JPH02155581A - Production of clad material of copper and iron or nickel alloy - Google Patents

Production of clad material of copper and iron or nickel alloy

Info

Publication number
JPH02155581A
JPH02155581A JP30864888A JP30864888A JPH02155581A JP H02155581 A JPH02155581 A JP H02155581A JP 30864888 A JP30864888 A JP 30864888A JP 30864888 A JP30864888 A JP 30864888A JP H02155581 A JPH02155581 A JP H02155581A
Authority
JP
Japan
Prior art keywords
copper
rolling
iron
alloy
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30864888A
Other languages
Japanese (ja)
Other versions
JPH0647181B2 (en
Inventor
Taiji Doi
大治 土居
Takeshi Yoshida
毅 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP30864888A priority Critical patent/JPH0647181B2/en
Publication of JPH02155581A publication Critical patent/JPH02155581A/en
Publication of JPH0647181B2 publication Critical patent/JPH0647181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make mass production of the clad material of a copper or copper alloy and an iron or nickel alloy at a low cost by interposing an aluminum powder layer between the base metal consisting of copper and the iron or nickel alloy, hot rolling and then diffusion annealing. CONSTITUTION:An aluminum sheet 3 is positioned to face the base material 1 consisting of the copper or copper alloy and is rubbed by a stainless steel wire brush 4 so that the peeled aluminum powder is rubbed into the surface of the base metal 1. The cladding metal 2 consisting of the iron alloy or nickel alloy is imposed thereon. The base metal 1 and the cladding metal 2 interposed the aluminum powder are hot rolled by using a heater 5 and a rolling mill 6. The metals are then diffusion annealed in heating furnaces 7, 7'. The clad material of the copper or copper alloy and the iron or nickel alloy is mass-produced at the low cost in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、銅または銅合金と、鉄系合金またはニッケ
ル系の合金とから成るクラッド材、特に板状のクラッド
材(クラッド板)を製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to manufacturing a clad material, particularly a plate-shaped clad material (clad plate), made of copper or a copper alloy and an iron-based alloy or a nickel-based alloy. Regarding how to.

(従来の技術) 異種の金属材料を重ね合わせたクラッド材は多くの種類
が知られており、それぞれの特性を活かして多方面に実
用化されている。銅(ここでは、工業的な純銅の外に、
合金成分を含む銅合金も合わせて単に「銅」という)と
鉄系合金またはニッケル系合金とのクラッド材もその一
つで、例えば、銅とステンレス鋼のクランド板は調理器
具の材料として、また、銅とFe −42χNi合金の
クラッド材はリードフレームのような電子部品材料とし
て使用されている。
(Prior Art) Many types of cladding materials, which are made by layering different metal materials, are known and have been put to practical use in many fields by taking advantage of their respective characteristics. Copper (here, in addition to industrial pure copper,
Clad materials made of copper alloys (including copper alloys containing alloy components, also referred to simply as "copper") and iron-based alloys or nickel-based alloys are one example. For example, copper and stainless steel crand plates are used as materials for cooking utensils, and , Copper and Fe-42χNi alloy cladding materials are used as materials for electronic components such as lead frames.

上記のようなりラッド材の製造方法についてもクラッド
材の種類に応じて多くの提案がある。しかし、銅と鉄系
合金またはニッケル系合金のクラッド材(以下、rCu
−Fe(Ni)クラッド材」と略称する)では、銅の拡
散係数が小さいこと、および大気中での加熱では銅の酸
化が著しいこと等から、これを安価に量産する製造方法
は確立されていない− 例えば、冷間圧延による接合では、接合面の汚染(酸化
)層の完全除去が必須であり、それでもlパス当たり6
0%以上というような強圧下が必要である。かかる強圧
下は設備能力の制約があるだけでなく、製品クラッド材
の形状制御が難しいという問題もある。一方、soo 
’c程度での温間圧延も考えられるが、その場合、銅の
酸化を防ぐために、0□含有量0.1%以下というよう
な雰囲気で加熱しなければならず、加熱炉の量産のシー
ルが必要となり、実生産には不向きである。
As mentioned above, there are many proposals for manufacturing methods for cladding materials depending on the type of cladding material. However, cladding materials of copper and iron-based alloys or nickel-based alloys (rCu
-Fe(Ni) clad material) has a low diffusion coefficient and oxidation of copper is significant when heated in the atmosphere, so no manufacturing method has been established to mass-produce it at low cost. - For example, in joining by cold rolling, it is essential to completely remove the contamination (oxidation) layer on the joining surface, and even then, 6
Strong pressure such as 0% or more is required. Such strong pressure not only limits equipment capacity, but also poses the problem of difficulty in controlling the shape of the product clad material. On the other hand, soo
Warm rolling at a temperature of about is required, making it unsuitable for actual production.

なお、特開昭54−94456号公報に、銅−Al−ス
テンレス鋼の多層クラッド材およびその製造方法が記載
されているが、これはAlを最終製品のクラッド材の一
つの構成材料とするもので、本発明の対象となるクラッ
ド材、即ち、AQ層のないCu−Fe(Ni)クラッド
材とは全く異なる。
Note that JP-A-54-94456 describes a copper-Al-stainless steel multilayer cladding material and a method for producing the same, which uses Al as one of the constituent materials of the cladding material of the final product. This is completely different from the cladding material targeted by the present invention, that is, the Cu-Fe(Ni) cladding material without an AQ layer.

(発明が解決しようとする課題) 本発明は、Cu−Fe(Ni)クラッド材を製造する最
も合理的な方法の開発を課題としてなされたもので、冷
間圧延法におけるような極端な強圧下を必要としない温
間圧延法を採用し、しかも、前記のような銅の表面酸化
の問題のない製造方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made with the aim of developing the most rational method for manufacturing Cu-Fe(Ni) cladding material, and it The purpose of the present invention is to provide a manufacturing method that employs a warm rolling method that does not require oxidation of the copper surface, and that does not have the problem of surface oxidation of copper as described above.

(課題を解決するための手段) 本出願人らは、アルミニウムとステンレス鋼とのクラン
ド材の製造の際に、ステンレス鋼板の表面にアルミニウ
ム粉末を密着させてこれを接合媒体とする製造方法を発
明して先に特許出願を行った(特開昭50−73867
号公報)、その発明は、クラッド材の一方の構成材料が
アルミニウムであるところから、これと同じアルミニウ
ム粉末を接合媒体として利用するという着せ、に基づい
ている。
(Means for Solving the Problems) The present applicants have invented a manufacturing method in which aluminum powder is brought into close contact with the surface of a stainless steel plate and this is used as a bonding medium when manufacturing a clamp material of aluminum and stainless steel. and filed a patent application (Japanese Unexamined Patent Publication No. 50-73867)
The invention is based on the fact that since one of the constituent materials of the cladding material is aluminum, the same aluminum powder is used as the bonding medium.

本発明者は、多数の試作試験を繰り返した後、意外にも
、アルミニウム粉末の利用は、アルミニウムを構成材料
としないCu−Fe(Ni)クランド材の製造にも優れ
た効果を奏することを知った0本発明は、この知見を基
礎としてなされたものである。
After repeating numerous prototype tests, the present inventor surprisingly discovered that the use of aluminum powder has an excellent effect on the production of Cu-Fe(Ni) crund material that does not use aluminum as a constituent material. The present invention was made based on this knowledge.

本発明は、「銅または銅合金の母材と鉄系合金またはニ
ッケル系合金の合わせ材との間にアルミニウム粉末層を
介在させて温間圧延し、次いで拡散焼鈍を施すことを特
徴とする銅または銅合金と鉄系またはニッケル系合金の
クラッド材の製造方法」をその要旨とする。
The present invention relates to a method for producing copper characterized by ``warm rolling with an aluminum powder layer interposed between a base material of copper or copper alloy and a composite material of iron-based alloy or nickel-based alloy, followed by diffusion annealing. or a method for manufacturing a cladding material of a copper alloy and an iron-based or nickel-based alloy.''

ここで、母材となる銅または銅合金とは、工業用純銅お
よび例えば、40χCu−60χNi、 70χCu−
30χ旧、90Cuχ−10χNtのようなCu−Ni
系合金、その他の銅合金を意味する。また鉄またはニッ
ケル系合金(これらを、本発明では「合わせ材」という
)としては、例えば、ステンレス鋼、Fe−Ni合金、
Ni基基金合金および純ニッケルなどが使用される。
Here, the base material copper or copper alloy refers to industrial pure copper and, for example, 40χCu-60χNi, 70χCu-
Cu-Ni like 30χ old, 90Cuχ-10χNt
copper alloys and other copper alloys. In addition, iron or nickel alloys (these are referred to as "laminated materials" in the present invention) include, for example, stainless steel, Fe-Ni alloy,
Ni-based alloys and pure nickel are used.

−回の温間圧延と拡散焼鈍だけで接合が難しい材料の場
合には、−旦温間圧延と拡販焼鈍(この場合は低温焼鈍
でよい)を行った後、再度温間または冷間で圧延し、拡
散焼鈍を施すのが望ましい。
In the case of materials that are difficult to join with only - warm rolling and diffusion annealing, - warm rolling and sales expansion annealing (in this case, low temperature annealing is sufficient), then warm or cold rolling again. However, it is desirable to perform diffusion annealing.

第1図および第2図は、本願発明方法の主要工程を説明
する図で、第2図は圧延と焼鈍を操り返す例を示してい
る。
1 and 2 are diagrams for explaining the main steps of the method of the present invention, and FIG. 2 shows an example of reversing rolling and annealing.

まず、第1図に示す工程にそって説明する。First, the process shown in FIG. 1 will be explained.

■ アルミニウム粉末を付着させる工程:母材と合わせ
材の界面にアルミニウム粉を介在させる方法は種々ある
が、最も実用的な方法は母材の銅板1の表面を脱脂洗浄
してその上にアルミニウム粉末を付着させる方法である
。アルミニウムI5)末は、純アルミニウムの粒径10
〜50μm程度のものが好ましい、これは、別途調整し
た粉末を母材表面にのせていってもよいが、図示のよう
に、アルミニウム板3を母材表面に臨ませ、その表面を
ステンレス鋼製のワイヤブラシ4で擦って、剥離する粉
末を母材表面に擦り込むように付着させていく方法が実
際的である。この方法によれば、ワイヤブラシでアルミ
ニウム板から削り取られたアルミニウム粉末が直ちに母
材表面に擦り付けられて、いわゆる焼きついた状態にな
る。このような状態で母材表面に付着したアルミニウム
粉末層は、単に↑5)末を表面に載せた場合よりも均一
かつ緻密になり、後述する母材表面での銅の酸化物生成
をより効果的に防止できる。
■ Process of attaching aluminum powder: There are various methods of interposing aluminum powder at the interface between the base material and the composite material, but the most practical method is to degrease and clean the surface of the base copper plate 1 and then apply aluminum powder on top of it. This is a method of attaching. Aluminum I5) powder has a particle size of pure aluminum of 10
A thickness of approximately 50 μm is preferable. This can be done by placing separately prepared powder on the surface of the base material, but as shown in the figure, place the aluminum plate 3 facing the base material surface, and make the surface of the stainless steel plate. A practical method is to rub the exfoliated powder with the wire brush 4 to rub it onto the surface of the base material. According to this method, the aluminum powder scraped off from the aluminum plate with a wire brush is immediately rubbed onto the surface of the base material, resulting in a so-called baked-in state. The aluminum powder layer attached to the surface of the base material in this state becomes more uniform and dense than when the powder is simply placed on the surface of the base material (↑5), and is more effective in suppressing copper oxide formation on the surface of the base material, which will be described later. can be prevented.

いずれの方法でも、アルミニウム$5)末は母材表面に
4〜7μm程度の厚みで均一に分布させればよい。
In either method, the aluminum $5) powder may be uniformly distributed on the surface of the base material to a thickness of about 4 to 7 μm.

■ 温間接合圧延工程ニ アルミニウム粉末が付着した面に合わせ材2を!Ltで
加熱し温間で圧延する工程である0例えば高周波誘導炉
のような加熱装置5でおよそ400〜600°Cの範囲
に加熱し、圧延機6で圧延する。母材の表面はアルミニ
ウム粉末で覆われており、このアルミニウム粉末が銅母
材表面の酸化を防止するから、加熱は大気雰囲気で行う
ことができる。
■ Warm bonding rolling process Apply laminating material 2 to the surface where aluminum powder has adhered! This is a step of heating at Lt and warm rolling. For example, the material is heated to a temperature in the range of about 400 to 600° C. with a heating device 5 such as a high frequency induction furnace, and then rolled with a rolling mill 6. The surface of the base material is covered with aluminum powder, and since this aluminum powder prevents the surface of the copper base material from oxidizing, heating can be performed in the air.

圧延は、1パス当たり20%以上、望ましくは25%以
上の圧下率で行う、圧延機6としては、2段もしくは4
段の圧延機が使用できる。接合は、基本的には1バスで
完了させるが、板厚調整その他の目的に応じて、複数パ
スの圧延を行ってもよい。
The rolling is performed at a reduction rate of 20% or more per pass, preferably 25% or more.The rolling mill 6 is a two-stage or four-stage rolling mill.
A multi-stage rolling mill can be used. Bonding is basically completed in one pass, but rolling may be performed in multiple passes depending on the purpose of adjusting plate thickness or other purposes.

なお、後述の冷間圧延を行わない場合は、ここで製品の
最終目標厚さになるように圧下率を定める。
Note that if cold rolling, which will be described later, is not performed, the rolling reduction rate is determined here so that the final target thickness of the product is achieved.

この圧延工程が終了した段階での、銅母材と合わせ材と
の界面の顕@鏡写真(400倍)が、第3図の(イ)で
ある、先に母材表面に付着させたアルミニウムは、界面
に凝集して点在し母材と合わせ材の間ではやや拡散が進
行し接合した状態にある。
A microscopic photograph (400x) of the interface between the copper base material and the composite material at the end of this rolling process is shown in (a) in Figure 3. are aggregated and scattered at the interface, and diffusion has progressed slightly between the base material and the composite material, resulting in a bonded state.

なお、アルミニウムは一部が酸化してAfz(hになっ
ているが、これは拡散、接合には何ら障害にならない。
Note that although a portion of the aluminum is oxidized to become Afz (h), this does not pose any obstacle to diffusion and bonding.

■ 拡散焼鈍工程: この工程は、母材と合わせ材の間の拡散を進めて接合を
充分にするための工程である。第1図の工程のように、
拡散焼鈍を1回で終わらせる場合には、次のような2段
階処理を行うのが望ましい。
■ Diffusion annealing process: This process promotes diffusion between the base material and the mating material to ensure sufficient bonding. Like the process in Figure 1,
If diffusion annealing is to be completed in one time, it is desirable to perform the following two-step process.

まず、400〜550°C程度の温度で60〜90分の
加熱(低温拡散焼鈍)を行い、界面に点在するアルミニ
ウム$5)末の大部分を母材および合わせ材に拡散させ
る。その後、更にアルミニウム粉末の拡散を促し、かつ
母材−合わせ林間の接合を強固にするため、例えば80
0〜1000’Cで10〜30分程度保持する焼鈍(高
温拡散焼鈍)を行う。
First, heating is performed for 60 to 90 minutes at a temperature of about 400 to 550°C (low-temperature diffusion annealing) to diffuse most of the aluminum powder scattered at the interface into the base material and the composite material. After that, in order to further promote the diffusion of the aluminum powder and to strengthen the bond between the base material and the laminated wood,
Annealing (high temperature diffusion annealing) is performed at 0 to 1000'C for about 10 to 30 minutes.

第1図に示した7の加熱炉は上記の低温拡散焼鈍炉であ
り、7°が高温拡散焼鈍用の炉である。
The heating furnace 7 shown in FIG. 1 is the above-mentioned low-temperature diffusion annealing furnace, and 7° is the furnace for high-temperature diffusion annealing.

これらの炉の形式には特に制約はない。There are no particular restrictions on the type of these furnaces.

この工程を終えた後は、母材と合わせ材の界面は判別で
きるが、アルミニウム粉はほぼ完全に消失する。第3図
の(ロ)に示すのが、この拡散焼鈍工程を終えた段階で
の界面の顕微鏡写真である。
After completing this process, the interface between the base material and the composite material can be discerned, but the aluminum powder has almost completely disappeared. FIG. 3(B) is a microscopic photograph of the interface after this diffusion annealing process has been completed.

アルミニウム粉末は、母材および合わせ材に拡散して消
失している。
The aluminum powder diffuses into the base material and the composite material and disappears.

この状態でクラッド材製品として出荷することもできる
It can also be shipped in this state as a clad material product.

■ 冷間圧延その他の工程: これは必要に応じて、例えば、クラッド材の形状修正や
厚み調整のために実施される工程である。
■ Cold rolling and other processes: These are processes that are carried out as necessary, for example, to modify the shape or adjust the thickness of the cladding material.

さらに、防錆などのための表面処理など付加工程を伴う
こともある。
Furthermore, additional processes such as surface treatment for rust prevention etc. may be required.

第2図の工程は、温間接合圧延■の後、比較的低温で拡
散焼鈍■゛を行い、再圧延■°と拡散焼鈍■°″を行う
例である。この工程は、板厚がl+m以下というように
薄いクラッド製品が要求される場合に推奨される。また
、前記第1図の工程における圧延と焼鈍を複数回に分け
て行うことで、各工程の負荷を軽減するという利点もあ
る。
The process shown in Fig. 2 is an example in which after warm bonding rolling (1), diffusion annealing (2) is performed at a relatively low temperature, followed by re-rolling (2°) and diffusion annealing (2°). Recommended when thin clad products are required as shown below.Also, by dividing the rolling and annealing steps in the process shown in Figure 1 into multiple steps, there is the advantage of reducing the load on each process. .

■゛の焼鈍は、後に高温での拡散焼鈍■゛°を実施する
ので、先に述べた低温焼鈍の条件、即ち、400〜60
0 ’Cで60〜90分程度の加熱でよい。
Since the annealing of ■゛ is performed later by diffusion annealing ■゛° at a high temperature, the conditions of the low temperature annealing described earlier, i.e. 400~600
Heating at 0'C for about 60 to 90 minutes is sufficient.

■゛の再圧延は、加熱装置5°で300〜550°C程
度に再加熱して温間圧延を行うか、または常温での冷間
圧延とする。この圧延は、基本的に伸び率の異なる金属
を同時に圧延するため、反り、絞りなどの形状不良の発
生を抑える必要から、全圧下率はおよそ50%以下とす
るのがよい。
(2) Re-rolling is performed either by reheating to about 300 to 550°C with a heating device of 5° to perform warm rolling, or by cold rolling at room temperature. In this rolling, metals having different elongation rates are basically rolled at the same time, so it is necessary to suppress the occurrence of shape defects such as warpage and reduction, so the total rolling reduction ratio is preferably about 50% or less.

なお、この工程の圧延を温間で行う場合は、圧延前の再
加熱に低温焼鈍を兼ねさせてもよい。この場合は、再加
熱の条件を低温焼鈍の条件に合わせる。
Note that when rolling in this step is performed warmly, the reheating before rolling may also serve as low-temperature annealing. In this case, the reheating conditions are adjusted to the low temperature annealing conditions.

この再圧延の後は、先の■における高温拡散焼鈍と同じ
条件の焼鈍■°゛を行う、この場合の高温焼鈍は、再結
晶焼鈍の役割も担う、以後、再圧延と高温焼鈍とを必要
に応じて何回でも繰り返してよい。
After this re-rolling, annealing is performed under the same conditions as the high-temperature diffusion annealing in the previous step ■.The high-temperature annealing in this case also plays the role of recrystallization annealing.Re-rolling and high-temperature annealing are required thereafter. You can repeat as many times as you like.

上記の工程からなる本発明の方法では、銅母材の表面酸
化がアルミニウム粉末によって防止されるから、大気雰
囲気中で加熱を行うことができ、加熱炉のシールという
困難な問題がなくなる。また、接合圧延は温間で行うか
ら、ViA端な強圧下でなくても充分な界面の接合かえ
られる。
In the method of the present invention comprising the above steps, surface oxidation of the copper base material is prevented by the aluminum powder, so heating can be carried out in the atmosphere and the difficult problem of sealing the heating furnace is eliminated. Further, since the joining rolling is performed at a warm temperature, sufficient interfacial joining can be achieved without the need for heavy rolling at the ViA end.

本発明の方法によって、特別の酸化防止の手段を講じな
くても、界面の接合性のよいクランド材が得られる理由
は、次のように考えられる。
The reason why a crund material with good interfacial bonding properties can be obtained by the method of the present invention without taking any special oxidation prevention measures is considered to be as follows.

元来、銅は酸素との親和性が強く、大気中では200 
’C程度の低温加熱であっても30秒程度の極く短時間
で厚い酸化スケールを形成する。この酸化スケール(C
ub)は延性に冨み、圧延によって表面に薄膜状に展伸
して他の金属との接合を妨げる。
Originally, copper has a strong affinity with oxygen, and in the atmosphere
Even when heated at a low temperature of about 1000 yen, a thick oxide scale is formed in a very short time of about 30 seconds. This oxidation scale (C
ub) is highly ductile, and when rolled, it spreads into a thin film on the surface and prevents bonding with other metals.

本発明におけるアルミニウム粉の使用は、このような銅
の酸化物の形成を防ぐのである。アルミニウムが酸化し
てできるAp、O,は硬い粒子状のものであり、圧延時
に母材と合わせ材の界面に広がっても粒子が分散するだ
けで膜状にはならず、両材料間の原子の拡散を阻害する
ことがない。しかも、アルミニウムは銅、鉄、ニッケル
などへの拡散能も高く、前述の焼鈍工程で界面から消失
するので、界面の異物介在による母材と合わせ材の剥離
のおそれもない。
The use of aluminum powder in the present invention prevents the formation of such copper oxides. Ap, O, formed by oxidation of aluminum are hard particles, and even if they spread at the interface between the base material and the composite material during rolling, the particles will only be dispersed and will not form a film, and the atoms between the two materials will be dispersed. does not inhibit the diffusion of Furthermore, aluminum has a high diffusion ability into copper, iron, nickel, etc., and disappears from the interface during the annealing process described above, so there is no fear of separation between the base material and the composite material due to the presence of foreign matter at the interface.

(実施例) 下記に示ず条件でJIS C1020の無酸素銅(母材
)とJIS 511S304ステンレス鋼(合わせ材)
のクランド板を、前述の第2閏の工程によって製造した
(Example) JIS C1020 oxygen-free copper (base material) and JIS 511S304 stainless steel (laminated material) under conditions not shown below.
A crush plate was manufactured by the second leap process described above.

母材のサイズ:1.2tX150wX300I!(mm
)ii、合わせ材のサイズ:0.5tX150wX40
0ff  (mm)1■、アルミニウム粉末の付着: JIS Al100の純アルミニウム仮(ffさ0.5
 mm)を、第2図のように母材の上に臨ませてステン
レス鋼ワイヤブラシで擦り、母材表面に約5μm厚に均
一付着させた。
Base material size: 1.2tX150wX300I! (mm
)ii, Size of laminated material: 0.5tX150wX40
0ff (mm) 1■, Aluminum powder adhesion: JIS Al100 pure aluminum temporary (ff 0.5
mm) was placed on top of the base material as shown in Figure 2 and rubbed with a stainless steel wire brush to uniformly adhere to the surface of the base material to a thickness of approximately 5 μm.

iv、/M間間接合圧コ ニルミニウム粉末を付着させた母材銅板の上にステンレ
ス鋼合わせ板を重ね、大気雰囲気で高周波v:I導加熱
炉により400 ’CX30分に加熱し、2段圧延機に
より圧延速度10m/分で圧延した。このときの圧下率
は25%とし、■パスで圧延接合した。
Bonding pressure between iv and /M A stainless steel laminated plate was stacked on the base metal copper plate to which the conylminium powder was attached, heated to 400'C x 30 minutes in a high frequency v:I induction heating furnace in an air atmosphere, and rolled in two steps. It was rolled at a rolling speed of 10 m/min. The rolling reduction at this time was 25%, and the rolling bonding was carried out in the (2) pass.

■、低温拡散焼鈍: 電気炉で大気雰囲気で400’CX1時間の焼鈍を行っ
た。
(2) Low-temperature diffusion annealing: Annealing was performed at 400'C for 1 hour in an electric furnace in an air atmosphere.

■、再圧延: 上記■の焼鈍の後、直ちに(温度低下がないうちに)再
圧延を行った。圧延機は2段圧延機を用い、圧延速度は
1011/分で、圧下率は15%の1パス圧延とした。
(2) Re-rolling: After the annealing in (1) above, re-rolling was performed immediately (before the temperature dropped). A two-high rolling mill was used, the rolling speed was 1011/min, and the rolling reduction was 15% in one pass.

vi、高温拡散焼鈍: 電気炉で大気雰囲気で1000°C×15分の焼鈍を行
った。
vi. High-temperature diffusion annealing: Annealing was performed at 1000°C for 15 minutes in an electric furnace in an air atmosphere.

報、冷間圧延: 4最冷間圧延機により圧延速度30m/分で圧延した。Information, cold rolling: 4. It was rolled at a rolling speed of 30 m/min using the coldest rolling mill.

圧下率はlバス当たり約10%、全圧下率で約50%と
した。この段階で、母材と合わせ材の剥離などの問題は
全く発生しなかった。
The rolling reduction rate was about 10% per 1 bath, and the total rolling reduction rate was about 50%. At this stage, no problems such as separation between the base material and the composite material occurred.

上記のような条件で製造したクラッド板は、温間接合圧
延の圧下率および再圧下の圧下率が、それぞれ25%、
15%と比較的小さいにもかかわらず、母材と合わせ材
の接合は完全であった。
The clad plate manufactured under the above conditions had a reduction ratio of 25% during warm bond rolling and a reduction ratio during re-rolling of 25%,
Although it was relatively small at 15%, the bond between the base material and the composite material was perfect.

なお、比較のために、アルミニウム粉末の付着を行わず
に、実施例と同様の製造方法を試験したところ、加熱雰
囲気をO!=0.1%に規制して初めて本発明の方法で
得たと同じレヘルの界面接合が得られた。
For comparison, we tested the same manufacturing method as in the example without attaching aluminum powder, and the heating atmosphere was changed to O! = 0.1%, an interfacial bond of the same level as that obtained by the method of the present invention was obtained.

(発明の効果) 本発明のクラッド材の製造方法は、母材または合わせ材
の界面のアルミニウム粉末を介在させるという簡単な手
段を講するだけで、加熱の際の雰囲気の調整や接合圧延
の際の特別の大圧下を必要としない。この方法によれば
、従来、量産が困難であった銅または銅合金と鉄系合金
またはニッケル系合金のクラッド材が、比較的低コスト
で量産できる。
(Effects of the Invention) The method for manufacturing a cladding material of the present invention requires only a simple step of interposing aluminum powder at the interface between the base material or the laminated material, and by adjusting the atmosphere during heating and during joining rolling. No special large pressure is required. According to this method, cladding materials of copper or copper alloys and iron-based alloys or nickel-based alloys, which have conventionally been difficult to mass-produce, can be mass-produced at relatively low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のクラッド材の製造方法の一例を示す
工程図、 第2図は、本発明のクラッド材の製造方法の他の例を示
す工程図、である。 第3図は、本発明方法によって銅とステンレス鋼とのク
ラッド材を製造した時の界面の金属&1lIaを示す顕
微鏡写真(x400)で、(イ)が温間圧延後のもの、
(ロ)が拡散焼鈍後のものである。写真の下部(色の濃
い方)が銅で、(イ)の界面の黒いものがアルミニウム
である。
FIG. 1 is a process diagram showing an example of the method for producing a cladding material of the present invention, and FIG. 2 is a process diagram showing another example of the method for producing a cladding material of the present invention. Figure 3 is a micrograph (x400) showing the metal &lIa at the interface when a cladding material of copper and stainless steel is produced by the method of the present invention, (a) is after warm rolling;
(b) is after diffusion annealing. The lower part of the photo (darker color) is copper, and the black interface in (a) is aluminum.

Claims (2)

【特許請求の範囲】[Claims] (1)銅または銅合金の母材と鉄系合金またはニッケル
系合金の合わせ材との間にアルミニウム粉末層を介在さ
せて温間圧延し、次いで拡散焼鈍を施すことを特徴とす
る銅または銅合金と鉄系またはニッケル系合金のクラッ
ド材の製造方法。
(1) Copper or copper characterized by warm rolling with an aluminum powder layer interposed between a base material of copper or copper alloy and a composite material of iron-based alloy or nickel-based alloy, followed by diffusion annealing. Method for manufacturing alloys and cladding materials of iron-based or nickel-based alloys.
(2)特許請求の範囲第1項記載の製造方法における拡
散焼鈍の後に、更に圧延と拡散焼鈍とから成る工程を一
回以上付け加えることを特徴とする銅または銅合金と鉄
系またはニッケル系合金とのクラッド材の製造方法。
(2) Copper or a copper alloy and an iron-based or nickel-based alloy characterized in that a step consisting of rolling and diffusion annealing is added one or more times after the diffusion annealing in the manufacturing method according to claim 1. Method of manufacturing cladding material.
JP30864888A 1988-12-06 1988-12-06 Method for producing clad material of copper and iron-based or nickel-based alloy Expired - Lifetime JPH0647181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30864888A JPH0647181B2 (en) 1988-12-06 1988-12-06 Method for producing clad material of copper and iron-based or nickel-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30864888A JPH0647181B2 (en) 1988-12-06 1988-12-06 Method for producing clad material of copper and iron-based or nickel-based alloy

Publications (2)

Publication Number Publication Date
JPH02155581A true JPH02155581A (en) 1990-06-14
JPH0647181B2 JPH0647181B2 (en) 1994-06-22

Family

ID=17983598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30864888A Expired - Lifetime JPH0647181B2 (en) 1988-12-06 1988-12-06 Method for producing clad material of copper and iron-based or nickel-based alloy

Country Status (1)

Country Link
JP (1) JPH0647181B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327357B2 (en) * 1998-06-03 2009-09-09 株式会社Neomaxマテリアル Clad material and manufacturing method thereof
JP2010177413A (en) * 2009-01-29 2010-08-12 Sumitomo Light Metal Ind Ltd Production method of aluminum-made cladding material for heat-emitting parts cooling apparatus
US20170145555A1 (en) * 2012-11-15 2017-05-25 Afl Telecommunications Llc Methods for applying aluminum coating layer to a core of copper wire
US11178786B2 (en) * 2014-12-26 2021-11-16 Hitachi Metals, Ltd. Method for manufacturing hermetic sealing lid member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172126B2 (en) 2008-05-19 2012-05-08 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal-aluminum powders
US8444045B2 (en) 2008-05-19 2013-05-21 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal aluminum powders

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327357B2 (en) * 1998-06-03 2009-09-09 株式会社Neomaxマテリアル Clad material and manufacturing method thereof
JP2010177413A (en) * 2009-01-29 2010-08-12 Sumitomo Light Metal Ind Ltd Production method of aluminum-made cladding material for heat-emitting parts cooling apparatus
US20170145555A1 (en) * 2012-11-15 2017-05-25 Afl Telecommunications Llc Methods for applying aluminum coating layer to a core of copper wire
US10077493B2 (en) * 2012-11-15 2018-09-18 Afl Telecommunications Llc Methods for applying aluminum coating layer to a core of copper wire
US11178786B2 (en) * 2014-12-26 2021-11-16 Hitachi Metals, Ltd. Method for manufacturing hermetic sealing lid member

Also Published As

Publication number Publication date
JPH0647181B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPH07233427A (en) Foil substrate material for catalyst converter and its production
WO2011061909A1 (en) Substrate for superconducting compound and method for manufacturing the substrate
JP7375131B2 (en) Rolled joined body and method for manufacturing rolled joined body
US2392917A (en) Silver cladding
JPS5919088A (en) Copper composite material and its manufacture
JPH02155581A (en) Production of clad material of copper and iron or nickel alloy
JP4343431B2 (en) Joining dissimilar metals
JPH0726192B2 (en) Manufacturing method of high Al content stainless steel plate
JP2502600B2 (en) Bearing material and its manufacturing method
JP4155124B2 (en) Metal clad plate and manufacturing method thereof
JP2796732B2 (en) Method for producing ferritic stainless steel sheet or molded article thereof containing high Al
JP2541377B2 (en) Method for producing copper / stainless steel composite material
JP2651847B2 (en) Aluminum alloy for ceramic joining
JP2991853B2 (en) Manufacturing method of aluminum foil laminated steel sheet
JP2543429B2 (en) Aluminum foil laminated steel sheet manufacturing method
JP2868344B2 (en) Manufacturing method of composite metal plate
JPH0441085A (en) Production of aluminum laminated steel plate
JPH09300085A (en) Manufacture of clad material having flat joined interface
JPS60238093A (en) Production of composite aluminum-stainless steel material
JP3463481B2 (en) Method for producing surface hardened Fe-Al alloy
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock
JP2879725B2 (en) Method of manufacturing clad plate of Ta and Cu
JPH0623571A (en) Clad bar stock and manufacture thereof
JPS6050521B2 (en) Manufacturing method of alloy thin plate