JPH02152973A - Production of dibenzofurans - Google Patents

Production of dibenzofurans

Info

Publication number
JPH02152973A
JPH02152973A JP30599988A JP30599988A JPH02152973A JP H02152973 A JPH02152973 A JP H02152973A JP 30599988 A JP30599988 A JP 30599988A JP 30599988 A JP30599988 A JP 30599988A JP H02152973 A JPH02152973 A JP H02152973A
Authority
JP
Japan
Prior art keywords
activated carbon
raw material
dibenzofurans
cyclohexenylcyclohexanone
cyclohexenylcyclohexanones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30599988A
Other languages
Japanese (ja)
Other versions
JP2639576B2 (en
Inventor
Masahiko Furuya
方彦 古谷
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP63305999A priority Critical patent/JP2639576B2/en
Publication of JPH02152973A publication Critical patent/JPH02152973A/en
Application granted granted Critical
Publication of JP2639576B2 publication Critical patent/JP2639576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject compound in high yield without using expensive raw material and oxidizing agent by contacting 2-cyclohexenylcyclohexanones with activated carbon containing a specific metal under temperature and time conditions to convert the main component in the product into a dehydrogenated and cyclized substance. CONSTITUTION:The objective compound is produced by contacting 2- cyclohexenylcyclohexanones with activated carbon containing a group VIII metal in the presence of hydrogen under temperature and time conditions sufficient to form a dehydrogenation product composed mainly of dehydrogenated and cyclized substance (preferably at 350-550 deg.C, especially at 400-500 deg.C) at a raw material feeding rate of 0.05-2 (especially 0.1-1) in terms of volume time space velocity. The group VIII metal component is e.g. iron. nickel or cobalt and the content of the metal component is preferably 0.05-20wt.%, especially 0.1-10wt.%. The specific surface area of the activated carbon is preferably about 300-1,500m<2>/g.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ジベンゾフラン類の製法に関し、さらに詳し
くは、2−シクロヘキセニルシクロヘキサノン類を生成
物中の主成分が脱水素環化生成物となるに充分な温度お
よび接触時間をもって、8族金属成分含有の活性炭と接
触させることを特徴とするジベンゾフラン類の製法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing dibenzofurans, and more particularly, the present invention relates to a method for producing dibenzofurans, and more particularly, a method for producing dibenzofurans, in which the main component of the product is a dehydrocyclized product of 2-cyclohexenylcyclohexanone. The present invention relates to a method for producing dibenzofurans, which comprises bringing them into contact with activated carbon containing a Group 8 metal component at a temperature and for a contact time sufficient for the production of dibenzofurans.

(従来の技術) ジベンゾフランの合成法としては、古くからフェノール
の熱縮合あるいは接触縮合による方法、ビフェニルエー
テルの接触脱水素環化による方法、2−ヒドロキシビフ
ェニルの脱水素環化による方法、2−シクロへキセニル
シクロヘキサノンの酸化脱水素による方法(特開昭51
−75058号公報)等が知られている。
(Prior art) Methods for synthesizing dibenzofuran include a method by thermal condensation or catalytic condensation of phenol, a method by catalytic dehydrocyclization of biphenyl ether, a method by dehydrocyclization of 2-hydroxybiphenyl, and a method by cyclodehydrogenation of 2-hydroxybiphenyl. Method by oxidative dehydrogenation of hexenylcyclohexanone
-75058) and the like are known.

(発明が解決しようとする課題) しかしながら、公知のフェノールから合成する方法、ジ
フェニルエーテルから合成する方法は、いずれも選択率
が低く、低収率である。2−ヒドロキシビフェニルより
合成する方法は比較的高い収率であるが、高価な原料を
必要とする等問題を有している。また、公知の2−シク
ロヘキセニルシクロヘキサノンより酸化的脱水素により
ベンゾフランを合成する方法は、酸素を反応剤として用
いるため原料の燃焼ロスがさけられない等、公知方法は
いずれも工業的製法としては満足できるレベルにない。
(Problems to be Solved by the Invention) However, the known methods of synthesizing from phenol and methods of synthesizing from diphenyl ether have low selectivity and low yield. Although the method of synthesizing from 2-hydroxybiphenyl has a relatively high yield, it has problems such as requiring expensive raw materials. In addition, the known method of synthesizing benzofuran from 2-cyclohexenylcyclohexanone by oxidative dehydrogenation uses oxygen as a reactant, so combustion loss of raw materials cannot be avoided, and all of the known methods are satisfactory as industrial production methods. I'm not at the level where I can do it.

(課題を解決するための手段) 本発明者らは、比較的容易に得られる原料を用い、高選
択率でジベンゾフラン類を製造する方法について鋭意検
討を加えた結果、2−シクロへキシルシクロヘキサノー
ルを脱水素環化生成物が主成分となるに充分な温度およ
び接触時間をもって、8族金属成分含有の活性炭と接触
させることにより、ジベンゾフラン類が高い選択率で製
造できることを見出したものである。
(Means for Solving the Problems) As a result of extensive research into a method for producing dibenzofurans with high selectivity using relatively easily obtained raw materials, the present inventors found that 2-cyclohexylcyclohexanol It has been discovered that dibenzofurans can be produced with high selectivity by contacting activated carbon containing a Group 8 metal component at a temperature and for a contact time sufficient to make the dehydrocyclization product the main component.

本発明に用いる原料である2−シクロへキシルシクロヘ
キサノールは、シクロヘキサノン類の酸触媒による脱水
縮合等の方法で容易に得ることができる。2−シクロヘ
キセニルシクロヘキサノン類としては、2−シクロへキ
セニルシクロヘキサノンおよびシクロへキセニル置換基
のβ位が少なくとも未置換のアルキル置換誘導体等が挙
げられる。例えば、2−(p−メチルシクロへキセニル
)4−メチルシクロヘキサノン等を挙げることができる
。さらに、上記原料の部分脱水素/水添生成物も同様に
、本発明使用の原料として用いることができる。これら
の具体例としては、2−シクロへキシルヘキサノン、2
−シクロへキシルシクロヘキサノール、2−シクロへキ
サジェニルシクロヘキサノン等を挙げることができる。
2-cyclohexylcyclohexanol, which is a raw material used in the present invention, can be easily obtained by a method such as dehydration condensation of cyclohexanones using an acid catalyst. Examples of the 2-cyclohexenylcyclohexanones include 2-cyclohexenylcyclohexanone and alkyl-substituted derivatives in which at least the β-position of the cyclohexenyl substituent is unsubstituted. For example, 2-(p-methylcyclohexenyl)4-methylcyclohexanone and the like can be mentioned. Additionally, partial dehydrogenation/hydrogenation products of the above raw materials can likewise be used as raw materials for use in the present invention. Specific examples of these include 2-cyclohexylhexanone, 2-cyclohexylhexanone,
-cyclohexylcyclohexanol, 2-cyclohexagenylcyclohexanone, and the like.

本発明に用いる8族金属成分含有の活性炭触媒に用いる
活性炭は、原料による制限はなく、ヤシ殻系、石炭系、
石油ピッチ系、木粉系等いずれのものでもよく、これら
活性炭の比表面積としては、通常300ポ/g〜150
0ボ/g程度のものが好ましい。活性炭含有の8族金属
成分としては、鉄、ニッケル、コバルト、白金、パラジ
ウム、ルテニウム、ロジウム、イリジウム等が挙げられ
る。
The activated carbon used in the activated carbon catalyst containing Group 8 metal components used in the present invention is not limited by the raw material, and is coconut shell-based, coal-based,
It may be petroleum pitch-based, wood flour-based, etc., and the specific surface area of these activated carbons is usually 300 po/g to 150 po/g.
Preferably, it has a value of about 0 bo/g. Examples of the Group 8 metal component containing activated carbon include iron, nickel, cobalt, platinum, palladium, ruthenium, rhodium, and iridium.

特に好ましいのはニッケル、白金、パラジウムである。Particularly preferred are nickel, platinum, and palladium.

これら金属成分の含有量としては0.05〜20重量%
、好ましくは0.1〜10重量%である。金属成分の担
持方法としては、公知の含浸法等いずれの方法で行って
もよい。さらに、これら金属成分含有活性炭触媒は、反
応前に通常水素気流中で還元処理して用いられる。
The content of these metal components is 0.05 to 20% by weight
, preferably 0.1 to 10% by weight. The metal component may be supported by any known method such as impregnation. Furthermore, these metal component-containing activated carbon catalysts are usually subjected to reduction treatment in a hydrogen stream before use.

本発明における反応条件としては350〜550°C1
好ましくは400〜500℃の温度、原料供給速度とし
て0.05〜2の容量時間空間速度(LH3V)、好ま
しくは0.1〜1が用いられる。特に好ましいのは、第
1図に示すABCDで囲まれた範囲である。さらに、反
応系に窒素等の不活性ガスあるいは水素を希釈剤として
存在させてもよい。特に水素の存在は、触媒の劣化抑制
効果もあり好ましい。水素を供給する際の量としては、
水素/原料のモル比として1〜10が適当である。
The reaction conditions in the present invention are 350 to 550°C1
Preferably, a temperature of 400 to 500 DEG C. and a raw material feed rate of 0.05 to 2, preferably 0.1 to 1, are used. Particularly preferred is the range surrounded by ABCD shown in FIG. Furthermore, an inert gas such as nitrogen or hydrogen may be present as a diluent in the reaction system. In particular, the presence of hydrogen is preferable since it also has the effect of suppressing deterioration of the catalyst. The amount of hydrogen to be supplied is as follows:
A suitable hydrogen/raw material molar ratio is 1 to 10.

反応温度が低くすぎたり、接触時間が短かすぎると、ジ
ベンゾフランの収率、選択率が劣り、反応温度が高すぎ
たり、接触時間が長すぎると、原料の分解生成物が増大
し、ジベンゾフランの選択率が劣る。
If the reaction temperature is too low or the contact time is too short, the yield and selectivity of dibenzofuran will be poor; if the reaction temperature is too high or the contact time is too long, the decomposition products of the raw material will increase, and the dibenzofuran will be degraded. Selectivity is poor.

(発明の効果) 本発明の方法によれば、容易に得られる原料よりジベン
ゾフラン類を高選択率、高収率で製造することができる
。酸素等の酸化剤を用いないため、原料の燃焼ロスが発
生しない。
(Effects of the Invention) According to the method of the present invention, dibenzofurans can be produced with high selectivity and high yield from easily obtained raw materials. Since no oxidizing agent such as oxygen is used, there is no combustion loss of raw materials.

(実施例) 以下、実施例をあげて本発明を具体的に説明するが、本
発明は、これに限定されるものではない。
(Example) Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1 市販の粒状活性炭(ピッツバーグ炭 CAL)に硝酸ニ
ッケル8重量%水溶液を含浸させ、次いで110℃、4
時間乾燥後、窒素雰囲気中で450゛C13時間仮焼し
た。この触媒は、ニッケル金属として2重量%含有して
いた。このニッケル含有活性炭5gを15mmφ×30
0−のステンレス製反応管に充填し、水素気流中で40
0°Cに加熱し、約5時間遠元処理を行った0次いで反
応部を400″Cに加熱し、定量ポンプにより2−シク
ロへキセニルシクロヘキサノンを2. 0rn1/)l
r (LH3V=0.18hr−’) 、水素を1.8
j2/llrの速度で供給し、脱水素環化反応を行わせ
た結果、2−シクロへキセニルシクロヘキサノンの転化
率は99%であり、ジベンゾフランの選択率は55%で
あった。なお、脱水素中間体として、オルソフェニルフ
ェノールが32%の選択率で存在していた。
Example 1 Commercially available granular activated carbon (Pittsburgh Charcoal CAL) was impregnated with an 8% by weight aqueous solution of nickel nitrate, and then heated at 110°C for 4
After drying for an hour, it was calcined at 450°C for 13 hours in a nitrogen atmosphere. This catalyst contained 2% by weight of nickel metal. 5g of this nickel-containing activated carbon is 15mmφ x 30
Filled in a stainless steel reaction tube with a temperature of
The reaction section was then heated to 400"C and 2.0rn1/)l of 2-cyclohexenylcyclohexanone was heated to 0°C and subjected to a long-distance treatment for about 5 hours.
r (LH3V=0.18hr-'), hydrogen 1.8
As a result of the dehydrogenation cyclization reaction carried out by supplying at a rate of 2/llr, the conversion rate of 2-cyclohexenylcyclohexanone was 99% and the selectivity of dibenzofuran was 55%. Note that orthophenylphenol was present as a dehydrogenation intermediate at a selectivity of 32%.

実施例2 実施例1と同様に、ただし、原料2−シクロへキセニル
シクロヘキサノンの供給量をLH3Vとして0.15h
r−’とし、水素量を原料に対し6モル1モルで供給し
、反応温度410°Cで反応させた。その結果、2−シ
クロへキセニルシクロヘキサノンの転化率は100%で
、ジベンゾフランの収率は75+molχであった。
Example 2 Same as Example 1, except that the feed rate of raw material 2-cyclohexenylcyclohexanone was set to LH3V for 0.15 h.
r-', hydrogen was supplied in an amount of 6 mol 1 mol relative to the raw material, and the reaction was carried out at a reaction temperature of 410°C. As a result, the conversion rate of 2-cyclohexenylcyclohexanone was 100%, and the yield of dibenzofuran was 75+molχ.

実施例3 市販のピッチ系活性炭(呉羽化学製ビーズ炭)に塩化白
金酸水溶液(20%)を含浸させ、実施例1と同様に処
理し、白金金属として1.5重量%含有の活性炭触媒を
調製した。このものを触媒とし、実施例1と同様に2−
シクロへキセニルシクロヘキサノンの環化脱水素反応を
行った。その結果、2−シクロへキセニルシクロヘキサ
ノンの転化率100%、ジベンゾフランの収率60%で
あった。
Example 3 Commercially available pitch-based activated carbon (bead charcoal manufactured by Kureha Chemical Co., Ltd.) was impregnated with a chloroplatinic acid aqueous solution (20%) and treated in the same manner as in Example 1, and an activated carbon catalyst containing 1.5% by weight of platinum metal was added. Prepared. Using this as a catalyst, 2-
The cyclodehydrogenation reaction of cyclohexenylcyclohexanone was carried out. As a result, the conversion rate of 2-cyclohexenylcyclohexanone was 100%, and the yield of dibenzofuran was 60%.

実施例4 実施例3と同様に、ただし、LH3V=0.25hr−
’とし、反応温度を450 ’Cおよび500°Cに変
え脱水素環化反応を行った。その結果、それぞれ転化率
100%、ジベンゾフラン収率80%、および転化率1
00%、ジベンゾフラン収率62%であった。
Example 4 Same as Example 3, but LH3V=0.25hr-
', and the dehydrocyclization reaction was carried out by changing the reaction temperature to 450'C and 500°C. As a result, the conversion rate was 100%, the dibenzofuran yield was 80%, and the conversion rate was 1.
00%, and the dibenzofuran yield was 62%.

実施例5 実施例1と同様の方法で、原料として2−(p−メチル
シクロへキセニル)4−メチルシクロヘキサノンを用い
、触媒として実施例3で調製の白金含有活性炭触媒を用
い、反応条件は反応温度420℃、LH3V=0.2h
r−’、Ht/原料モル比2で行った。その結果、原料
の転化率100%、2.6−シメチルベンゾフランの収
率は76%であった。
Example 5 In the same manner as in Example 1, 2-(p-methylcyclohexenyl)4-methylcyclohexanone was used as the raw material, the platinum-containing activated carbon catalyst prepared in Example 3 was used as the catalyst, and the reaction conditions were the reaction temperature. 420℃, LH3V=0.2h
r-', Ht/raw material molar ratio was 2. As a result, the conversion rate of the raw materials was 100%, and the yield of 2,6-dimethylbenzofuran was 76%.

実施例6 実施例5と同様の方法条件で、ただし、原料を2−シク
ロヘキセニルシクロヘキサノンに替え脱水素反応を行っ
た。その結果、2−シクロへキセニルシクロヘキサノン
の転化率は100%で、ジベンゾフランの収率は70%
であった。
Example 6 A dehydrogenation reaction was carried out under the same method conditions as in Example 5, except that the raw material was changed to 2-cyclohexenylcyclohexanone. As a result, the conversion rate of 2-cyclohexenylcyclohexanone was 100%, and the yield of dibenzofuran was 70%.
Met.

比較例1 実施例3と同様に、ただし、反応温度350°C1LH
3V=0,25hr−’、■z/原料原料モル比丘った
。その結果、2−シクロへキセニルシクロヘキサノンの
転化率〜100%で、ジベンゾフラン収率15%、脱水
素中間体のオルソフェニルフェノールの収率40%を示
した。
Comparative Example 1 Same as Example 3, but reaction temperature 350°C1LH
3V=0.25hr-', z/raw material molar bhikkhu. As a result, the conversion of 2-cyclohexenylcyclohexanone was ~100%, the yield of dibenzofuran was 15%, and the yield of orthophenylphenol, a dehydrogenation intermediate, was 40%.

比較例2 実施例1と同様に、ただし、反応温度550°Cで2−
シクロヘキセニルシクロヘキサノンの脱水素反応を行っ
た。その結果、2−シクロへキセニルシクロヘキサノン
の転化率100%で、分解生成物の選択率65%、ジベ
ンゾフランの選択率21%であった。
Comparative Example 2 Same as Example 1, except that 2-
A dehydrogenation reaction of cyclohexenylcyclohexanone was carried out. As a result, the conversion rate of 2-cyclohexenylcyclohexanone was 100%, the selectivity of decomposition products was 65%, and the selectivity of dibenzofuran was 21%.

囲を示すグラフである。This is a graph showing the

(ばか1名)(1 idiot)

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 2−シクロヘキセニルシクロヘキサノン類を脱水素生成
物中の主成分が脱水素環化生成物となるに充分な温度お
よび接触時間をもって、8族金属成分含有の活性炭と接
触させることを特徴とするジベンゾフラン類の製法。
Dibenzofurans characterized in that 2-cyclohexenylcyclohexanones are brought into contact with activated carbon containing a group 8 metal component at a temperature and for a contact time sufficient for the main component in the dehydrogenation product to become a dehydrogenation cyclization product. manufacturing method.
JP63305999A 1988-12-05 1988-12-05 Manufacturing method of dibenzofurans Expired - Lifetime JP2639576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305999A JP2639576B2 (en) 1988-12-05 1988-12-05 Manufacturing method of dibenzofurans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305999A JP2639576B2 (en) 1988-12-05 1988-12-05 Manufacturing method of dibenzofurans

Publications (2)

Publication Number Publication Date
JPH02152973A true JPH02152973A (en) 1990-06-12
JP2639576B2 JP2639576B2 (en) 1997-08-13

Family

ID=17951852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305999A Expired - Lifetime JP2639576B2 (en) 1988-12-05 1988-12-05 Manufacturing method of dibenzofurans

Country Status (1)

Country Link
JP (1) JP2639576B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103897A (en) * 1973-02-08 1974-10-01
JPS5175058A (en) * 1974-11-25 1976-06-29 Anic Spa
JPS624278A (en) * 1985-06-27 1987-01-10 ヘキスト アクチェンゲゼルシャフト Production of 2-aminobenzothiazole
JPS624442A (en) * 1985-06-28 1987-01-10 バイエル・アクチエンゲゼルシヤフト Carrying catalyst, manufacture thereof and usage thereof formanufacturing hydroxyphenyl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103897A (en) * 1973-02-08 1974-10-01
JPS5175058A (en) * 1974-11-25 1976-06-29 Anic Spa
JPS624278A (en) * 1985-06-27 1987-01-10 ヘキスト アクチェンゲゼルシャフト Production of 2-aminobenzothiazole
JPS624442A (en) * 1985-06-28 1987-01-10 バイエル・アクチエンゲゼルシヤフト Carrying catalyst, manufacture thereof and usage thereof formanufacturing hydroxyphenyl

Also Published As

Publication number Publication date
JP2639576B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
EP0147219B1 (en) Pd/re hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
KR101377834B1 (en) direct amination of hydrocarbons
US4476250A (en) Catalytic process for the production of methanol
JPH0525101A (en) Preparation of aniline
EP0277562B1 (en) Hydrogenation of citric acid and substituted citric acids to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactones and mixtures thereof
JPS63255253A (en) Production of amines
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JPH02152973A (en) Production of dibenzofurans
EP0133778B1 (en) Methanol conversion process
US4185022A (en) Furfuryl alcohol production process
JPH029873A (en) Production of gamma-butyrolactone
JPH09239272A (en) Production of ammonia synthesis catalyst
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
JPH11180701A (en) Production of chlorine
KR20010031521A (en) Method for hydrogenating an anthraquinone compound
JP2737308B2 (en) Method for producing partially chlorinated methane
KR100550962B1 (en) Catalyst for Hydrogenation Purification of Terephthalic Acid
US4523016A (en) Process for the catalytic dehydrogenation of piperidine
EP0190307A1 (en) Fischer-tropsch catalyst
US5159120A (en) Preparation of dialkoxybutenes
EP1558597B1 (en) Continuous process for the production of optically pure (s)-beta hydroxy-gamma-butyrolactone
JPH0525151A (en) Production of gamma-butyrolactone
JP3472885B2 (en) Process for the selective hydrogenation of compounds with intra- and exocyclic unsaturation
JPH049776B2 (en)