JPH02153409A - Flow rate adjusting mechanism - Google Patents

Flow rate adjusting mechanism

Info

Publication number
JPH02153409A
JPH02153409A JP25876089A JP25876089A JPH02153409A JP H02153409 A JPH02153409 A JP H02153409A JP 25876089 A JP25876089 A JP 25876089A JP 25876089 A JP25876089 A JP 25876089A JP H02153409 A JPH02153409 A JP H02153409A
Authority
JP
Japan
Prior art keywords
flow rate
flow
thin plates
flow path
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25876089A
Other languages
Japanese (ja)
Other versions
JPH0531164B2 (en
Inventor
Kazuo Ozawa
小沢 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP25876089A priority Critical patent/JPH02153409A/en
Publication of JPH02153409A publication Critical patent/JPH02153409A/en
Publication of JPH0531164B2 publication Critical patent/JPH0531164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PURPOSE:To easily perform fine adjustment on the cross section of a passage in the diametral direction and to generate the laminar flow of liquid by comprising a flow rate adjusting member of a spring in which thin plates superposed in parallel are formed in coil shape. CONSTITUTION:The flow rate adjusting member 40 is comprised of the spring 46 with a uniform major diameter in which the thin plates are supposed in parallel with each other, and the passage in a radial direction can be changed by compression, and the cross section of the passage goes to zero when a gap is compressed so as to go to zero. The spring 46 is formed in a so-called coil shape flat spring. In such a way, it is possible to keep parallel relation between the thin plates, and to generate the laminar flow of the liquid that flows between the thin plates, and to accurately perform the measurement of a flow rate.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば、マスフローコントローラー等にお
いて流体の流量測定範囲を調整する流量調整機構に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a flow rate adjustment mechanism that adjusts a fluid flow rate measurement range in, for example, a mass flow controller or the like.

従来技術及びその課題 従来、ガスの計測と制御は体積流量計で行われてきたが
、最近になり製造装置の自動化、コンピユータ化に伴い
、計測、制御とも電気信号で操作を行えるマスフローコ
ントローラーが広く用いられるようになってきた。
Conventional technology and its challenges Conventionally, gas measurement and control have been performed using volumetric flowmeters, but recently, with the automation and computerization of manufacturing equipment, mass flow controllers that can be operated using electrical signals for both measurement and control have become widespread. It has come to be used.

この場合、ガスはセンサ一部とバイパス部に分流され、
両者における流量比を一定にして、センサ一部における
流量を熱電気的に検出することによって全体のガス流量
を検知するようになっている。そして、バイパス部は流
路の途中に設けられた壁部と押し付け部材との間に流m
ai整部材部材在せしめて径方向の波路を形成し、前記
径方向流路の断面積を変化せしめて層流杖態でガス流量
を調整するようにしているのであるが、従来の流量調整
部材としては、環状の薄板を多数積層状に配列したもの
を用い、この環状薄板には、径方向にフォトエツチング
法により溝が形成されたものが用いられていた。しかし
ながら、このフォトエツチング法による溝の形成は、面
倒であるばかりでなく、径方向の流路の断面積の増減は
この環核薄板の枚数を増減して行うことになるので、適
当な枚数を選定する為にこれを出し入れすることは極め
て面倒な作業になっていた。
In this case, the gas is divided into a sensor part and a bypass part,
The overall gas flow rate is detected by thermoelectrically detecting the flow rate in a portion of the sensor while keeping the flow rate ratio between the two constant. The bypass section has a flow m between the wall section provided in the middle of the flow path and the pressing member.
Ai adjustment member is provided to form a radial wave path, and the cross-sectional area of the radial flow path is changed to adjust the gas flow rate in a laminar flow state, which is different from the conventional flow rate adjustment member. In this case, a large number of annular thin plates arranged in a laminated manner was used, and the annular thin plates had grooves formed in the radial direction by photo-etching. However, forming grooves using this photoetching method is not only troublesome, but also increases or decreases the cross-sectional area of the radial flow path by increasing or decreasing the number of ring core thin plates. Taking them in and out for selection was an extremely troublesome task.

一方、特開昭55−97569号公報に記載されている
流体絞り弁は流路に設けたコイルばねを伸縮させて流量
を調整しているが、コイルばねは断面円形の線材を単に
コイル状に巻いたものであるため、流体の流れが層流状
態にならず乱流となるため、本発明で意図するような用
途には使用できないという問題点を有している。
On the other hand, the fluid throttle valve described in JP-A No. 55-97569 adjusts the flow rate by expanding and contracting a coil spring provided in the flow path, but the coil spring is simply a coiled wire with a circular cross section. Since it is wound, the flow of the fluid does not become laminar but becomes turbulent, which poses a problem that it cannot be used for the purpose intended by the present invention.

又、実公昭48−5860号公報に記載されている定風
量装置は、巻き径が長さ方向で異なった全体的に円錐形
状のコイルばねを伸縮して流量を調整しているが、巻き
径が長さ方向で異なっているので、流れが層流にならな
いこことは、前記のものと同様であり、同様の問題点を
有している。
In addition, the constant air flow device described in Japanese Utility Model Publication No. 48-5860 adjusts the flow rate by expanding and contracting a generally conical coil spring whose winding diameter differs in the length direction. Since the flow is different in the length direction, the flow does not become laminar, which is the same as the above, and has the same problems.

したがって、この発明の目的は、前記のような流量調整
機構において、径方向の流路断面積を簡便に微調整でき
るとともに、流体の流れが層流となるような機構を提供
するご七である。
Therefore, it is an object of the present invention to provide a mechanism in which the radial cross-sectional area of the flow path can be easily finely adjusted and the fluid flow becomes laminar in the above-mentioned flow rate adjustment mechanism. .

問題点を解決するための手段及び作用 本発明は、前記のような流量調整機構において、(′− 流Il!jl整部材を圧部材平行啄重なり合う薄板をコ
イル状に形成したばねで構成したことを特徴とするもの
である。
Means and Function for Solving the Problems The present invention provides a flow regulating mechanism as described above, in which the flow regulating member is constituted by a coil-shaped spring formed of thin plates overlapping each other in parallel with the pressure member. It is characterized by:

前記のような薄板状のコイルばねは、径方向の波路を形
成し得るものであって、押し付け部材がねじ込まれるに
したがって、そのねじ込み量に応じて径方向の流路断面
積が減少して、互いに重なり合う薄板で案内される流れ
は層流の状態で微細に流路断面積が変更できるばかりで
なく、ばねの反発力によって、ねじの緩みを防止するよ
うに作用する。
The thin plate-shaped coil spring as described above can form a wave path in the radial direction, and as the pressing member is screwed in, the cross-sectional area of the flow path in the radial direction decreases according to the amount of screwing. The flow guided by the mutually overlapping thin plates not only allows fine changes in the cross-sectional area of the flow path in a laminar flow state, but also acts to prevent the screw from loosening due to the repulsive force of the spring.

実    施    例 以下本発明の実施例をマスフローコントローラーに適用
した場合について添付図面に基づいて説明する。なお、
実施例は例示のものであって、ごれに限定する趣旨のも
のではない、「流体」には、ガスのような気体のみなら
ず、液体も当然含まれる。
Embodiments Hereinafter, a case where embodiments of the present invention are applied to a mass flow controller will be described based on the accompanying drawings. In addition,
The embodiments are merely illustrative and are not intended to be limited to dirt. "Fluid" naturally includes not only gases such as gases but also liquids.

第1図において、符号10は1次側流路、符号20は2
次側流路であって、この1次側流路から2次側流路への
流体の流量を微細に調整しようとするものである。
In FIG.
The secondary flow path is intended to finely adjust the flow rate of fluid from the primary flow path to the secondary flow path.

符号30はマス70−コントローラーの技術分野におい
て一最にバイパスナツトといわれているもので、特許請
求の範囲における「押し付け部材」に該当し、一端部に
ねじ部31が、他の端部に柱状突出部32が形成されて
いて、中間の円筒状部分33はねじ部31よりもやや径
が小さくなっていて、中心流路34から更に径方向に孔
35が形成されている。第1図の左側から流れてきた流
体は中心流路34から孔35を通り円柱部分33の外側
の環状流路36を経て柱状突出部32の外側から2次流
路20へ流れていく(第2図も参照)。
Reference numeral 30 is what is most commonly referred to as a bypass nut in the technical field of mass 70 controllers, and corresponds to a "pressing member" in the claims, with a threaded portion 31 at one end and a columnar nut at the other end. A protruding portion 32 is formed, an intermediate cylindrical portion 33 has a slightly smaller diameter than the threaded portion 31, and a hole 35 is formed further in the radial direction from the central flow path 34. The fluid flowing from the left side of FIG. 1 passes from the center flow path 34 through the hole 35, through the annular flow path 36 on the outside of the columnar portion 33, and flows from the outside of the columnar protrusion 32 to the secondary flow path 20. (See also Figure 2).

符号40は、押し付け部材であるバイパスナツト30と
流路の途中に設けられた壁部20’との間に介在して径
方向の流路を形成する流量調整部材である。なお、1次
流路と2次流路の径の関係で壁部20′が設けられない
ときは、流路中に環状部分を設けて壁部とすればよい。
Reference numeral 40 denotes a flow rate adjustment member that is interposed between the bypass nut 30, which is a pressing member, and a wall portion 20' provided in the middle of the flow path to form a radial flow path. Note that if the wall portion 20' is not provided due to the relationship between the diameters of the primary flow path and the secondary flow path, an annular portion may be provided in the flow path to serve as the wall portion.

第2図、第3図はこの流it調整部材40を示すもので
、薄板を互いに平行に重なり合うようにコイル状に形成
した外径が−様なばね46からなり、圧縮されることに
よって、径方向の流路が微細に変更でき、すきまがゼロ
になるように圧縮されたとき流路断面積もゼロになる。
FIGS. 2 and 3 show this flow adjustment member 40, which consists of a spring 46 with a negative outer diameter formed by coiling thin plates overlapping parallel to each other. The direction of the flow path can be changed minutely, and when the gap is compressed to zero, the cross-sectional area of the flow path also becomes zero.

このばね46は、いわばコイル状の仮ばねになっている
ので、薄板が互いに平行関係になり、その間を流れる流
体は層流になり、流量測定を正確に行うことができる。
Since this spring 46 is a so-called coiled temporary spring, the thin plates are parallel to each other, and the fluid flowing between them becomes a laminar flow, allowing accurate flow rate measurement.

又、バイパスナツト30の柱状突出部32の先端部をか
しめることによってばね46を脱落しないように保持す
ることができる。
Further, by caulking the tip of the columnar projection 32 of the bypass nut 30, the spring 46 can be held so that it does not fall off.

柱状突出部32の形状は、第4図のような三角柱の形状
のみならず、第5図の変形三角柱32′第6図の四角柱
32#等各種のものがあることは当然である。
It goes without saying that the shape of the columnar projection 32 is not limited to the triangular prism shape shown in FIG. 4, but also includes various shapes such as the modified triangular prism 32 in FIG. 5 and the square prism 32# in FIG. 6.

第1図において、1次流路側にはねじ10’が切っであ
るので、外部からドライバーを挿入してバイパスナツト
30を回転前進させることによって、コイルばね46が
圧縮されるとともに、径方向の流路の断面積を微細に変
化させることができる。そして、一端設定された流路面
積は、ばねの作用により軸方向の力が常に加わっている
ためにナツトが緩むことがなく、長期に亘り一定の値を
保持することができる。
In FIG. 1, since a screw 10' is cut on the primary flow path side, by inserting a screwdriver from the outside and rotating the bypass nut 30 forward, the coil spring 46 is compressed and the flow in the radial direction is The cross-sectional area of the path can be changed minutely. The flow path area set at one end can be maintained at a constant value over a long period of time because the nut does not loosen because an axial force is always applied due to the action of the spring.

なお、第1図中符号50の部分はマスフローコントロー
ラーのセンサ一部であるが、本発明の要旨ではないので
説明は省略する。
Note that the portion designated by the reference numeral 50 in FIG. 1 is a part of the sensor of the mass flow controller, but since this is not the gist of the present invention, a description thereof will be omitted.

発明の効果 本発明は、以上に説明したように、極めて簡便な機構で
、コイルばねの平行に重なり合う薄板によって、流体の
流量を層流状態で微細に変化させることができる流量調
整機構を提供しうるものであって、マスフローコントロ
ーラー等に好適な利用分野を有するものである。
Effects of the Invention As explained above, the present invention provides a flow rate adjustment mechanism that is extremely simple and can minutely change the flow rate of fluid in a laminar flow state using parallel overlapping thin plates of a coil spring. It is suitable for use in mass flow controllers and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はマスフロ
ーコントローラーの要部断面図、第2図は本発明を適用
したバイパスナツトの斜視図、第3図は薄板状のコイル
ばねの正面図、第4図乃至第6図は柱状突出部の異なる
実施例を示す側面図である。 0.20・・・波路 0′・・・壁部 0・・・押し付け部材 0・・・流量調整部材 6・・・薄板状コイルばね 第1図 第3図 / 第4図 第5図 第6図 第2図
The drawings show embodiments of the present invention; Fig. 1 is a sectional view of essential parts of a mass flow controller, Fig. 2 is a perspective view of a bypass nut to which the invention is applied, and Fig. 3 is a front view of a thin plate-shaped coil spring. 4 to 6 are side views showing different embodiments of the columnar protrusion. 0.20...Wave path 0'...Wall portion 0...Pushing member 0...Flow rate adjustment member 6...Thin coil spring Fig. 1 Fig. 3/ Fig. 4 Fig. 5 Fig. 6 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)流路の途中に設けられた壁部と押し付け部材との
間に流量調整部材を介在せしめて径方向の流路を形成し
、前記径方向流路の断面積を変化せしめて流体の流量を
調整する流量調整機構において、前記流量調整部材が互
いに平行に重なり合う薄板をコイル状に形成したばねか
らなることを特徴とする流量調整機構。
(1) A flow rate adjustment member is interposed between a wall portion provided in the middle of the flow path and a pressing member to form a radial flow path, and the cross-sectional area of the radial flow path is changed to 1. A flow rate adjustment mechanism for adjusting a flow rate, wherein the flow rate adjustment member is comprised of a spring made of thin plates stacked parallel to each other and formed into a coil shape.
(2)前記押し付け部材がねじ部とそれより径の小さい
円筒状部分とを有することを特徴とする、特許請求の範
囲第1項記載の流量調整機構。
(2) The flow rate adjustment mechanism according to claim 1, wherein the pressing member has a threaded portion and a cylindrical portion having a smaller diameter than the threaded portion.
(3)前記押し付け部材が前記ねじ部の反対側に柱状突
出部を更に有することを特徴とする特許請求の範囲第2
項記載の流量調整機構。
(3) Claim 2, characterized in that the pressing member further has a columnar protrusion on the opposite side of the threaded part.
Flow rate adjustment mechanism described in section.
JP25876089A 1989-10-05 1989-10-05 Flow rate adjusting mechanism Granted JPH02153409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25876089A JPH02153409A (en) 1989-10-05 1989-10-05 Flow rate adjusting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25876089A JPH02153409A (en) 1989-10-05 1989-10-05 Flow rate adjusting mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23763684A Division JPS61116195A (en) 1984-11-13 1984-11-13 Flow regulating mechanism

Publications (2)

Publication Number Publication Date
JPH02153409A true JPH02153409A (en) 1990-06-13
JPH0531164B2 JPH0531164B2 (en) 1993-05-11

Family

ID=17324708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25876089A Granted JPH02153409A (en) 1989-10-05 1989-10-05 Flow rate adjusting mechanism

Country Status (1)

Country Link
JP (1) JPH02153409A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4412547Y1 (en) * 1964-04-24 1969-05-24
JPS53140637A (en) * 1977-05-13 1978-12-07 Cosmo Instr Co Ltd Valve
JPS5597569A (en) * 1979-01-18 1980-07-24 Nec Corp Fluid throttle valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4412547Y1 (en) * 1964-04-24 1969-05-24
JPS53140637A (en) * 1977-05-13 1978-12-07 Cosmo Instr Co Ltd Valve
JPS5597569A (en) * 1979-01-18 1980-07-24 Nec Corp Fluid throttle valve

Also Published As

Publication number Publication date
JPH0531164B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
EP0428364A1 (en) Flowmeter
US4436111A (en) Hydraulic fuse valve
US4524616A (en) Adjustable laminar flow bypass
JPH0618306A (en) Flowmeter and its flow splitter device
CN109891353A (en) Variable limitation for flow measurement
JP2004522904A (en) Solenoid valve
US20090199633A1 (en) Flow sensor and mass flow controller using the same
US3763884A (en) Constant volume flow device
US3403556A (en) Flow measuring device
US4306585A (en) Constant flow valve
JPH0742869A (en) Valve device
US5303738A (en) Control valve
JPH02153409A (en) Flow rate adjusting mechanism
CA1205652A (en) Fluid flow transducer
EP0974815A1 (en) Clamp-on ultrasonic sensor arrangement
US20080271794A1 (en) Automated mechanical constant flow valve for air ducts
US3294360A (en) Valve with resilient disc
JPS61116195A (en) Flow regulating mechanism
JPH0512647B2 (en)
Welanetz A suction device using air under pressure
US4024889A (en) Dynamic control valve for modifying fluid flow
JP3039581B2 (en) Check valve
JPS6042333Y2 (en) variable orifice
US20080271791A1 (en) Automated mechanical constant flow valve for air ducts
JPS6323071A (en) Fluid control device