JPH02153866A - Production of uniform sintered compact - Google Patents

Production of uniform sintered compact

Info

Publication number
JPH02153866A
JPH02153866A JP63306738A JP30673888A JPH02153866A JP H02153866 A JPH02153866 A JP H02153866A JP 63306738 A JP63306738 A JP 63306738A JP 30673888 A JP30673888 A JP 30673888A JP H02153866 A JPH02153866 A JP H02153866A
Authority
JP
Japan
Prior art keywords
molded article
sintered body
molding
sintered compact
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306738A
Other languages
Japanese (ja)
Other versions
JPH0512302B2 (en
Inventor
Kazumori Hayakawa
一精 早川
Mitsuru Miyamoto
満 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63306738A priority Critical patent/JPH02153866A/en
Publication of JPH02153866A publication Critical patent/JPH02153866A/en
Publication of JPH0512302B2 publication Critical patent/JPH0512302B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve uniformity and denseness of a sintered compact by providing fluidity to a ceramic molded article obtained by heating and removing an organic molding auxiliary, subjecting the molded article to hydrostatic pressure treatment and sintering the treated molded article. CONSTITUTION:A molded article obtained by adding an organic molding auxiliary to a ceramic raw material such as SiC and subjecting the blend to press molding is heated at about 500 deg.C to afford a molding auxiliary-removed molded article (A). Then 1-4wt.% water content is added to the molded article A by treating the molded article A at 25-40 deg.C under 80-98% moisture for 10-20hr to give a fluidity-provided molded article (B). Then the molded article B is subjected to hydrostatic pressure treatment at 1,000-1,000,000kg/cm<2> to afford a treated molded article (C), which is then dried at about 100 deg.C and sintered under N2 atmosphere at about 1,700 deg.C for 1hr to provide the uniform sintered compact.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は均質焼結体の製造方法に係り、更に詳しくは、
構造部材、軸受部材、耐摩耗部材あるいは摺動部材など
に有用な高緻密で均質なセラミックス焼結体の製造方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a homogeneous sintered body, and more specifically,
The present invention relates to a method for manufacturing highly dense and homogeneous ceramic sintered bodies useful for structural members, bearing members, wear-resistant members, sliding members, etc.

[従来の技術] 従来より、セラミックス原料と焼結助剤を混合し、次い
でこれに結合剤、可塑剤、分散剤、消泡剤、滑剤等の有
機質成形助剤を添加した後、第3図に示す工程に従い、
プレス成形、スリップキャスト成形、押出し成形あるい
は射出成形等の各種の成形法によりセラミックス成形体
が成形されている。
[Prior Art] Conventionally, ceramic raw materials and sintering aids are mixed, and then organic forming aids such as binders, plasticizers, dispersants, antifoaming agents, and lubricants are added thereto. Follow the steps shown in
Ceramic molded bodies are molded by various molding methods such as press molding, slip cast molding, extrusion molding, or injection molding.

次いで上記例れかの成形法によって得られた成形体は、
乾燥後500°C程度の温度に加熱して成形助剤が除去
された後焼成することにより焼結体が製造されている。
Next, the molded article obtained by any of the above molding methods is
After drying, the sintered body is produced by heating to a temperature of about 500°C to remove the forming aid, and then firing.

[発明が解決しようとする課題] しかしながら、上記した第3図の従来の焼結体の製造方
法にあっては、成形体の成形助剤を除去後そのまま焼成
しているため、成形助剤除去後の成形体(仮焼体)中に
は成形助剤除去に伴なって形成された気孔が残存するこ
とになる0通常セラミックス成形体には成形法にもよる
が、約1〜20重量%程度の成形助剤か含まれており、
1ノかも成形助剤は成形体中に均一に分散しているわけ
ではなく偏って存在していることか多く、また、ms、
塵等の有機質の異物が成形体中に混入し、成形助剤除去
後の成形体には粗大な気孔か残ることになる。従って、
これを焼成すると、得られる焼結体にはそのまま粗大気
孔か残り、強度にバラツキのある焼結体が製造されるこ
とになるという問題かある。
[Problems to be Solved by the Invention] However, in the conventional method for manufacturing the sintered body shown in FIG. The pores formed due to the removal of the forming aid will remain in the subsequent molded body (calcined body). Usually ceramic molded bodies contain about 1 to 20% by weight, depending on the molding method. Contains a certain amount of molding aid,
The molding aid is not uniformly dispersed in the molded product, but is often present unevenly, and ms,
Organic foreign matter such as dust gets mixed into the molded product, and coarse pores remain in the molded product after the molding aid is removed. Therefore,
When this is fired, coarse pores remain in the resulting sintered body, resulting in a sintered body with varying strength.

[課題を解決するための手段] そこで、本発明者は焼結体に粗大な気孔が残存せず、均
質な焼結体を得るべく種々検討を行なった結果、本発明
を完成したものである。
[Means for Solving the Problems] Therefore, the present inventor conducted various studies in order to obtain a homogeneous sintered body in which no coarse pores remain in the sintered body, and as a result, the present invention was completed. .

即ち、本発明は、第1図に示すように、セラミックス成
形体の有機質成形助剤を加熱除去後焼成することにより
焼結体を製造する方法において、前記助剤を加熱除去し
た成形体に流動性を付与した後静水圧加圧を施し、好ま
しくは乾燥し、次いで焼成することを特徴とする均質焼
結体の製造方法を提供するものである。
That is, as shown in FIG. 1, the present invention provides a method for producing a sintered body by heating and removing an organic forming aid from a ceramic molded body and then firing the molded body, in which the molded body from which the aid has been removed by heating is flowed. The present invention provides a method for producing a homogeneous sintered body, which comprises imparting properties to the homogeneous sintered body, applying isostatic pressure, preferably drying, and then firing.

[作用コ 本発明において特に重要なポイントは、成形助剤を加熱
除去した成形体に流動性を付与した後に静水圧加圧処理
を施すことである。′成形助剤を加熱除去した成形体に
流動性を付与することにより、該成形体中の粒子同士の
滑りか円滑になり、これに静水圧加圧処理を施すことに
より成形体中に不均一に存在する気孔が潰され、その結
果、焼成して得られる焼結体は強度のバラツキが小さく
、緻密で均質なものとなる。
[Operations] A particularly important point in the present invention is to impart fluidity to the molded product from which the molding aid has been removed by heating, and then to perform the hydrostatic pressure treatment. 'By imparting fluidity to the molded body from which the molding aid has been removed by heating, the particles in the molded body can smoothly slide against each other, and by applying hydrostatic pressure treatment to this, unevenness in the molded body can be eliminated. As a result, the sintered body obtained by firing has small variations in strength, and is dense and homogeneous.

ここで流動性を付与するものとしては水、アルコール等
を用い、それらを蒸気化するか或いはスプレーにて行な
うことか好ましい。流動性の付与は、例えば水分を添加
する場合には4重量%以下か好ましく、1〜4重量%が
更に好ましい。水分添加量か4重量%を超えると、乾燥
時にクラックが発生し易く、また乾燥時間が長くなると
いう問題がある。
Here, it is preferable to use water, alcohol, etc. to impart fluidity, and to vaporize them or spray them. For example, when water is added, the fluidity is preferably 4% by weight or less, more preferably 1 to 4% by weight. If the amount of water added exceeds 4% by weight, there is a problem that cracks are likely to occur during drying and the drying time becomes longer.

又、上記の流動性を付与する手段としては所定の湿度下
(調湿下)に該成形体を置き、水蒸気を成形体の気孔内
に浸入させることにより行なうことが好ましい、具体的
には、恒温・恒湿器を用い、温度25〜40℃、湿度8
0〜98%下でlO〜20時間成形体を処理することに
より行なうことが好ましい。
In addition, as a means for imparting the above-mentioned fluidity, it is preferable to place the molded product under a predetermined humidity (humidity control) and allow water vapor to penetrate into the pores of the molded product. Specifically, Using a constant temperature/humidifier, temperature 25-40℃, humidity 8
It is preferable to carry out this by treating the molded body at 0 to 98% for 10 to 20 hours.

成形体に流動性を付与した後に行なう静水圧加圧処理工
程は、流動性付与後の成形体をゴム等の可撓性の容器(
ゴム型)に封入し、これに液体を経て均一な圧力を付与
するものてあり、成形体の全般に均一な圧力をかけるこ
とができる。この静水圧加圧処理工程において付与する
圧力は、1.000〜100,000 kg/cm”が
好ましく、2,000〜7.000 kg/c朧2が更
で好ましい。
In the isostatic pressure treatment step, which is performed after imparting fluidity to the molded body, the molded body after imparting fluidity is placed in a flexible container such as rubber (
This method applies uniform pressure to the entire molded product through liquid. The pressure applied in this hydrostatic pressure treatment step is preferably 1.000 to 100,000 kg/cm'', more preferably 2,000 to 7.000 kg/cm2.

圧力が1,000 kg/cm”より小さいと、成形体
中の気孔か漬れにくくなって、均質で緻密な焼結体か得
られ難くなり、一方、100,0口Okg/cm”を超
えると、成形歪みが大きくなり、乾燥時にクラックを生
じ易くなり好ましくない。
If the pressure is less than 1,000 kg/cm", the pores in the compact will be difficult to soak, making it difficult to obtain a homogeneous and dense sintered body; on the other hand, if the pressure exceeds 100,0 kg/cm" This is not preferable because molding distortion becomes large and cracks are likely to occur during drying.

次に、静水圧加圧処理を施された成形体は、次いで好ま
しくは乾燥された後、焼成される。
Next, the molded body subjected to the hydrostatic pressure treatment is preferably dried and then fired.

焼成条件はセラミックスの種類、使用目的などに応じて
適宜決定される。例えば、窒化珪素焼結体を製造する場
合、常圧焼成では1600〜1800℃、加圧焼成では
1700〜2000℃で窒素ガス雰囲気中での焼成が好
ましい。尚、より高緻密な焼結体を得るため、熱間静水
圧プレス(HIP)を行なってもよい。また炭化珪素焼
結体を製造する場合は1900〜2200℃でアルゴン
雰囲気中での焼成が好ましい。さらに部分安定化ジルコ
ニア焼結体を製造する場合は1300〜1500℃で空
気雰囲気中での焼成か好ましい 本発明に用いるセラミックス原料としては従来公知のセ
ラミックス材料を用いることかでき、例えば窒化珪素、
炭化珪素、ジルコニア、サイアロン、アルミナ、スピネ
ル、ムライト、炭化硼素等が使用できる。
Firing conditions are appropriately determined depending on the type of ceramic, purpose of use, etc. For example, when manufacturing a silicon nitride sintered body, firing in a nitrogen gas atmosphere is preferred at 1600 to 1800°C for normal pressure firing, and at 1700 to 2000°C for pressure firing. Incidentally, in order to obtain a more dense sintered body, hot isostatic pressing (HIP) may be performed. Further, when producing a silicon carbide sintered body, firing is preferably performed at 1900 to 2200°C in an argon atmosphere. Further, in the case of manufacturing a partially stabilized zirconia sintered body, it is preferable to sinter it at 1300 to 1500°C in an air atmosphere.As the ceramic raw material used in the present invention, conventionally known ceramic materials can be used, such as silicon nitride,
Silicon carbide, zirconia, sialon, alumina, spinel, mullite, boron carbide, etc. can be used.

なお、本発明におけるセラミックス成形体の製造方法と
しては何ら限定されるものではなく、従来例で述べた如
く、例えばプレス成形、スリラフキャスト成形、押出し
成形あるいは射出成形等各種の成形法を適用することが
できる。
Note that the method for producing the ceramic molded body in the present invention is not limited in any way, and various molding methods such as press molding, slip rough cast molding, extrusion molding, or injection molding may be applied, as described in the conventional examples. be able to.

[実施例] 以下、′本発明を実施例に基き更に詳細に説明するが、
本発明はこれらの実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples.
The present invention is not limited to these examples.

(実施例1) 平均粒径0.5μmのα型窒化珪素粉末100重量部に
焼結助剤としてM g O,Z r 02 、 Y2O
3の各粉末を夫々4重量部、2重量部、7重量部の割合
で混合し、それに水分60重量部を加え、バッチ式粉砕
機により混合粉砕した後、目開き20pmの篩通しをし
て平均粒子径0.7gmのスラリーを得た。このスラリ
ーにバインダーとしてポリビニルアルコール(PVA)
2重量部を添加し、噴霧乾燥機を用いて造粒粉体とした
(Example 1) MgO, Zr02, Y2O were added as sintering aids to 100 parts by weight of α-type silicon nitride powder with an average particle size of 0.5 μm.
The powders of 3 were mixed at a ratio of 4 parts by weight, 2 parts by weight, and 7 parts by weight, respectively, 60 parts by weight of water was added thereto, and the mixture was mixed and ground using a batch-type grinder, and then passed through a sieve with an opening of 20 pm. A slurry with an average particle size of 0.7 gm was obtained. Polyvinyl alcohol (PVA) was added to this slurry as a binder.
2 parts by weight were added to form a granulated powder using a spray dryer.

この造粒粉体を金型に入れ、圧力200 kg/cm2
で一軸圧縮し、φ180X30tmmの成形体を作製し
た。
This granulated powder was put into a mold and the pressure was 200 kg/cm2.
This was uniaxially compressed to produce a molded body with a diameter of 180 x 30 tmm.

次に、第1図のフローチャートに示すように、得られた
成形体を100℃で2時間乾燥した後、500°Cに加
熱し、成形助剤を除去した。これを温度40°C1湿度
98%の恒温・恒湿器の中に16時間入れて水分2重量
%を添加した0次いでこの成形体をラバープレス成形法
により、圧力3 、000 kg/cm2で1分間静水
圧加圧した後、温度100℃で5時間乾燥した。
Next, as shown in the flowchart of FIG. 1, the obtained molded body was dried at 100°C for 2 hours, and then heated to 500°C to remove the molding aid. This was placed in a constant temperature/humidity chamber at a temperature of 40°C and a humidity of 98% for 16 hours, and 2% water by weight was added.Then, this molded body was molded using a rubber press at a pressure of 3,000 kg/cm2. After applying hydrostatic pressure for a minute, it was dried at a temperature of 100° C. for 5 hours.

次に、これを1気圧の窒素雰囲気下、温度1700°C
′c1時間焼成することにより焼結体(本発明の焼結体
)を得た。
Next, this was heated to 1,700°C under a nitrogen atmosphere of 1 atm.
A sintered body (sintered body of the present invention) was obtained by firing for 1 hour.

なお、比較のため、第3図に示す従来法によりφ180
X30tmm成形品の焼結体を得た。
For comparison, the conventional method shown in Figure 3
A sintered body having a size of 30 tmm was obtained.

上記で得られた本発明の焼結体と従来法の焼結体のそれ
ぞれについて超音波探傷□検査を行なったところ、従来
法の焼結体についてはl 00 JLm程度の欠陥か3
個検出されたのに対して、本発明の焼結体には欠陥か検
出されなかった。
When the sintered body of the present invention obtained above and the sintered body of the conventional method were subjected to ultrasonic flaw detection □ inspection, it was found that the sintered body of the conventional method had defects of about 100 JLm or 3
However, no defects were detected in the sintered body of the present invention.

また、焼結体の強度のバラツキを調べるため、夫々のワ
イブル係数を測定したところ、第2図のような結果を得
た。
In addition, in order to examine variations in the strength of the sintered bodies, the Weibull coefficients of each were measured, and the results shown in FIG. 2 were obtained.

すなわち、第2図から明らかな通り、本発明の焼結体は
従来の焼結体に比し、ワイブル係数が大となり、強度の
バラツキか少ないことがわかる。
That is, as is clear from FIG. 2, the sintered body of the present invention has a larger Weibull coefficient and less variation in strength than the conventional sintered body.

[発明の効果] 以上説明したように1本発明の均質焼結体の製造方法に
よれば、成形助剤を加熱除去後の成形体に流動性を付与
し次いでその成形体に静水圧加圧を施しているため、加
熱除去後に形成される成形体中の粗大気孔か漬れ、引続
く焼成工程により均質で緻密な焼結体を得ることかでき
る。
[Effects of the Invention] As explained above, according to the method for producing a homogeneous sintered body of the present invention, fluidity is imparted to the molded body after the molding aid is removed by heating, and then hydrostatic pressure is applied to the molded body. As a result, coarse pores in the molded body formed after heat removal are soaked, and a homogeneous and dense sintered body can be obtained through the subsequent firing process.

第1図 第3図Figure 1 Figure 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造工程を示すフローチャート、第2
図は本発明の焼結体と従来の焼結体のそれぞれについて
ワイブル係数を示すとともに曲げ強度に対する破壊確率
を示すグラフ、第3図は従来の製造工程を示すフローチ
ャートである。
Figure 1 is a flowchart showing the manufacturing process of the present invention, Figure 2 is a flowchart showing the manufacturing process of the present invention.
The figure is a graph showing the Weibull coefficient and the fracture probability with respect to bending strength for the sintered body of the present invention and the conventional sintered body, and FIG. 3 is a flowchart showing the conventional manufacturing process.

Claims (1)

【特許請求の範囲】[Claims] (1)セラミックス成形体の有機質成形助剤を加熱除去
後焼成することにより焼結体を製造する方法において、
前記助剤を加熱除去した成形体に流動性を付与した後静
水圧加圧を施し、次いで焼成することを特徴とする均質
焼結体の製造方法。
(1) In a method for producing a sintered body by heating and removing an organic forming aid from a ceramic molded body and then firing it,
A method for producing a homogeneous sintered body, which comprises imparting fluidity to the molded body from which the auxiliary agent has been removed by heating, applying hydrostatic pressure, and then firing.
JP63306738A 1988-12-03 1988-12-03 Production of uniform sintered compact Granted JPH02153866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306738A JPH02153866A (en) 1988-12-03 1988-12-03 Production of uniform sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306738A JPH02153866A (en) 1988-12-03 1988-12-03 Production of uniform sintered compact

Publications (2)

Publication Number Publication Date
JPH02153866A true JPH02153866A (en) 1990-06-13
JPH0512302B2 JPH0512302B2 (en) 1993-02-17

Family

ID=17960709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306738A Granted JPH02153866A (en) 1988-12-03 1988-12-03 Production of uniform sintered compact

Country Status (1)

Country Link
JP (1) JPH02153866A (en)

Also Published As

Publication number Publication date
JPH0512302B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
CN109761614A (en) A kind of gel-casting method of AlON ceramics
JPS60186475A (en) Silicon nitride sintered body and manufacture
Yasar et al. Effect of acid etching time and concentration on oxygen content of powder on the microstructure and elastic properties of silicon carbide densified by SPS
JPH02153866A (en) Production of uniform sintered compact
JPH06144918A (en) Production of ceramic granulated powder and production of ceramic sintered body
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
KR20050122748A (en) Fabrication method of silicon nitride ceramics by nitrided pressureless sintering process
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JPH08119751A (en) Production of ceramic sintered compact
JPH08295569A (en) Silicon nitride-based sintered compact and its production
JPH02153867A (en) Production of uniform sintered compact
Richerson et al. Material improvement through iterative process development
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
KR960004389B1 (en) Process for the preparation of ceramic sintering
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JPH06166569A (en) Production of sintered silicon nitride
JPS61215260A (en) Manufacture of silicon nitride ceramic
JPH0369546A (en) Sintered ceramic body and production therefor
JPH0283270A (en) Glass capsule hip method of ceramic molded article
JPH02311363A (en) Production of ceramic sintered compact
JPH03290370A (en) Production of sintered silicon nitride having high toughness
Negahdari et al. Influence of slurry formulation on mechanical properties of reticulated porous ceramic
JPS62202873A (en) Ceramic sintered body and manufacture
JPS62143861A (en) Manufacture of ceramic sintered body
JPH02311349A (en) Production of ceramic sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees