JPH02154461A - Output buffer of semiconductor integrated circuit - Google Patents

Output buffer of semiconductor integrated circuit

Info

Publication number
JPH02154461A
JPH02154461A JP63308653A JP30865388A JPH02154461A JP H02154461 A JPH02154461 A JP H02154461A JP 63308653 A JP63308653 A JP 63308653A JP 30865388 A JP30865388 A JP 30865388A JP H02154461 A JPH02154461 A JP H02154461A
Authority
JP
Japan
Prior art keywords
driver
output
pull
well
output buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63308653A
Other languages
Japanese (ja)
Inventor
Shuji Murakami
修二 村上
Tomohisa Wada
知久 和田
Kenji Anami
穴見 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63308653A priority Critical patent/JPH02154461A/en
Publication of JPH02154461A publication Critical patent/JPH02154461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To generate sufficiently high output potential and shorten the output transition time by separating the P well of a pull-up drive comprising an NMOS type transistor from the other P well and connecting a back gate to a source. CONSTITUTION:An output buffer separates a P well 9a, in which an NMOS type transistor Q1 for a pull-up driver is formed, from the other P well 9 and connects the back gate thereof, or said P well 9a, to the source 4 thereof, or an output terminal 1. Therefore, no back gate effect on the NMOS type transistor Q1 for a pull-up driver is produced, so that the threshold voltage does not increase even in increase of output potential. Thereby sufficiently high output potential can be generated and the drive ability decreases less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体集積回路に関し、特にその出力バッフ
ァに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and particularly to its output buffer.

〔従来の技術〕[Conventional technology]

第7図は従来の出力バッファの回路図である。 FIG. 7 is a circuit diagram of a conventional output buffer.

図において、QlはNMOS型トランジスタのプルアッ
プドライバ、Q2はNMOS型トランジスタのプルダウ
ンドライバである。また1は出力端子、2a及び2bは
各々Q1及びQ2のゲート制御端子である。Qlのドレ
イン3及びソース4は各々電源及び出力端子1に接続さ
れ、バックゲート5は接地されている。Q2のドレイン
6は出力端子1に接続され、ソース7及びバックゲート
8は共に接地されている。
In the figure, Ql is an NMOS transistor pull-up driver, and Q2 is an NMOS transistor pull-down driver. Further, 1 is an output terminal, and 2a and 2b are gate control terminals of Q1 and Q2, respectively. The drain 3 and source 4 of Ql are connected to the power supply and output terminal 1, respectively, and the back gate 5 is grounded. The drain 6 of Q2 is connected to the output terminal 1, and the source 7 and back gate 8 are both grounded.

第8図は第7図の従来の出力バッファの断面図を示し、
Ql、Q2及び1〜8は第7図と同じ部分を示す。9は
Ql、Q2が形成されるPウェルであり、10はN型基
板である。なお、この図ではQl及びQ2は同−Pウェ
ル9内に形成されているが、各々別個のPウェルに形成
されていても差し支えない。
FIG. 8 shows a cross-sectional view of the conventional output buffer of FIG.
Ql, Q2 and 1 to 8 indicate the same parts as in FIG. 9 is a P-well where Ql and Q2 are formed, and 10 is an N-type substrate. In this figure, Ql and Q2 are formed in the same P well 9, but they may be formed in separate P wells.

次に動作について説明する。出力ドライバQ1及びQ2
は各々ゲート制御端子2a及び2bの電位によってON
またはOFFし、出力端子1の電位を変化させる。高電
位を出力する時は、2aを高電位、2bを低電位にする
。逆に低電位を出力する時は、2bを高電位、2aを低
電位にする。
Next, the operation will be explained. Output drivers Q1 and Q2
are turned ON by the potentials of the gate control terminals 2a and 2b, respectively.
Alternatively, it is turned OFF and the potential of output terminal 1 is changed. When outputting a high potential, 2a is set to high potential and 2b is set to low potential. Conversely, when outputting a low potential, 2b is set to a high potential and 2a is set to a low potential.

また2a*2b共に低電位にすると、Ql、Q2ともに
OFFし、出力は高インピーダンス状態となる。
Further, when both 2a*2b are set to a low potential, both Ql and Q2 are turned off, and the output becomes a high impedance state.

出力電位lであるが、プルアップドライバ、プルダウン
ドライバ共にNMOS型トランジスタを用いているため
、低電位側は接地電位まで下がるが、高電位側は電源電
位からQlのしきい値電圧(以下VTHQIと呼ぶ)だ
け低い電位までしか上昇しない。
As for the output potential l, since both the pull-up driver and pull-down driver use NMOS type transistors, the low potential side drops to the ground potential, but the high potential side drops from the power supply potential to the threshold voltage of Ql (hereinafter referred to as VTHQI). The potential rises only to a lower potential than

このタイプの出力バッファは、従来NMOS型半導体集
積回路に用いられていたが、最近ではCMO8型半導体
集積回路装置にも用いられるようになってきた。すなわ
ち、0MO8型出カバ、ソファに比べ出力振幅が小さい
ため、出力変化時のノイズ発生量が小さくなり、ノイズ
に起因する誤動作を防止するのに効果がある。
This type of output buffer has conventionally been used in NMOS type semiconductor integrated circuits, but recently it has also come to be used in CMO8 type semiconductor integrated circuit devices. That is, since the output amplitude is smaller than that of the 0MO8 type output cover and sofa, the amount of noise generated when the output changes is reduced, and it is effective in preventing malfunctions caused by noise.

しかし出力高電位が下がると、電源電圧が低くなった場
合に逆に充分な出力振幅を確保できなくなる可能性があ
る。先に示した従来例では、プルアップドライバQ1の
バックゲート5が接地されているため、出力電位が上昇
していくとQlにバックゲート効果が生じて以下VTH
QIが増大する。
However, if the output high potential decreases, there is a possibility that a sufficient output amplitude cannot be secured when the power supply voltage decreases. In the conventional example shown above, the back gate 5 of the pull-up driver Q1 is grounded, so as the output potential increases, a back gate effect occurs on Ql, and below VTH
QI increases.

VTHQIの値は、バックゲート効果が生じると、約0
.7vから約1.5vへ増大するので1.電源電圧が4
.5vのとき、出力高電位は3.Ovまでしか上昇しな
い。かつ、その時Q1のインピーダンスは非常に大きく
なるので、数mAの電流が流れるバイポーラトランジス
タのベースを駆動する場合は、さらに出力高電位は低下
する。
The value of VTHQI becomes approximately 0 when the backgate effect occurs.
.. 1. Since it increases from 7v to about 1.5v. Power supply voltage is 4
.. At 5V, the output high potential is 3. It only rises to Ov. In addition, since the impedance of Q1 becomes very large at that time, when driving the base of a bipolar transistor through which a current of several milliamperes flows, the output high potential further decreases.

さらには、バックゲート効果により出力電位が上昇する
際、Qlのドライブ能力は急激に減少し出力遷移時間が
長くなってしまう。
Furthermore, when the output potential rises due to the back gate effect, the drive ability of Ql decreases rapidly, resulting in a longer output transition time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体集積回路の出力バッファは以上のように構
成されているので、出力高電位が下がり過ぎて充分な出
力振幅が得られない、また出力遷移時間が長くなると言
った問題点があった。
Since the output buffer of a conventional semiconductor integrated circuit is constructed as described above, there are problems in that the output high potential drops too much, making it impossible to obtain a sufficient output amplitude, and that the output transition time becomes long.

この発明は上記のような問題点を解消するためになされ
たもので、充分な出力振幅を確保できる、NMOS型ト
ランジスタのプルアップドライバを用いた出力バッファ
で、しかも出力遷移時間を短縮で〆きる出力バッファを
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is an output buffer using an NMOS transistor pull-up driver that can ensure sufficient output amplitude, and can shorten the output transition time. The purpose is to obtain an output buffer.

また、さらにこの発明は、充分な出力振幅を確保でき、
しかも出力端子の容阜増大を抑制アきる出カッ1くソフ
ァを得ることを目的とする。
Furthermore, this invention can ensure sufficient output amplitude,
Moreover, it is an object of the present invention to obtain a sofa with a high output that can suppress the increase in the size of the output terminal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る出力バッファは、プルアップドライバ用N
MOS型トランジスタが形成されるPウェルを他のPウ
ェルと分離し、そのバックゲートすなわちPウェルをそ
のソースすなわち出力端子に接続したものである。
The output buffer according to the present invention has N
A P-well in which a MOS type transistor is formed is separated from other P-wells, and its back gate, that is, the P-well, is connected to its source, that is, its output terminal.

また本発明に係る出力バッファは、他のPウェルから分
離されたPウェルよに形成され、ドレインが電源に、ソ
ースとバックゲート(Pウェル)が出力端子に各々接続
されたNMOS型トランジスタを補助用プルアップドラ
イバとして挿入し、その寸法及びPウェル面積を本来の
プルアップドライバのそれ社より小さく、たとえば必要
最小限に抑えたものである。
Further, the output buffer according to the present invention is formed in a P well separated from other P wells, and supports an NMOS transistor whose drain is connected to a power supply and whose source and back gate (P well) are connected to an output terminal. The pull-up driver is inserted as a pull-up driver, and its dimensions and P-well area are smaller than those of the original pull-up driver, for example, to the necessary minimum.

〔作用〕[Effect]

本発明における出力バッファでは、プルアップドライバ
用NMOS型トランジスタにバックゲート効果が生じな
いため、出力電位が上昇する際にもVTHQIは増大し
ないので、充分な出力高電位を発生でき、かつドライブ
能力の低下も小さくなる。
In the output buffer of the present invention, since no back gate effect occurs in the NMOS type transistor for the pull-up driver, VTHQI does not increase even when the output potential increases, so a sufficiently high output potential can be generated and the drive capability can be improved. The drop will also be smaller.

また本発明における出力バッファでは、上記と同じ理由
によって充分な出力高電位を発生でき、かつ補助用プル
アップドライバのPウェル−N基板間の容量による出力
端子の容量増大を抑えることができる。
Further, the output buffer of the present invention can generate a sufficiently high output potential for the same reason as described above, and can suppress an increase in the capacitance of the output terminal due to the capacitance between the P well and the N substrate of the auxiliary pull-up driver.

〔実施例〕〔Example〕

以下この発明の第1の実施例を図について説明する。 A first embodiment of the present invention will be described below with reference to the drawings.

第1図において、Ql、Q2.1〜4及び6〜8は第7
図に示す従来例と同じである。5aはQlのバックゲー
トであり、Qlのソース4すなわち出力端子1に接続さ
れている。第2図において9aはQlが形成されるPウ
ェルであり、他の回路のPウェル9から分離されている
In Figure 1, Ql, Q2.1-4 and 6-8 are the 7th
This is the same as the conventional example shown in the figure. 5a is a back gate of Ql, which is connected to the source 4 of Ql, that is, the output terminal 1. In FIG. 2, 9a is a P well in which Ql is formed, and is separated from P wells 9 of other circuits.

このようにQlのバックゲー)5aは、出力端子1に接
続され、かつ電気的に他のPウェル9と絶縁されている
ため、その電位は出力電位に追従する。したがって、バ
ックゲート5aとソース4との間に電位差が生じず、Q
lにはバックゲート効果によるVTHQIの増大が生じ
ない。
In this way, the Ql backgate 5a is connected to the output terminal 1 and electrically insulated from the other P well 9, so its potential follows the output potential. Therefore, no potential difference occurs between the back gate 5a and the source 4, and Q
VTHQI does not increase due to the back gate effect.

第3図は、第1図の実施例によるプルアップドライバと
第7図の従来のプルアップドライバのドレイン電流特性
を示す。比較のために、同一プロセスで形成しトランジ
スタサイズも同じとする。
FIG. 3 shows drain current characteristics of the pull-up driver according to the embodiment shown in FIG. 1 and the conventional pull-up driver shown in FIG. For comparison, assume that they are formed using the same process and have the same transistor size.

従来は出力電位はB点までしか上昇しないが、本発明に
よるとA点まで上昇するので、その差は約0.8■あり
、充分な出力振幅を得ることができる。また、出力電位
が」1弄するとバックゲート効果の有無の違いによって
ドレイン電流も従来より増大している。すなわち駆動能
力が増大し出力が低電位から高電位に変化する時の遷移
時間も短縮できる。出力遷移時間の短縮は、高速動作を
必要とする半導体集積回路、たとえばスタティックRA
M等にを効である。
Conventionally, the output potential rises only to point B, but according to the present invention, it rises to point A, so the difference is about 0.8 square meters, and a sufficient output amplitude can be obtained. Furthermore, when the output potential is increased by 1, the drain current also increases compared to the conventional case due to the presence or absence of the back gate effect. That is, the driving capability is increased and the transition time when the output changes from a low potential to a high potential can also be shortened. Shortening the output transition time is useful for semiconductor integrated circuits that require high-speed operation, such as static RA.
It is effective for M etc.

以下この発明の第2の実施例を図について説明する。A second embodiment of the invention will be described below with reference to the drawings.

第4図において、Ql、Q2及び1〜8は第7図に示す
従来例と同じである。Q3は付加されるNMOS型O8
型補助アップドライバである。Q3のドレイン11は電
源に、ソース12及びバックゲート13は出力端子1に
各々接続される。2CはQ3のゲート制御端子である。
In FIG. 4, Ql, Q2, and 1 to 8 are the same as in the conventional example shown in FIG. Q3 is added NMOS type O8
It is a type assisted up driver. The drain 11 of Q3 is connected to the power supply, and the source 12 and back gate 13 are connected to the output terminal 1. 2C is a gate control terminal of Q3.

2cはQlのゲート制御端子2aへの信号と同信号であ
っても別信号であってもよい。第5図において9bはQ
3が形成されるPウェルであり、他の回路のPウェルか
ら分離されている。
2c may be the same signal as the signal to the gate control terminal 2a of Ql, or may be a different signal. In Figure 5, 9b is Q
3 is a P-well formed and is separated from the P-wells of other circuits.

補助用プルアップドライバQ3はこのように形成されて
いるので、本発明の第1の実施例を示す第1図における
プルアップドライバQ1と同様の特性を示す。さて、第
1図のように本来のプルアップドライバQ1のバックゲ
ー)5aを出力端子1に接続すると第2図から明らかな
ようにPウェル9aとN基板10との間のジャンクショ
ン容fiが出力容量に追加される。したがって出力容量
に厳しい制限があるときは、この追加される容量が問題
となり、Pウェル9aの面積を小さくする必要性がでて
くるが、このようにするとドライブ能力が低下する。
Since the auxiliary pull-up driver Q3 is formed in this manner, it exhibits the same characteristics as the pull-up driver Q1 in FIG. 1 showing the first embodiment of the present invention. Now, as shown in Fig. 1, when the back gate 5a of the original pull-up driver Q1 is connected to the output terminal 1, as is clear from Fig. 2, the junction capacitance fi between the P well 9a and the N substrate 10 becomes the output capacitance. will be added to. Therefore, when there is a severe limit on the output capacitance, this added capacitance becomes a problem, and it becomes necessary to reduce the area of the P-well 9a, but this reduces the drive capability.

そこで第4図に示すように、主たるプルアップドライバ
は、従来タイプのプルアップドライバQ1を用い、バッ
クゲート13が出力端子1に接続されるNMOS)ラン
ジスタQ3を補助用プルアップドライバとして用いるこ
とが考えられる。このドライバQ3のトランジスタサイ
ズは、出力高電位を確保できる必要最小限に抑える。こ
れに伴イ該ドライバQ3が形成されるPウェル9bの面
積も必要最小限に抑えて出力容量の増大を抑える。
Therefore, as shown in FIG. 4, it is possible to use a conventional type pull-up driver Q1 as the main pull-up driver, and use an NMOS transistor Q3 whose back gate 13 is connected to the output terminal 1 as an auxiliary pull-up driver. Conceivable. The transistor size of this driver Q3 is kept to the minimum necessary to ensure a high output potential. Accordingly, the area of the P well 9b in which the driver Q3 is formed is also minimized to suppress an increase in output capacitance.

第6図に第4図の実施例による補助用プルアップドライ
バQ3と、第7図の従来のプルアップドライバQ1のド
レイン電流特性を示す。本第2実施例の補助用プルアッ
プドライバQ3はトランジスタサイズが小さいため、ド
レイン電流は小さく駆動能力は小さいが、出力高電位は
A点まで上昇するので、たとえ数mAの引き抜き電流が
あっても、従来タイプより高電位を確保することは容易
である。たとえば、引き抜き電流が4mAとすると、補
助用プルアップドライバQ3のトランジスタ幅は50μ
mもあれば出力電位の低下を峡o。
FIG. 6 shows the drain current characteristics of the auxiliary pull-up driver Q3 according to the embodiment shown in FIG. 4 and the conventional pull-up driver Q1 shown in FIG. Since the auxiliary pull-up driver Q3 of the second embodiment has a small transistor size, the drain current is small and the drive capability is small, but the output high potential rises to point A, so even if there is a pull-out current of several mA. , it is easier to secure a higher potential than the conventional type. For example, if the pull-out current is 4mA, the transistor width of the auxiliary pull-up driver Q3 is 50μ.
If there is m, the output potential will decrease.

5■以内に抑えることができ、従来の出力高電位B点よ
りも高くできる。この時Pウェル9bの面積は約100
0μm2であり、Pウェル9bとN基板10とのジャン
クション容量は約0. 1pFとなり、全く問題ない。
It can be suppressed to within 5■, and can be higher than the conventional output high potential point B. At this time, the area of P well 9b is approximately 100
0 μm2, and the junction capacitance between the P well 9b and the N substrate 10 is approximately 0.0 μm2. It becomes 1 pF, which is no problem at all.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、NMOS型トランジ
スタからなるプルアップドライバのPウェルを他のPウ
ェルから分離してバックゲートをソースに接続するよう
にしたので、充分な出力高電位を発生でき、かつ出力遷
移時間を短縮できる効果がある。
As described above, according to the present invention, the P-well of the pull-up driver made of NMOS transistors is separated from other P-wells and the back gate is connected to the source, so that a sufficiently high output potential is generated. This has the effect of shortening the output transition time.

またこの発明によれば、独立したPウェル上に形成され
、バックゲートがソースに接続されたNMOS型トラン
ジスタからなる補助用プルアップドライバを付加するよ
うにしたので、充分な出力高電位を発生でき、かつ出力
容量の増加を抑えられる効果がある。
Furthermore, according to the present invention, an auxiliary pull-up driver formed on an independent P-well and consisting of an NMOS transistor whose back gate is connected to the source is added, making it possible to generate a sufficiently high output potential. , and has the effect of suppressing an increase in output capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施側番こよる出力バッファ
を示す回路図、第2図はこの発明の第1の実施例による
出力バッファを示す断面図、第3図はこの発明の第1の
実施例による出力バッファを示すドレイン電流特性図、
第4図はこの発明の第2の実施例による出力バッファを
示す回路図、第5図はこの発明の第2の実施例による出
力バッファを示す断面図、第6図はこの発明の第2の実
施例による出力バッファを示すドレイン電流特性図、第
7図は従来の出力バッファを示す回路図、第8図は従来
の出力バッファを示す断面図である。 図において、QlはNMOS型トランジスタからなるプ
ルアップドライバ、Q2はNMOS型トランジスタから
なるプルダウンドライバ、Q3はNMOS型トランジス
タからなる補助用プルアップドライバ、1は出力端子、
2aはプルアップドライバQ1のゲート制御信号、2b
はプルダウンドライバQ2のゲート制御信号、2cは補
助用プルアップドライバQ3のゲート制御信号、3はQ
lのドレイン、4はQlのソース、5,5aはQlのバ
ックゲート、6はQ2のドレイン、7はQ2のソース、
8はQ2のバックゲート、9はPウェル、9aはQlが
形成されるPウェル、9bはQ3が形成されるPウェル
、10はN基板、11はQ3のドレイン、12はQ3の
ソース、13はQ3のバックゲートである。 =12− なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a circuit diagram showing an output buffer according to a first embodiment of the invention, FIG. 2 is a sectional view showing an output buffer according to a first embodiment of the invention, and FIG. A drain current characteristic diagram showing the output buffer according to the first embodiment,
FIG. 4 is a circuit diagram showing an output buffer according to a second embodiment of the invention, FIG. 5 is a sectional view showing an output buffer according to a second embodiment of the invention, and FIG. 6 is a circuit diagram showing an output buffer according to a second embodiment of the invention. A drain current characteristic diagram showing the output buffer according to the embodiment, FIG. 7 is a circuit diagram showing a conventional output buffer, and FIG. 8 is a sectional view showing the conventional output buffer. In the figure, Ql is a pull-up driver made of an NMOS transistor, Q2 is a pull-down driver made of an NMOS transistor, Q3 is an auxiliary pull-up driver made of an NMOS transistor, 1 is an output terminal,
2a is the gate control signal of the pull-up driver Q1, 2b
is the gate control signal of pull-down driver Q2, 2c is the gate control signal of auxiliary pull-up driver Q3, and 3 is Q
1 is the drain of 1, 4 is the source of Q1, 5, 5a is the back gate of Q1, 6 is the drain of Q2, 7 is the source of Q2,
8 is the back gate of Q2, 9 is the P well, 9a is the P well where Ql is formed, 9b is the P well where Q3 is formed, 10 is the N substrate, 11 is the drain of Q3, 12 is the source of Q3, 13 is the back gate of Q3. =12- Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)Pウェル上のNMOS型トランジスタからなり、
ドレインが電源にソースが出力端子に各々接続されるプ
ルアップドライバを有する出力バッファにおいて、 上記プルアップドライバのPウェルが他の回路のPウェ
ルから分離され、上記ソースに接続されてなることを特
徴とする半導体集積回路の出力バッファ。
(1) Consisting of an NMOS type transistor on a P well,
An output buffer having a pull-up driver whose drain is connected to a power supply and whose source is connected to an output terminal, characterized in that the P-well of the pull-up driver is separated from the P-wells of other circuits and connected to the source. Output buffer for semiconductor integrated circuits.
(2)NMOS型トランジスタからなるプルアップ用ド
ライバを有する出力バッファにおいて、Pウェル上のN
MOS型トランジスタからなり、ドレインが電源にソー
スが出力端子に各々接続され、かつ上記Pウェルが他の
回路のPウェルから分離され上記ソースに接続された補
助用プルアップドライバが付加されてなり、 該補助用プルアップドライバのサイズ及び 該補助用プルアップドライバが形成されるPウェルの面
積は、上記プルアップドライバに比べ小さいことを特徴
とする半導体集積回路の出力バッファ。
(2) In an output buffer with a pull-up driver consisting of an NMOS transistor, the N
It consists of a MOS type transistor, the drain is connected to the power supply, and the source is connected to the output terminal, and an auxiliary pull-up driver is added in which the P-well is separated from the P-well of other circuits and connected to the source, An output buffer for a semiconductor integrated circuit, wherein the size of the auxiliary pull-up driver and the area of the P-well in which the auxiliary pull-up driver is formed are smaller than those of the pull-up driver.
JP63308653A 1988-12-06 1988-12-06 Output buffer of semiconductor integrated circuit Pending JPH02154461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308653A JPH02154461A (en) 1988-12-06 1988-12-06 Output buffer of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308653A JPH02154461A (en) 1988-12-06 1988-12-06 Output buffer of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH02154461A true JPH02154461A (en) 1990-06-13

Family

ID=17983665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308653A Pending JPH02154461A (en) 1988-12-06 1988-12-06 Output buffer of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH02154461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113670A (en) * 1990-09-03 1992-04-15 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JPH04345317A (en) * 1991-04-08 1992-12-01 Internatl Business Mach Corp <Ibm> Driver circuit, low noise driver circuit and low noise low vibration driver-receiver circuit
EP0533339A2 (en) * 1991-09-16 1993-03-24 Advanced Micro Devices, Inc. CMOS output buffer circuits
JP2010003925A (en) * 2008-06-20 2010-01-07 Toppan Printing Co Ltd Semiconductor device
JP2015177579A (en) * 2014-03-13 2015-10-05 富士電機株式会社 Drive circuit for insulated gate type device
JP2017162539A (en) * 2011-08-24 2017-09-14 株式会社半導体エネルギー研究所 Semiconductor device and manufacture method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113670A (en) * 1990-09-03 1992-04-15 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JPH04345317A (en) * 1991-04-08 1992-12-01 Internatl Business Mach Corp <Ibm> Driver circuit, low noise driver circuit and low noise low vibration driver-receiver circuit
EP0533339A2 (en) * 1991-09-16 1993-03-24 Advanced Micro Devices, Inc. CMOS output buffer circuits
EP0533339A3 (en) * 1991-09-16 1995-02-08 Advanced Micro Devices Inc
JP2010003925A (en) * 2008-06-20 2010-01-07 Toppan Printing Co Ltd Semiconductor device
JP2017162539A (en) * 2011-08-24 2017-09-14 株式会社半導体エネルギー研究所 Semiconductor device and manufacture method therefor
JP2015177579A (en) * 2014-03-13 2015-10-05 富士電機株式会社 Drive circuit for insulated gate type device

Similar Documents

Publication Publication Date Title
US5191244A (en) N-channel pull-up transistor with reduced body effect
US4908528A (en) Input circuit having improved noise immunity
JPS626369B2 (en)
JPH08181598A (en) Semiconductor device
US6621329B2 (en) Semiconductor device
JPH02154461A (en) Output buffer of semiconductor integrated circuit
EP0911974B1 (en) Improved output circuit for integrated circuits
JPH03158018A (en) Input circuit
EP0771033A2 (en) Semiconductor integrated circuit with differential circuit
US4837463A (en) Three-state complementary field effect integrated circuit
JP2957181B2 (en) Semiconductor integrated circuit
JP2758735B2 (en) Logic circuit
JPH06101679B2 (en) Semiconductor integrated circuit device
JP3147955B2 (en) Semiconductor device
JPH06120439A (en) Semiconductor device
JPH0477016A (en) Low-noise cmos driver
JPH0653800A (en) Output circuit
JPH0298213A (en) Output circuit for semiconductor storage device
KR0161465B1 (en) Output circuit for analog and digital signal
JPH04306915A (en) Level conversion circuit
JPH0777344B2 (en) Output buffer circuit
JPH06311022A (en) Semiconductor logic circuit device
JPH08203279A (en) Semiconductor integrated circuit device
US6380795B1 (en) Semiconductor integrated circuit
JP3144825B2 (en) Output buffer circuit