JPH02152B2 - - Google Patents

Info

Publication number
JPH02152B2
JPH02152B2 JP10383984A JP10383984A JPH02152B2 JP H02152 B2 JPH02152 B2 JP H02152B2 JP 10383984 A JP10383984 A JP 10383984A JP 10383984 A JP10383984 A JP 10383984A JP H02152 B2 JPH02152 B2 JP H02152B2
Authority
JP
Japan
Prior art keywords
flux
temperature
soldered
soldering
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10383984A
Other languages
Japanese (ja)
Other versions
JPS60247470A (en
Inventor
Yoshihiro Myano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Kaken Corp
Original Assignee
Tamura Kaken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Kaken Corp filed Critical Tamura Kaken Corp
Priority to JP10383984A priority Critical patent/JPS60247470A/en
Publication of JPS60247470A publication Critical patent/JPS60247470A/en
Publication of JPH02152B2 publication Critical patent/JPH02152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Landscapes

  • Coating Apparatus (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子機器の自動はんだ付け工程等に
おいて用いられるフラツクス塗布方法及びその装
置にかかりりフラツクスとプリント基板等の被は
んだ付け体との温度差を調整する構成に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a flux application method and apparatus used in automatic soldering processes for electronic equipment, and the temperature between flux and an object to be soldered such as a printed circuit board. Concerning a configuration for adjusting the difference.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の自動はんだ付け装置に使用されるフラツ
クス塗布方法を第2図、第3図について説明す
る。第2図に示すようにフラツクスを収容したフ
ラツクス槽1には上下を開口したフラツクス案内
筒2が突設され、このフラツクス案内筒2に多孔
質の磁器等で作られた発泡筒3が設けられ、この
発泡筒3内に空気を吹込んでフラツクス案内筒2
内でフラツクスを発泡させる。そして発泡筒3よ
り生まれた小さな気泡は、下から上昇する過程で
大きくなりながら上昇し、案内筒2の上端開口部
より盛上つた状態となり、最上端で気泡が割れる
ようになつている。そしてンベア等で搬送される
プリント基板等の被はんだ付け体4が案内筒2の
上方を通過する際、被はんだ付け体4がフラツク
スの泡に接し、泡が割れて被はんだ付け体4にフ
ラツクスが塗布されるようになつている。そして
この場合一般にフラツクスは比重により濃度管理
が行われている。また時には、フラツクスの温度
を一定に保つことも一部で行われている。何故な
らばフラツクスの比重や温度の変化は、はんだ付
け不良の発生に大きな影響を与えるからである。
例えばプリント基板を自動はんだ付け装置により
はんだ付けする場合、フラツクスの比重やフラツ
クスの温度が大きく変化するとはんだブリツジや
ツララ、過剰はんだ等のはんだ付け不良の発生率
が大きく変化することはよく知られている。
A flux application method used in a conventional automatic soldering device will be explained with reference to FIGS. 2 and 3. As shown in FIG. 2, a flux guide tube 2 with an open top and bottom is protruding from a flux tank 1 containing flux, and a foam tube 3 made of porous porcelain or the like is provided in this flux guide tube 2. , air is blown into this foam tube 3 to create a flux guide tube 2.
Foam the flux inside. The small bubbles generated from the foam tube 3 rise while becoming larger in the process of rising from the bottom, and rise from the upper end opening of the guide tube 2, so that the bubbles burst at the uppermost end. When the object 4 to be soldered such as a printed circuit board conveyed by a conveyor or the like passes above the guide tube 2, the object 4 to be soldered comes into contact with the flux bubbles, and the bubbles break and the object 4 to be soldered is exposed to flux. is being applied. In this case, concentration of flux is generally controlled by specific gravity. In some cases, the temperature of the flux is also kept constant. This is because changes in flux specific gravity and temperature have a great effect on the occurrence of soldering defects.
For example, when soldering printed circuit boards using automatic soldering equipment, it is well known that if the specific gravity of the flux or the temperature of the flux changes greatly, the incidence of soldering defects such as solder bridging, icicles, and excessive soldering will change greatly. There is.

ところが上述のようにフラツクスの比重や温度
を一定に管理しても最近のようにプリント基板の
パターン密度や電子部品の実装密度が高くなつて
いるプリント基板では、いぜんとしてこれらの不
良が発生しその修正に多くの時間を要し、コスト
を引上げる要因となつている。そしてその原因
は、はんだ付けと密接な開係にあるフラツクスの
塗布にあり、フラツクスの塗布状態が不完全であ
るとはんだ付け不良が発生することが明らかとな
り、さらにフラツクスの塗布不完全は、フラツク
スの温度とプリント基板の温度との温度差が大き
な影響を及ぼしていることが判つた。例えばフラ
ツクスの温度が低く、被はんだ付け体4の温度が
高い場合、発泡したフラツクスが被はんだ付け体
4に達しないうちに被はんだ付け体4の熱で破泡
してしまい、第3図に示すように泡が被はんだ付
け体4に達しないうちに破泡してフラツクスが被
はんだ付け体4に均一に塗布されないことにな
る。この現象は、特にフラツクスの液温に対し被
はんだ付け体4の温度が+5℃〜−10℃の範囲を
こえた時に発生することが多い。また、フラツク
スの温度が−10℃〜25℃の範囲外にあり、温度が
低すぎたり高すぎたりした場合には、フラツクス
の発泡体が大きく変化し、これに伴ないフラツク
スの塗布状態が変化し、フラツクスの塗布状態が
不完全になることも明らかになつた。
However, as mentioned above, even if the specific gravity and temperature of the flux are controlled at a constant level, these defects will still occur in printed circuit boards, where the density of printed circuit board patterns and the mounting density of electronic components have increased in recent years. It takes a lot of time to make corrections, which is a factor that increases costs. The cause of this is the application of flux, which is closely related to soldering, and it has become clear that incomplete flux application causes soldering defects. It was found that the temperature difference between the temperature of the board and the temperature of the printed circuit board has a large effect. For example, if the temperature of the flux is low and the temperature of the object 4 to be soldered is high, the bubbles will burst due to the heat of the object 4 before the foamed flux reaches the object 4, as shown in Fig. 3. As shown, the bubbles break before they reach the object 4 to be soldered, and the flux is not evenly applied to the object 4 to be soldered. This phenomenon often occurs particularly when the temperature of the object to be soldered 4 exceeds the range of +5 DEG C. to -10 DEG C. relative to the liquid temperature of the flux. Additionally, if the temperature of the flux is outside the range of -10℃ to 25℃ and the temperature is too low or too high, the foam of the flux will change significantly, and the state of the flux application will change accordingly. However, it has also become clear that the flux coating becomes incomplete.

〔発明の目的〕[Purpose of the invention]

本発明は上述の如きフラツクス塗布不完全の原
因の解明に基き、フラツクス温度を一定範囲に保
つて発泡性を良くするとともに、フラツクスの温
度と被はんだ付け体の温度差を一定範囲内に保つ
ことにより生成した泡の温度差による破泡を防止
ししようとするものである。
The present invention is based on elucidation of the cause of incomplete flux application as described above, and aims to maintain the flux temperature within a certain range to improve foaming properties, and to maintain the difference between the temperature of the flux and the temperature of the object to be soldered within a certain range. This is intended to prevent bubbles generated from breaking due to temperature differences.

〔発明の概要〕[Summary of the invention]

上述の目的のためになされた本発明は、フラツ
クス槽に収容したフラツクスの温度を一定温度に
保ち、このフラツクスの温度と、このフラツクス
が塗布される被はんだ付け体の温度を夫々検出
し、前記フラツクスと被はんだ付け体の少くとも
何れか一方の温度を調節してフラツクスと被はん
だ付け体の温度差が一定範囲内になるように制御
しフラツクスを確実に発泡させるとともに発泡し
たフラツクスが被はんだ付け体に到達前に破泡し
ないようにしたものである。
The present invention, which has been made for the above purpose, maintains the temperature of the flux stored in a flux bath at a constant temperature, detects the temperature of this flux and the temperature of the object to be soldered to which this flux is applied, and By adjusting the temperature of at least one of the flux and the object to be soldered so that the temperature difference between the flux and the object to be soldered is within a certain range, the flux is reliably foamed and the foamed flux is connected to the object to be soldered. This prevents the bubbles from breaking before they reach the attachment body.

さらに上述の方法を行うための装置としては、
フラツクスを収容しこのフラツクスの温度検出器
を備えたフラツクス槽と、温度測定装置を備え前
記フラツクス槽で発泡した発泡フラツクスが塗布
される被はんだ付け体と、前記温度検出器と温度
測定装置に接続され、前記フラツクスと被はんだ
付け体との温度差が設定値を越えたとき前記フラ
ツクスまたは被はんだ付け体の温度調節装置に信
号を送る温度制御装置とよりなるものである。
Furthermore, as a device for carrying out the above method,
a flux tank containing flux and equipped with a temperature detector for the flux; a soldering object equipped with a temperature measuring device and to which the foamed flux foamed in the flux tank is applied; and connected to the temperature detector and the temperature measuring device. and a temperature control device that sends a signal to a temperature control device for the flux or the soldering object when a temperature difference between the flux and the object to be soldered exceeds a set value.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図について説明する。 An embodiment of the present invention will be described with reference to FIG.

1はステンレス製フラツクス槽で上面が開口さ
れ、内部にフラツクスが収容されている。このフ
ラツクス槽1内のほぼ中央には、上下を開口した
発泡案内筒2が設けられ、この発泡案内筒2の上
端はフラツクス1よりも上方に突出し下端はフラ
ツクスが流入できるように開口され、内部には磁
器製多孔質の発泡筒3が挿入されこの発泡筒3内
には、コンプレツサ(図示せず)から圧縮空気が
送られ発泡筒3の磁器の微細孔からの空気がフラ
ツクスを泡状にし周囲に設けた発泡案内筒2から
泡状のフラツクスを上方に盛り上げる。さらにフ
ラツクス槽1内には温度調整装置5が挿入されて
いる。温度調整装置5は一連のパイプ状に形成さ
れ内部に冷水や温水等の熱媒体が流通されフラツ
クスの温度を10℃〜25℃の範囲に保持している。
フラツクスは有機溶剤が使用されているため温度
調節装置5としては火災の危険性のある電熱ヒー
タは用いない。またフラツクス中には熱電対を用
いた温度検出器6が挿入されている。
Reference numeral 1 is a stainless steel flux tank with an open top and a flux stored inside. A foaming guide tube 2 with an open top and bottom is provided approximately in the center of the flux tank 1. The upper end of the foaming guide tube 2 protrudes above the flux 1, and the lower end is open to allow flux to flow into the interior. A porous porcelain foaming tube 3 is inserted into the foaming tube 3. Compressed air is sent from a compressor (not shown) into the foaming tube 3, and the air from the fine pores of the porcelain in the foaming tube 3 turns the flux into foam. Foamy flux is heaped upward from a foaming guide cylinder 2 provided around it. Furthermore, a temperature adjustment device 5 is inserted into the flux tank 1. The temperature regulating device 5 is formed in the shape of a series of pipes, and a heat medium such as cold water or hot water is circulated inside to maintain the temperature of the flux within a range of 10°C to 25°C.
Since an organic solvent is used for the flux, an electric heater that poses a fire risk is not used as the temperature control device 5. Further, a temperature detector 6 using a thermocouple is inserted into the flux.

4は被はんだ付け体であり、例えば電子部品等
が搭載されたプリント基板であり、コンベア等で
フラツクス槽1の上方を通過するように構成され
ている。この被はんだ付け体4には、熱電対を用
いた温度測定装置7が設けられている。そして前
記フラツクスの温度検出器6と被はんだ付け体4
の温度測定装置7は温度制御装置8に接続され、
この温度制御装置8は温度検出器6と温度測定装
置7で検知された温度を比較して信号を出し、フ
ラツクス温度と被はんだ付け体4の温度差が少く
ともフラツクスの温度に対し被はんだ付け体4の
温度が+5℃〜−10℃の範囲になるように、フラ
ツクスの温度調節装置5内を流れる熱媒体の温度
または流量或は、被はんだ付け体4を収容した温
度調整室9の雰囲気温度を自動的にコントロール
する。例えば、フラツクスの塗布作業中に外気温
度の変化により被はんだ付け体4の温度が変化し
た場合は、これが直ちに温度測定装置7で検出さ
れ、温度測定装置8が作動してフラツクスの温度
を適正に変化させる。
Reference numeral 4 designates an object to be soldered, such as a printed circuit board on which electronic components and the like are mounted, and is configured to pass above the flux tank 1 on a conveyor or the like. This soldering object 4 is provided with a temperature measuring device 7 using a thermocouple. The flux temperature detector 6 and the soldering object 4
The temperature measurement device 7 is connected to the temperature control device 8,
This temperature control device 8 compares the temperatures detected by the temperature detector 6 and the temperature measuring device 7 and outputs a signal, and the temperature difference between the flux temperature and the soldered object 4 is at least as high as the temperature of the soldered object. The temperature or flow rate of the heat medium flowing through the flux temperature adjustment device 5, or the atmosphere of the temperature adjustment chamber 9 housing the soldering object 4, so that the temperature of the soldering object 4 is in the range of +5°C to -10°C. Automatically control temperature. For example, if the temperature of the object to be soldered 4 changes due to a change in the outside air temperature during flux application, this is immediately detected by the temperature measuring device 7, and the temperature measuring device 8 is activated to adjust the temperature of the flux appropriately. change.

以上のようにして温度が10℃〜25℃の範囲に適
正に保たれたかつ被はんだ付け体4の温度に対し
−5℃〜+10℃の範囲に制御されたフラツクス
は、フラツクス槽1上を通過する被はんだ付け体
4のはんだ付け面に発泡案内筒2より発泡したフ
ラツクスを軽く接触させてフラツクスが塗布され
る。
As described above, the flux whose temperature is properly maintained in the range of 10°C to 25°C and controlled to be within the range of -5°C to +10°C with respect to the temperature of the soldered object 4 flows over the flux tank 1. The flux foamed from the foam guide tube 2 is brought into light contact with the soldering surface of the soldering object 4 passing through, and the flux is applied.

フラツクスの温度が10℃以下になるとフラツク
スの粘度が高くなつて発泡し難くなり、また、25
℃以上になると発泡しても破泡し易くなり発泡状
態を保つことが困難になる。
When the temperature of the flux falls below 10℃, the viscosity of the flux increases and foaming becomes difficult.
If the temperature exceeds .degree. C., even if foamed, the foam will easily break and it will be difficult to maintain the foamed state.

フラツクスの温度が被はんだ付け体4の温度よ
りも+10℃以上になると発泡したフラツクスが被
はんだ付け体4に塗布にされる以前に破泡してし
まいフラツクスが被はんだ付け体4に均一に塗布
されなくなる。フラツクスの温度が被はんだ付け
体4の温度よりも−5℃以下になると、発泡した
フラツクスが被はんだ付け体4に塗布される以前
に破泡してしまいフラツクスが被はんだ付け体4
に均一に塗布されなくなる。
If the temperature of the flux exceeds the temperature of the object 4 to be soldered by 10°C or more, the foamed flux will break before being applied to the object 4 to be soldered, and the flux will be uniformly applied to the object 4 to be soldered. It will no longer be done. When the temperature of the flux becomes -5°C or lower than the temperature of the soldered object 4, the bubbles break before the foamed flux is applied to the soldered object 4, and the flux is transferred to the soldered object 4.
will not be applied evenly.

尚一例として被はんだ付け体4の温度に対して
フラツクスの温度を変化させるようにしたが、フ
ラツクスの温度を一定にして被はんだ付け体4の
温度を調節することもできる。例えば被はんだ付
け体4を温風または冷風によつて温度が調整され
た所定温度雰囲気中を通過させる等の手段を用い
ることができる。さらに被はんだ付け体4の温度
測定に代えて外気温度の測定により制御すること
もできる。
As an example, the temperature of the flux is changed with respect to the temperature of the object 4 to be soldered, but the temperature of the object 4 to be soldered can also be adjusted by keeping the temperature of the flux constant. For example, it is possible to use means such as passing the object 4 to be soldered through an atmosphere of a predetermined temperature whose temperature is controlled by hot air or cold air. Furthermore, instead of measuring the temperature of the object 4 to be soldered, control can also be performed by measuring the outside air temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フラツクス槽に収容したフラ
ツクスの温度を一定温度範囲に保ち、このフラツ
クス温度と、このフラツクスが塗布される被はん
だ付け体の温度を検出し、前記フラツクスと被は
んだ付け体の少くとも何れか一方の温度を調節し
てフラツクスと被はんだ付け体の温度差が一定範
囲内になるように制御するため、フラツクスの温
度を一定温度範囲にすることによりフラツクスの
温度を適正にし発泡し易い状態に保つとともにフ
ラツクスと被はんだ付け体の温度差を一定範囲に
してフラツクスの泡がはんだ付け体に接近したと
きに破泡しないようにし、フラツクスを確実にむ
らなく被はんだ付け体に塗布し、フラツクス塗布
の不完全によるはんだ付け不良を少くすることが
できる。
According to the present invention, the temperature of the flux stored in a flux tank is maintained within a constant temperature range, the temperature of this flux and the temperature of the object to be soldered to which this flux is applied are detected, and the temperature of the flux and the object to be soldered is detected. In order to control at least one of the temperatures so that the temperature difference between the flux and the object to be soldered is within a certain range, the temperature of the flux is kept within a certain range, and the temperature of the flux is adjusted to an appropriate temperature and foaming is performed. At the same time, the temperature difference between the flux and the object to be soldered is kept within a certain range to prevent bubbles from bursting when the flux bubbles approach the object to be soldered, and the flux is reliably and evenly applied to the object to be soldered. However, soldering defects due to incomplete flux application can be reduced.

また装置としては、フラツクスを収容しこのフ
ラツクスの温度検出器を備えたフラツクス槽と、
温度測定装置を備え前記フラツクス槽で発泡した
発泡フラツクスが塗布される被はんだ付け体と、
前記温度検出器と温度測定装置に接続され前記フ
ラツクスと被はんだ付け体との温度差が設定値を
越えたとき前記フラツクスまたは被はんだ付け体
の温度調節装置に自動温度調節信号を送る温度制
御装置よりなり、従来のフラツクス槽やフラツク
ス温度調節装置及びフラツクス比重調節装置の他
に、フラツクス及びはんだ付け体の温度を検出す
る装置と温度制御装置を追加するだけの簡単な装
置で確実に自動制御させることができる。
The device also includes a flux tank containing flux and equipped with a temperature sensor for the flux;
a body to be soldered which is equipped with a temperature measuring device and is coated with foamed flux foamed in the flux tank;
a temperature control device that is connected to the temperature detector and the temperature measurement device and sends an automatic temperature control signal to a temperature control device for the flux or the soldering object when a temperature difference between the flux and the object to be soldered exceeds a set value; In addition to the conventional flux tank, flux temperature control device, and flux specific gravity control device, a device for detecting the temperature of the flux and the soldered body and a temperature control device are simply added to ensure automatic control. be able to.

〔発明の実験例〕[Experimental example of invention]

実験例 1 上述の実施例の装置を用い、フラツクス温度を
20℃、被はんだ付け体としてのテレビ基板の温度
を20℃とし、実施例の方法によりフラツクスを塗
布した。
Experimental Example 1 Using the apparatus of the above example, the flux temperature was
The temperature of the television board as the object to be soldered was set at 20°C, and flux was applied by the method of the example.

比較例 フラツクス温度20℃、テレビ基板温度30℃とし
温度制御を行わずにフラツクスを塗布した。
Comparative Example Flux was applied at a flux temperature of 20°C and a TV board temperature of 30°C without temperature control.

結 果 実験例1によるものはフラツクスが均一に塗布
され、比較例はフラツクスが均一に塗布されず8
時間作業の結果、はんだ付け体不良数は実験例1
が比較例の1/10であつた。
Results: The flux was applied uniformly in Experimental Example 1, and the flux was not applied uniformly in the Comparative Example.
As a result of time work, the number of defective soldered parts is experimental example 1
was 1/10 of that of the comparative example.

実験例 2 被はんだ付け体としてのチツプ部品搭載基板を
用い実験例1と同様の実験を行つた結果プリント
基板及び搭載チツプ部品に対しフラツクスが均一
に塗布されるため、はんだ不濡れ(はんだ不乗
り)というフラツクスの塗布状態の不均一に起因
する不良品の発生が大巾に減少した。
Experimental Example 2 An experiment similar to Experimental Example 1 was conducted using a board on which chip components were mounted as an object to be soldered. As a result, the flux was uniformly applied to the printed circuit board and the mounted chip components, resulting in no solder wetting. ) The occurrence of defective products due to uneven flux application has been greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の説明
図、第2図、第3図は従来例の説明である。 1……フラツクス槽、4……被はんだ付け体、
5……温度調節装置、6……温度検出器、7……
温度測定装置、8……温度制御装置。
FIG. 1 is an explanatory diagram of an apparatus showing one embodiment of the present invention, and FIGS. 2 and 3 are explanations of a conventional example. 1...Flux tank, 4...Soldering object,
5...Temperature adjustment device, 6...Temperature detector, 7...
Temperature measuring device, 8...Temperature control device.

Claims (1)

【特許請求の範囲】 1 フラツクス槽に収容したフラツクスの温度を
一定温度範囲に保ち、このフラツクスの温度と、
このフラツクスが塗布される被はんだ付け体の温
度を夫々検出し、前記フラツクスと被はんだ付け
体の少くとも何れか一方の温度を調節してフラツ
クスと被はんだ付け体の温度差が一定範囲内にな
るように制御することを特徴とするフラツクス塗
布方法。 2 フラツクスの温度範囲は10℃〜25℃であり、
フラツクスの温度に対し被はんだ付け体の温度差
が+5℃〜−10℃の範囲であることを特徴とする
特許請求の範囲第1項に記載のフラツクス塗布方
法。 3 フラツクスを収容しこのフラツクスの温度検
出器を備えたフラツクス槽と、温度測定装置を備
え前記フラツクス槽で発泡した発泡フラツクスが
塗布される被はんだ付け体と、前記温度検出器と
温度測定装置に接続され前記フラツクスと被はん
だ付け体との温度差が設定値を越えたとき前記フ
ラツクスまたは被はんだ付け体の温度調節装置に
信号を送る温度制御装置とを具備したことを特徴
とするフラツクス塗布装置。
[Claims] 1. The temperature of the flux stored in the flux tank is maintained within a constant temperature range, and the temperature of this flux is
The temperature of each object to be soldered to which this flux is applied is detected, and the temperature of at least one of the flux and the object to be soldered is adjusted so that the temperature difference between the flux and the object to be soldered is within a certain range. A flux application method characterized by controlling the flux so that 2 The temperature range of flux is 10℃~25℃,
2. The flux application method according to claim 1, wherein the temperature difference between the soldered object and the temperature of the flux is in the range of +5°C to -10°C. 3. A flux tank containing flux and equipped with a temperature detector for the flux, a soldering object equipped with a temperature measuring device and to which the foamed flux foamed in the flux tank is applied, and the temperature detector and the temperature measuring device A flux application device, characterized in that it is equipped with a temperature control device connected to the flux and a temperature control device for sending a signal to a temperature control device for the flux or the object to be soldered when a temperature difference between the flux and the object to be soldered exceeds a set value. .
JP10383984A 1984-05-23 1984-05-23 Method and device for spreading flux Granted JPS60247470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10383984A JPS60247470A (en) 1984-05-23 1984-05-23 Method and device for spreading flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10383984A JPS60247470A (en) 1984-05-23 1984-05-23 Method and device for spreading flux

Publications (2)

Publication Number Publication Date
JPS60247470A JPS60247470A (en) 1985-12-07
JPH02152B2 true JPH02152B2 (en) 1990-01-05

Family

ID=14364590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10383984A Granted JPS60247470A (en) 1984-05-23 1984-05-23 Method and device for spreading flux

Country Status (1)

Country Link
JP (1) JPS60247470A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636164U (en) * 1986-07-01 1988-01-16

Also Published As

Publication number Publication date
JPS60247470A (en) 1985-12-07

Similar Documents

Publication Publication Date Title
JP7470100B2 (en) Gas control system and method for reflow soldering furnace
US4779790A (en) Job oriented method and apparatus utilizing molten solder for procedures such as soldering and desoldering
US4792078A (en) Device for controlling concentration and temperature of flux
GB2042737A (en) Detecting the presence of water in oil
KR20040111509A (en) Method and device for conditioning semiconductor wafers and/or hybrids
US4404809A (en) Liquid nitrogen level controller
JP2001252762A (en) Method and device for gas injection system soldering
US5356066A (en) Automatic soldering apparatus
US20110139855A1 (en) Residual oxygen measurement and control in wave soldering process
JPH02152B2 (en)
EP0474482A1 (en) Process of wet etching of a silicon nitride layer
CA2085820A1 (en) Method of soldering using a special atmospheric gas
JPH03101296A (en) Structure of reflow furnace for soldering printed circuit board
JPH10226816A (en) Method for adjusting composition of atmosphere in enclosure and plant therefor
JPS6076275A (en) Control device for flux temperature
JPH07159307A (en) Measuring apparatus for oxygen concentration in inert gas atmosphere reflow furnace
JP2001320163A (en) Reflow device and its board heating method
JPS59209474A (en) Automatic soldering device
JPH0394975A (en) Automatic soldering device
JPH10193166A (en) Soldering method and device
JP2683713B2 (en) Electronic component soldering method and apparatus
JPH02139990A (en) Method and apparatus for soldering
KR910008731Y1 (en) Soldering solution hydrostatic regulator
JP3064712B2 (en) Electroless plating equipment
JPH06312176A (en) Thermostatic water tank and use thereof