is a schematic diagram showing one embodiment of the electrolyte stirring device of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  複数個のセルで構成された集合電池において、各セル
内の電解液中に上下方向に液循環用筒を設け、先頭セル
の液循環用筒内に配置したガス発生電極をスイッチング
素子を介して該先頭セルより負電位側のセルの電池端子
に接続し、電池が充電状態になった時、前記スイッチン
グ素子を充電状態を検出する電位検出電極よりの信号で
ON状態にするように構成し、前記ガス発生電極より発
生するガスで液循環用筒内の電解液を上昇循環させ、セ
ル内の電解液面上に滞留するガスを順次次位セルの液循
環用筒に供給して連鎖的に電解液を上昇循環させ、終端
セルにはガスを外部へ放出する排気部を設けたことを特
徴とする蓄電池の電解液撹拌装置。
In an assembled battery composed of multiple cells, a liquid circulation cylinder is provided vertically in the electrolyte in each cell, and a gas generating electrode placed in the liquid circulation cylinder of the first cell is connected via a switching element. connected to a battery terminal of a cell on a negative potential side from the leading cell, and configured to turn on the switching element with a signal from a potential detection electrode that detects the charging state when the battery is in a charging state; The gas generated from the gas generating electrode circulates the electrolyte in the liquid circulation cylinder upward, and the gas remaining on the electrolyte surface in the cell is sequentially supplied to the liquid circulation cylinder of the next cell, creating a chain reaction. An electrolyte stirring device for a storage battery, characterized in that an electrolyte is circulated upward and a terminal cell is provided with an exhaust section for discharging gas to the outside.
JP63165451A 1988-07-01 1988-07-01 Electrolyte stirring device of storage battery Pending JPH0215562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165451A JPH0215562A (en) 1988-07-01 1988-07-01 Electrolyte stirring device of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165451A JPH0215562A (en) 1988-07-01 1988-07-01 Electrolyte stirring device of storage battery

Publications (1)

Publication Number Publication Date
JPH0215562A true JPH0215562A (en) 1990-01-19

Family

ID=15812670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165451A Pending JPH0215562A (en) 1988-07-01 1988-07-01 Electrolyte stirring device of storage battery

Country Status (1)

Country Link
JP (1) JPH0215562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004681A (en) * 2014-06-17 2016-01-12 株式会社Gsユアサ Lead power storage battery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004681A (en) * 2014-06-17 2016-01-12 株式会社Gsユアサ Lead power storage battery system

Similar Documents

Publication Publication Date Title
Rynkiewicz Discharge and charge modeling of lead acid batteries
CA2486364A1 (en) Operating method of redox flow battery and cell stack of redox flow battery
CN102354761B (en) Flow cell system and shutdown protection method as well as device thereof
US20220082630A1 (en) Soh/soc detecting device for power storage element, and power storage element managing unit
US20230038076A1 (en) Power supply method and system for hydrogen fuel cell stack, and hydrogen powered motorcycle and driving method and system thereof
JP2006318818A (en) Fuel cell system
US7538517B2 (en) Method for detecting battery stratification
CN105723554B (en) Method for operating redox flow batteries group
JPH0215562A (en) Electrolyte stirring device of storage battery
Sunu et al. Current Density and Electrolyte Distribution in Motive Power Lead‐Acid Cells
CN107942250B (en) method for rapidly measuring capacity of clock battery
US3037066A (en) Sealed storage cell and charging circuits therefor
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
KR940016986A (en) How to Operate Metal-Halogen Cells
Muneret et al. Analysis of the partial charge reactions within a standby VRLA battery leading to an understanding of intermittent charging techniques
KR970004143B1 (en) Zinc-halogen secondary battery with feature of enhanced charge efficiency
JP3133220B2 (en) Charge control device for sealed battery
JP2658502B2 (en) Lead-acid battery internal impedance measurement device
CN101141074B (en) Self-excitation negative pulse voltage regulation equalization battery
JPS61248367A (en) Operating method of hybrid power source in combination of fuel cell and secondary battery
Alaoui et al. On-board diagnostic and rejuvenation system for electric vehicles
JP2982368B2 (en) Battery storage method for lead-acid batteries
JPS62139248A (en) Lead-acid battery system
Tsenter et al. Common vessel monoblock design for sealed nickel-cadmium batteries
JPS61245471A (en) Lead storage battery employing fluid electrolyte