JPS61248367A - Operating method of hybrid power source in combination of fuel cell and secondary battery - Google Patents

Operating method of hybrid power source in combination of fuel cell and secondary battery

Info

Publication number
JPS61248367A
JPS61248367A JP60089798A JP8979885A JPS61248367A JP S61248367 A JPS61248367 A JP S61248367A JP 60089798 A JP60089798 A JP 60089798A JP 8979885 A JP8979885 A JP 8979885A JP S61248367 A JPS61248367 A JP S61248367A
Authority
JP
Japan
Prior art keywords
fuel cell
secondary battery
fuel
hybrid power
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60089798A
Other languages
Japanese (ja)
Inventor
Yoichi Nomura
洋一 野村
Yoshikatsu Takabori
高堀 好克
Toshiaki Konuki
利明 小貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60089798A priority Critical patent/JPS61248367A/en
Publication of JPS61248367A publication Critical patent/JPS61248367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04917Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain the long life without being damaged by a reverse current from high open circuit voltage and a secondary battery by continuously generating electric power with the voltage of a fuel cell which is slightly higher than that of the secondary battery even in no-loading. CONSTITUTION:The damage due to a reverse current from a secondary battery of a fuel cell is prevented by means of a reverse current preventing device by keeping the parallel connection of the fuel cell and the secondary battery close in no-loading for a long time to avoid the generation of high open circuit voltage of the fuel cell, and stopping a supplying device for a fuel and an oxidizing agent in no-loading for a long time to make float charging with a small current due to a diffusion speed. In the case of using an anolyte circulation type liquid fuel cell, when stopping the auxiliary machinery, outside air will enter into a fuel chamber, and in order to prevent the damage of catalyst for a fuel electrode, the liquid level of an anolyte is set to immerse the fuel electrode into the anolyte, and in order to avoid the damage due to a short-circuit current, it is set not to generate high open circuit voltage in the fuel cell side.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃料電池と二次電池を組み合わせたハイブリッ
ド電源の運転方法に関し、特に燃料電池の長寿命化をも
たらす運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of operating a hybrid power source that combines a fuel cell and a secondary battery, and more particularly to a method of operating a hybrid power source that extends the life of the fuel cell.

従来の技術 燃料電池を二次電池と組み合わせてハイブリッド電源と
して用いる目的は、(L)コールドスタート時に燃料電
池の昇温途中の負荷を二次電池からの出力でまかなう、
(2)変動負荷に対し、二次電池出力により平準化する
、ことにある。従来のハイブリッドシステムでは夜間等
長時間の無負荷時には、燃料電池と二次電池の並列接続
を開き、燃料電池を運転停止の状態にしていた。
Conventional technology The purpose of using a fuel cell in combination with a secondary battery as a hybrid power source is to (L) use the output from the secondary battery to cover the load during the temperature rise of the fuel cell during a cold start;
(2) The variable load is leveled by the secondary battery output. In conventional hybrid systems, during long periods of no load, such as at night, the parallel connection between the fuel cell and the secondary battery is opened, and the fuel cell is shut down.

発明が解決しようとする問題点 この場合、運転停止直後には燃料電池は高い開路電圧を
発生し、燃料電池構成材料を電解損傷するという問題が
あり、また、燃料極室に酸化剤が侵入するような場合に
は、燃料の消費に伴い、局部電池反応により触媒貴金属
が電解酸化されるという問題があり、結果的に燃料電池
の短寿命を生じていた。
Problems to be Solved by the Invention In this case, the fuel cell generates a high open circuit voltage immediately after the operation is stopped, causing electrolytic damage to the fuel cell constituent materials, and oxidizing agent entering the fuel electrode chamber. In such cases, there is a problem in that the catalytic noble metal is electrolytically oxidized due to local cell reactions as fuel is consumed, resulting in a shortened lifespan of the fuel cell.

問題点を解決するための手段 上記の問題を解決するため、本発明においては長時間の
無負荷時においても燃料電池と二次電池の並列接続を閉
じたままとして、燃料電池が高い開路電圧を発生するこ
とを避け、二次電池の過充電を避けるため、長時間の無
負荷時1こは燃料および酸化剤の供給装置を停止して、
拡散律速による微小電流でのフロート充電とし、また、
逆電流防止装置により、微小出力状態の燃料電池の、二
次電池からの逆電流による損傷を防止しようとするもの
である。更に、アノライト循環型液体燃料電池を用いる
場合には、補機停止時には燃料室に外気が侵入し、前述
のような局部電池反応による燃料極触媒の損傷が著しい
ことを防止するため、補機停止時においても燃料極がア
ノライト中に浸漬されているようにアノライト液面を設
定し、それに伴う短絡電流による損傷を避けるため燃料
電池側に高い開路電圧を発生させないようにするもので
ある。
Means for Solving the Problems In order to solve the above problems, in the present invention, the parallel connection between the fuel cell and the secondary battery remains closed even during long periods of no load, so that the fuel cell has a high open circuit voltage. In order to avoid overcharging of the secondary battery, stop the fuel and oxidizer supply equipment during long periods of no load.
Float charging with a minute current due to diffusion control, and
The reverse current prevention device is intended to prevent damage to a fuel cell in a minute output state due to reverse current from a secondary battery. Furthermore, when using an anorite circulation type liquid fuel cell, when the auxiliary equipment is stopped, outside air enters the fuel chamber, and in order to prevent significant damage to the fuel electrode catalyst due to the local cell reaction as described above, it is necessary to stop the auxiliary equipment when the auxiliary equipment is stopped. The anolyte liquid level is set so that the fuel electrode is immersed in the anolite even when the fuel electrode is immersed in the anolite, and high open circuit voltage is not generated on the fuel cell side in order to avoid damage due to the accompanying short circuit current.

作用 上記のように、本発明によれば燃料電池と二次電池を組
み合わせたハイブリッド電源における燃料電池の長寿命
化が達成されるものである。
Effects As described above, according to the present invention, it is possible to extend the life of the fuel cell in a hybrid power source that combines a fuel cell and a secondary battery.

実施例 次に本発明の一実施例を説明する。Example Next, one embodiment of the present invention will be described.

第1図はゴルフカート駆動電源として本発明にケる燃料
電池と二次電池を組み合わせたハイブリット電源を用い
た場合のそれぞれ(イ)負荷、(ロ)二次電池出力、(
ハ)燃料電池出力電流、に)燃料電池出力電圧の経時変
化を示したものである。
Figure 1 shows (a) load, (b) secondary battery output, and (b) secondary battery output, respectively, when a hybrid power source combining a fuel cell and a secondary battery according to the present invention is used as a golf cart driving power source.
c) Fuel cell output current; and (d) Fuel cell output voltage.

燃料電池昇温時には負荷のほとんどは二次電池からの出
力でまかなわれ、定格運転時には負荷変動に応じて二次
電池出力が変動し、燃料電池はほぼ一定の出力電流とな
る。燃料電池と二次電池は並列に接続されているため、
燃料電池出力電圧は、昇温途中、定格運転にかかわらず
二次電池と同電圧すなわちほぼ一定の電圧である。
When the fuel cell temperature rises, most of the load is covered by the output from the secondary battery, and during rated operation, the secondary battery output fluctuates in response to load fluctuations, and the fuel cell outputs a nearly constant output current. Since the fuel cell and secondary battery are connected in parallel,
The fuel cell output voltage is the same voltage as the secondary battery, that is, a substantially constant voltage, regardless of the rated operation during temperature rise.

負荷の夜間停止時には、燃料電池の補機が停止され、燃
料電池出力電流は除々に低下し、二次轡緬☆轡轡澁↓−
日吐W五で11青轡LIJ〜、−一また逆電流防止装置
により、二次電池出力による燃料電池の損傷もない。燃
料電池出力電圧はフロート充電状態でわずかに上昇する
が、高い開路電圧を生じさせることはない。
When the load is stopped at night, the fuel cell auxiliary equipment is stopped, and the fuel cell output current gradually decreases, causing the secondary
In addition, due to the reverse current prevention device, there is no damage to the fuel cell due to the output of the secondary battery. The fuel cell output voltage increases slightly in the float charge state, but does not create a high open circuit voltage.

発明の効果 上述のように、本発明によれば、燃料電池は常にほぼ一
定の電圧に保たれ、高い開路電圧や二次電池からの逆電
流によって損傷されることなく、長寿命化を達成できる
点、工業的価値甚大である。
Effects of the Invention As described above, according to the present invention, the fuel cell is always kept at a substantially constant voltage, and is not damaged by high open circuit voltage or reverse current from the secondary battery, making it possible to achieve a long service life. Therefore, its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる燃料電池と二次電池を組み合わせ
たハイブリッド電源をゴルフカート駆動電源として用い
た場合のそれぞれ(イ)負荷、(ロ)二次電池出力、(
ハ)燃料電池出力電流、に)燃料電池出力電圧 の経時
変化を示すチャート図である。
Figure 1 shows (a) load, (b) secondary battery output, (
3) is a chart showing changes over time in c) fuel cell output current; and b) fuel cell output voltage.

Claims (1)

【特許請求の範囲】 1、無負荷時においても、燃料電池は二次電池よりわず
かに高い電圧で連続して発電しつづけることを特徴とす
る燃料電池と二次電池を組み合わせたハイブリッド電源
の運転方法。 2、連続負荷時又は短時間の無負荷を含む変動負荷時に
は燃料電池と二次電池を直接並列接続し、長時間の無負
荷時には、たとえばダイオード等の逆電流防止装置を介
して燃料電池と二次電池を並列接続することを特徴とす
る特許請求の範囲第1項記載の燃料電池と二次電池を組
み合わせたハイブリッド電源の運転方法。 3、補機を用いてアノライト、燃料、酸化剤等を供給す
る液体燃料電池と二次電池とを組み合わせたハイブリッ
ド電源において、長時間の無負荷時には補機を停止し、
拡散によって供給される燃料および酸化剤による微小出
力によって二次電池をフロート充電することを特徴とす
る特許請求の範囲第1項記載の燃料電池と二次電池を組
み合わせたハイブリッド電源の運転方法。 4、アノライト循環型液体燃料電池と二次電池を組み合
わせたハイブリッド電源において、アノライト循環ポン
プ停止時のアノライト液面が、液体燃料電池の実質的な
電池部より高い位置になるようアノライトタンクおよび
アノライト量を設定することにより、上記実質的な電池
部の燃料極室が常にアノライトで満されるようにしたこ
とも特徴とする特許請求の範囲第3項記載の燃料電池と
二次電池を組み合わせたハイブリッド電源の運転方法。
[Claims] 1. Operation of a hybrid power source that combines a fuel cell and a secondary battery, characterized in that the fuel cell continues to generate electricity at a voltage slightly higher than that of the secondary battery even when there is no load. Method. 2. During continuous load or variable load including short periods of no load, connect the fuel cell and secondary battery directly in parallel, and during long periods of no load, connect the fuel cell and the secondary battery through a reverse current prevention device such as a diode. A method for operating a hybrid power source combining a fuel cell and a secondary battery according to claim 1, characterized in that secondary batteries are connected in parallel. 3. In a hybrid power supply that combines a liquid fuel cell and a secondary battery that supply anorite, fuel, oxidizer, etc. using auxiliary equipment, the auxiliary equipment is stopped during long periods of no load,
A method for operating a hybrid power source combining a fuel cell and a secondary battery according to claim 1, characterized in that the secondary battery is float-charged by a minute output from the fuel and oxidizer supplied by diffusion. 4. In a hybrid power source that combines an anolite circulation type liquid fuel cell and a secondary battery, the anorite tank and anorite are installed so that the anolite liquid level when the anolite circulation pump is stopped is higher than the actual cell part of the liquid fuel cell. A combination of a fuel cell and a secondary battery according to claim 3, characterized in that the fuel electrode chamber of the substantial cell section is always filled with the anorite by setting the amount. How to operate a hybrid power supply.
JP60089798A 1985-04-25 1985-04-25 Operating method of hybrid power source in combination of fuel cell and secondary battery Pending JPS61248367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089798A JPS61248367A (en) 1985-04-25 1985-04-25 Operating method of hybrid power source in combination of fuel cell and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089798A JPS61248367A (en) 1985-04-25 1985-04-25 Operating method of hybrid power source in combination of fuel cell and secondary battery

Publications (1)

Publication Number Publication Date
JPS61248367A true JPS61248367A (en) 1986-11-05

Family

ID=13980724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089798A Pending JPS61248367A (en) 1985-04-25 1985-04-25 Operating method of hybrid power source in combination of fuel cell and secondary battery

Country Status (1)

Country Link
JP (1) JPS61248367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038792A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
JP2005050749A (en) * 2003-07-31 2005-02-24 Equos Research Co Ltd Fuel cell system
US8470481B2 (en) 2003-07-18 2013-06-25 Panasonic Corporation Power supply unit
JP2013187996A (en) * 2012-03-07 2013-09-19 Toyota Industries Corp Industrial vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038792A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Power supply device
US8470481B2 (en) 2003-07-18 2013-06-25 Panasonic Corporation Power supply unit
JP2005050749A (en) * 2003-07-31 2005-02-24 Equos Research Co Ltd Fuel cell system
JP2013187996A (en) * 2012-03-07 2013-09-19 Toyota Industries Corp Industrial vehicle

Similar Documents

Publication Publication Date Title
JP2004146114A (en) Fuel cell system
JP4274278B2 (en) Fuel cell system
CN107452972B (en) Fuel cell system and control method thereof
JP4492824B2 (en) Fuel cell system
KR960702193A (en) Electrical energy storage device and method of charging and discharging same
KR20100114940A (en) Fuel cell system and method of controlling the same
JP2003086212A (en) Fuel cell controlling system
RU2000128660A (en) FUEL ELEMENT SYSTEM AND METHOD FOR FUEL ELEMENT MANAGEMENT
JP2006054976A (en) Equipment with fuel cell mounted thereon
JPS60189871A (en) Operation of fuel cell
JP2008004482A (en) Fuel cell system
JPH06274233A (en) Power system
CN111546946B (en) Method for improving working characteristics of fuel cell under light load
US6646413B2 (en) Fuel cell system and method for operating the fuel cell system
JP2005518077A (en) Intermittent cooling of fuel cells
JPS6121516A (en) Fuel battery power generating system
KR20100060021A (en) Fuel cell system
KR102403951B1 (en) Hybrid power system, apparatus and control method performing power distribution between fuel cell and battery
JPH11176454A (en) Power source for fuel cell accessory
JP2007005000A (en) Control method for fuel cell system
JPS61248367A (en) Operating method of hybrid power source in combination of fuel cell and secondary battery
JP6520745B2 (en) Fuel cell system
JP2019017185A (en) Fuel cell system and control method for fuel cell system
JPH0530656A (en) Satellite loading power supply system
JP3583914B2 (en) Auxiliary power supply for fuel cell