JP2021134141A - Method for producing aromatic compound using heterogeneous noble metal catalyst - Google Patents

Method for producing aromatic compound using heterogeneous noble metal catalyst Download PDF

Info

Publication number
JP2021134141A
JP2021134141A JP2020028526A JP2020028526A JP2021134141A JP 2021134141 A JP2021134141 A JP 2021134141A JP 2020028526 A JP2020028526 A JP 2020028526A JP 2020028526 A JP2020028526 A JP 2020028526A JP 2021134141 A JP2021134141 A JP 2021134141A
Authority
JP
Japan
Prior art keywords
aromatic compound
reaction
noble metal
producing
cyclohexadienes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020028526A
Other languages
Japanese (ja)
Inventor
弘尚 佐治木
Hironao Sajiki
弘尚 佐治木
善成 澤間
Yoshinari Sawama
善成 澤間
裕太 山本
Yuta Yamamoto
裕太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2020028526A priority Critical patent/JP2021134141A/en
Publication of JP2021134141A publication Critical patent/JP2021134141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a technique for synthesizing aromatic compound such as indole by dehydrogenation reaction that is low in manufacturing cost, and a green technique that is low in environmental impact.SOLUTION: Provided is a method for producing aromatic compound, which comprises dehydrogenating cyclohexadienes or cyclohexenes in the presence of a solvent and molecular oxygen using a heterogeneous noble metal catalyst in which one or more of the noble metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium are supported on a carbon carrier.SELECTED DRAWING: None

Description

本発明は、シクロヘキサジエン類またはシクロヘキセン類を原料とする不均一系貴金属触媒を用いた芳香族化合物の製造方法に関する。 The present invention relates to a method for producing an aromatic compound using a heterogeneous noble metal catalyst made from cyclohexadiene or cyclohexene.

インドール等の芳香族化合物は、香料や抗菌剤などの医薬品やその合成中間体として知られている。 Aromatic compounds such as indole are known as pharmaceuticals such as fragrances and antibacterial agents and their synthetic intermediates.

このようなインドールの合成手法には様々な手法が提案されている。その中の一つとしては、ジヒドロインドール誘導体を、触媒としての二酸化マンガンと、酸化剤としての2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQともいう)を化学量論以上使用して脱水素反応するものがある(非特許文献1〜3)。 Various methods have been proposed for such indole synthesis methods. One of them is stoichiometry of dihydroindole derivatives, manganese dioxide as a catalyst and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (also called DDQ) as an oxidizing agent. Some of them undergo a dehydrogenation reaction using the above (Non-Patent Documents 1 to 3).

しかしながら、このような手法では酸化剤として危険なDDQを化学量論を超えて大量に使用する必要があり、安全性のみならず環境負荷も高いものであった。 However, in such a method, it is necessary to use a large amount of DDQ, which is dangerous as an oxidant, beyond the stoichiometry, and not only the safety but also the environmental load is high.

上記の他、酸化剤としてDDQを使用しない手法としては、酸化剤として酸素ガスを、触媒として[Ru(phd)](PFのようなRu錯体触媒を使用し、メタノールやアセトニトリル溶媒中でジヒドロインドール誘導体を脱水素反応してインドールを合成する手法があった(非特許文献4)。 In addition to the above, as a method that does not use DDQ as an oxidizing agent, oxygen gas is used as an oxidizing agent, and a Ru complex catalyst such as [Ru (phd) 3 ] (PF 6 ) 2 is used as a catalyst, and a methanol or acetonitrile solvent is used. Among them, there was a method of synthesizing indole by dehydrogenating a dihydroindole derivative (Non-Patent Document 4).

しかしながら、この手法では触媒として均一系触媒である錯体を使用することから反応後に触媒を分離する必要があり、産業用途としては高コストな手法であるといえる。 However, since this method uses a complex that is a homogeneous catalyst as a catalyst, it is necessary to separate the catalyst after the reaction, which can be said to be a high-cost method for industrial use.

U.Pindur et al., Tetrahedron, 1992 , 17, 3515-3526U.Pindur et al., Tetrahedron, 1992, 17, 3515-3526 C.Bailly et al., Bioorganic & Medicinal Chemistry, 2001, 9, 1533-1541C.Bailly et al., Bioorganic & Medicinal Chemistry, 2001, 9, 1533-1541 W.E.Noland et al., Journal of Heterocyclic Chemistry, 2009, 46, 1154-1176W.E.Noland et al., Journal of Heterocyclic Chemistry, 2009, 46, 1154-1176 S.S.Stahl et al., Organic Letters, 2019, 21, 1176-1181S.S. Stahl et al., Organic Letters, 2019, 21, 1176-1181

このような背景から、製造コストが低い脱水素によるインドール等の芳香族化合物の合成技術、かつ、環境負荷が小さなグリーンな技術が求められていた。 Against this background, there has been a demand for a technology for synthesizing aromatic compounds such as indole by dehydrogenation, which has a low manufacturing cost, and a green technology, which has a small environmental load.

本発明者らは、上記課題を解決するために鋭意研究した結果、回収・再利用可能な不均一系触媒の中でも特定の貴金属を炭素担体に担持した不均一系貴金属触媒を用いることにより、シクロヘキサジエン類またはシクロヘキセン類を溶媒と分子状酸素の存在下で脱水素反応が効率よく進行し、芳香族化合物が収率よく得られることを見出した。 As a result of diligent research to solve the above problems, the present inventors have obtained cyclo by using a heterogeneous noble metal catalyst in which a specific noble metal is supported on a carbon carrier among recoverable and reusable heterogeneous catalysts. It has been found that the dehydrogenation reaction of hexadienes or cyclohexenes proceeds efficiently in the presence of a catalyst and molecular oxygen, and an aromatic compound can be obtained in good yield.

また、本発明者らは、上記反応の原料となるシクロヘキサジエン類またはシクロヘキセン類を合成するのと同一の反応容器中で、続けて脱水素反応も行えることを見出し、本発明を完成させた。 Further, the present inventors have found that the dehydrogenation reaction can be continuously carried out in the same reaction vessel as for synthesizing cyclohexadiene or cyclohexene as a raw material for the above reaction, and completed the present invention.

すなわち、本発明は、シクロヘキサジエン類またはシクロヘキセン類を、溶媒と分子状酸素の存在下、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属の1種または2種以上を炭素担体に担持した不均一系貴金属触媒を用いて脱水素反応することを特徴とする芳香族化合物の製造方法である。 That is, in the present invention, cyclohexadiene or cyclohexene is used as a carbon carrier with one or more precious metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium in the presence of a solvent and molecular oxygen. It is a method for producing an aromatic compound, which comprises a dehydrogenation reaction using a supported heterogeneous noble metal catalyst.

また、本発明は、反応容器中で、共役ジエンとジエノフィルをディールス・アルダー反応で付加重合させてシクロヘキサジエン類またはシクロヘキセン類を得て、次いで、同一反応容器中でシクロヘキサジエン類またはシクロヘキセン類を溶媒と分子状酸素の存在下、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属の1種または2種以上を炭素担体に担持した不均一系貴金属触媒を用いて脱水素反応することを特徴とする芳香族化合物の製造方法である。 Further, in the present invention, conjugated diene and dienophile are dehydrogenated by Diels-Alder reaction in a reaction vessel to obtain cyclohexadiene or cyclohexene, and then cyclohexadiene or cyclohexene is used as a solvent in the same reaction vessel. And in the presence of molecular oxygen, a dehydrogenation reaction is carried out using a heterogeneous noble metal catalyst in which one or more noble metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium are supported on a carbon carrier. It is a method for producing an aromatic compound.

更に、本発明は、下記化学式の何れかで表される芳香族化合物である。

Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Furthermore, the present invention is an aromatic compound represented by any of the following chemical formulas.
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141

本発明の芳香族化合物の製造方法は、シクロヘキサジエン類またはシクロヘキセン類の芳香化反応が温和な条件でも選択性や収率がよく進行する。 In the method for producing an aromatic compound of the present invention, the selectivity and yield proceed well even under conditions where the aromatization reaction of cyclohexadienes or cyclohexenes is mild.

また、本発明の芳香族化合物の製造方法は、上記反応の原料となるシクロヘキサジエン類またはシクロヘキセン類を合成するのと同一の反応容器中で、続けて脱水素反応も行えるため、産業上有利である。 Further, the method for producing an aromatic compound of the present invention is industrially advantageous because a dehydrogenation reaction can be continuously carried out in the same reaction vessel as for synthesizing cyclohexadiene or cyclohexene as a raw material for the above reaction. be.

本発明の芳香族化合物の製造方法(以下、「本発明方法」という)は、シクロヘキサジエン類またはシクロヘキセン類を、溶媒と分子状酸素の存在下、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属を炭素担体に担持した不均一系貴金属触媒を用いて脱水素するものである。 The method for producing an aromatic compound of the present invention (hereinafter referred to as "the method of the present invention") is a group of cyclohexadienes or cyclohexenes composed of ruthenium, iridium, palladium, platinum and rhodium in the presence of a solvent and molecular oxygen. Dehydrogenation is performed using a heterogeneous noble metal catalyst in which a noble metal selected from the above is supported on a carbon carrier.

(基質)
本発明方法で用いる基質はシクロヘキサジエン類またはシクロヘキセン類であって、脱水素反応により芳香族化合物となるものであれば特に限定されない。このようなシクロヘキサジエン類またはシクロヘキセン類としては、例えば、脱水素反応によりカルバゾール、インドール等になる窒素原子を含むシクロヘキサジエン類や窒素原子を含むシクロヘキセン類、脱水素反応によりベンゾフラン等になる酸素原子を含むシクロヘキサジエン類や酸素原子を含むシクロヘキセン類、脱水素反応によりベンゾチオフェン等になる硫黄原子を含むシクロヘキサジエン類や硫黄原子を含むシクロヘキセン類などの複素環を有するもの等が挙げられる。本発明方法においては、複素環を有するシクロヘキサジエン類またはシクロヘキセン類、好ましくは複素環を有し、それがシクロヘキサジエン構造またはシクロヘキセン構造と隣接するシクロヘキサジエン類またはシクロヘキセン類を基質として用いることにより、香料や抗菌剤などの医薬品やその合成中間体として知られているインドールやその誘導体を合成できるため好ましい。これらの基質の中でも収率等の点から、複素環を有するシクロヘキサジエン類が好ましく、複素環を有し、それがシクロヘキサジエン構造と隣接するシクロヘキサジエン類がより好ましい。
(Substrate)
The substrate used in the method of the present invention is cyclohexadiene or cyclohexene, and is not particularly limited as long as it becomes an aromatic compound by a dehydrogenation reaction. Examples of such cyclohexadienes or cyclohexenes include cyclohexadienes containing a nitrogen atom that becomes carbazole, indol and the like by a dehydrogenation reaction, cyclohexenes containing a nitrogen atom, and an oxygen atom that becomes benzofuran and the like by a dehydrogenation reaction. Examples thereof include cyclohexadiene containing oxygen atom, cyclohexene containing oxygen atom, cyclohexadiene containing sulfur atom which becomes benzothiophene by dehydrogenation reaction, cyclohexene containing sulfur atom, and the like having a heterocycle. In the method of the present invention, cyclohexadienes or cyclohexenes having a heterocycle, preferably cyclohexadienes or cyclohexenes having a heterocycle and adjacent to the cyclohexadiene structure or the cyclohexene structure, are used as a substrate for fragrance. It is preferable because it can synthesize pharmaceuticals such as antibacterial agents and indols known as synthetic intermediates thereof and derivatives thereof. Among these substrates, cyclohexadienes having a heterocycle are preferable, and cyclohexadienes having a heterocycle and adjacent to the cyclohexadiene structure are more preferable from the viewpoint of yield and the like.

(溶媒)
本発明方法で用いる溶媒は、特に限定されないが、例えば、水、トルエン、ジオキサン、t−ブチルアルコール、ジメチルホルムアミド等が挙げられる。これらの溶媒の中でも水、トルエン、ジオキサン、t−ブチルアルコールが収率の点から好ましく、さらにトルエン、ジオキサンが好ましい。これら溶媒は1種または2種以上を用いることができる。
(solvent)
The solvent used in the method of the present invention is not particularly limited, and examples thereof include water, toluene, dioxane, t-butyl alcohol, and dimethylformamide. Among these solvents, water, toluene, dioxane and t-butyl alcohol are preferable from the viewpoint of yield, and toluene and dioxane are more preferable. One kind or two or more kinds of these solvents can be used.

(分子状酸素)
本発明方法で用いる分子状酸素は、分子状の酸素が含まれる気体であればよく、例えば、酸素や空気、アルゴン等と酸素との混合気体等が挙げられる。これらは、例えば、雰囲気を置換したり、気体を入れたバルーンをつける等して系内に供給することができる。また、本発明方法における分子状酸素の存在量は特に限定されず、例えば、基質に対して必要な酸素量を1とした場合に0.1〜10000であればよく好ましくは1以上であればよい。
(Molecular oxygen)
The molecular oxygen used in the method of the present invention may be a gas containing molecular oxygen, and examples thereof include oxygen, air, a mixed gas of argon and the like and oxygen, and the like. These can be supplied into the system by, for example, replacing the atmosphere or attaching a balloon containing a gas. The amount of molecular oxygen present in the method of the present invention is not particularly limited. For example, when the amount of oxygen required for the substrate is 1, it may be 0.1 to 10000, preferably 1 or more. good.

(不均一系貴金属触媒)
本発明方法で用いる不均一系貴金属触媒は、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属の1種または2種以上を炭素担体に担持したものである。炭素担体としては、特に限定されないが、例えば、活性炭、カーボンナノチューブ、グラファイト、グラフェン等が挙げられる。これら炭素担体の中でも比表面積値が大きく、担持する貴金属の分散性を向上することができるため活性炭が好ましい。また、貴金属の中でもルテニウム、イリジウム、パラジウム、白金の1種または2種以上が好ましく、ルテニウム、イリジウム、白金の1種または2種以上は収率が高くなるため好ましく、ルテニウムおよび/またはイリジウムは収率がより高くなるため好ましく、ルテニウムは収率が特に高くなるため好ましい。これら不均一系貴金属触媒は、公知の方法に従って調製することができる。
(Homogeneous precious metal catalyst)
The heterogeneous noble metal catalyst used in the method of the present invention is one in which one or more noble metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium are supported on a carbon carrier. The carbon carrier is not particularly limited, and examples thereof include activated carbon, carbon nanotubes, graphite, graphene and the like. Among these carbon carriers, activated carbon is preferable because it has a large specific surface area value and can improve the dispersibility of the noble metal to be carried. Among the precious metals, one or more of ruthenium, iridium, palladium and platinum are preferable, and one or more of ruthenium, iridium and platinum are preferable because the yield is high, and ruthenium and / or iridium are collected. It is preferable because the rate is higher, and ruthenium is preferable because the yield is particularly high. These heterogeneous noble metal catalysts can be prepared according to known methods.

上記した不均一系貴金属触媒の中でも貴金属を活性炭に担持させたものが好ましく、(a)貴金属を活性炭に対し金属換算で1〜20wt%、好ましくは5〜15wt%含有する。
なお、貴金属量が少なすぎると反応性が低下することがあり、多すぎても使用量にみあった活性が得られないことがある。また、貴金属量が多すぎると触媒上の貴金属同士が凝集してしまうことがあり、その場合貴金属粒子全体の表面積が低下して活性も低下してしまうことがある。
Among the above-mentioned heterogeneous noble metal catalysts, those in which a noble metal is supported on activated carbon are preferable, and (a) the noble metal is contained in an activated carbon in an amount of 1 to 20 wt%, preferably 5 to 15 wt% in terms of metal.
If the amount of the noble metal is too small, the reactivity may decrease, and if the amount of the noble metal is too large, the activity suitable for the amount used may not be obtained. Further, if the amount of the noble metal is too large, the noble metals on the catalyst may agglomerate with each other, and in that case, the surface area of the entire noble metal particles may decrease and the activity may decrease.

(b)活性炭の比表面積値(BET値)が500〜2,000m/g、好ましくは800〜1,500m/gである。
なお、活性炭の比表面積値が小さすぎると貴金属の分散性が低下してしまい反応性が低下してしまうことがある。また、比表面積値が大きすぎても、本発明方法では反応性が低下することがある。
(B) specific surface area of the activated carbon (BET value) is 500~2,000m 2 / g, preferably from 800~1,500m 2 / g.
If the specific surface area value of the activated carbon is too small, the dispersibility of the noble metal may decrease and the reactivity may decrease. Further, even if the specific surface area value is too large, the reactivity may decrease in the method of the present invention.

上記した不均一系貴金属触媒の中でもルテニウムを活性炭に担持させたものが好ましく、特に下記(a)および(b)の性質を有するものがより好ましい。
(a)ルテニウムを活性炭に対しルテニウム金属換算で1〜20wt%、好ましくは5〜15wt%含有する。
なお、ルテニウム量が少なすぎると反応性が低下することがあり、多すぎても使用量にみあった活性が得られないことがある。また、ルテニウム量が多すぎると触媒上のルテニウム同士が凝集してしまうことがあり、その場合ルテニウム粒子全体の表面積が低下して活性も低下してしまうことがある。
Among the above-mentioned heterogeneous noble metal catalysts, those in which ruthenium is supported on activated carbon are preferable, and those having the following properties (a) and (b) are more preferable.
(A) Ruthenium is contained in activated carbon in an amount of 1 to 20 wt%, preferably 5 to 15 wt% in terms of ruthenium metal.
If the amount of ruthenium is too small, the reactivity may decrease, and if the amount of ruthenium is too large, the activity suitable for the amount used may not be obtained. Further, if the amount of ruthenium is too large, the rutheniums on the catalyst may aggregate with each other, and in that case, the surface area of the entire ruthenium particles may decrease and the activity may decrease.

(b)活性炭の比表面積値(BET値)が500〜2,000m/g、好ましくは800〜1,500m/gである。
なお、活性炭の比表面積値が小さすぎるとルテニウムの分散性が低下してしまい反応性が低下してしまうことがある。また、比表面積値が大きすぎても、本発明方法では反応性が低下することがある。
(B) specific surface area of the activated carbon (BET value) is 500~2,000m 2 / g, preferably from 800~1,500m 2 / g.
If the specific surface area value of the activated carbon is too small, the dispersibility of ruthenium may decrease and the reactivity may decrease. Further, even if the specific surface area value is too large, the reactivity may decrease in the method of the present invention.

上記した性質を有する活性炭にルテニウムを担持させた不均一系貴金属触媒としては、公知の方法に従って調製してもよいし、例えば、5%Ruカーボン粉末(含水品)[Aタイプ](ルテニウム含量;5wt%、比表面積値;900m/g)、[Kタイプ](ルテニウム含量;5wt%、比表面積値;1100m/g)、[Rタイプ](ルテニウム含量;5wt%、比表面積値;1200m/g)、[Bタイプ](ルテニウム含量;5wt%、比表面積値900m/g)(いずれもエヌ・イー ケムキャット(株)製)等の市販品を利用することもできる。 The heterogeneous noble metal catalyst in which ruthenium is supported on activated charcoal having the above-mentioned properties may be prepared according to a known method, for example, 5% Ru carbon powder (hydrous product) [A type] (ruthenium content; 5 wt%, specific surface area value; 900 m 2 / g), [K type] (ruthenium content; 5 wt%, specific surface area value: 1100 m 2 / g), [R type] (ruthenium content; 5 wt%, specific surface area value: 1200 m) Commercial products such as 2 / g) and [B type] (ruthenium content; 5 wt%, specific surface area value of 900 m 2 / g) (both manufactured by N.E. Chemcat Co., Ltd.) can also be used.

これらの不均一系貴金属触媒は本発明方法を行っている間、系内に存在していればよいが、例えば、基質に対して、1〜50mol%、好ましくは3〜20mol%である。なお、このような不均一系貴金属触媒は、反応後の触媒の分離、分離した触媒の再使用が容易である。 These heterogeneous noble metal catalysts may be present in the system during the method of the present invention, and are, for example, 1 to 50 mol%, preferably 3 to 20 mol% with respect to the substrate. In such a heterogeneous noble metal catalyst, it is easy to separate the catalyst after the reaction and reuse the separated catalyst.

(脱水素反応)
本発明方法において、脱水素反応は、シクロヘキサジエン類またはシクロヘキセン類を、溶媒と分子状酸素の存在下、不均一系貴金属触媒を用いて行われる。反応条件は特に限定されず、例えば、反応温度、反応時間、雰囲気等の条件を適宜制御して行えばよい。
(Dehydrogenation reaction)
In the method of the present invention, the dehydrogenation reaction is carried out using cyclohexadienes or cyclohexenes in the presence of a solvent and molecular oxygen, using a heterogeneous noble metal catalyst. The reaction conditions are not particularly limited, and for example, conditions such as reaction temperature, reaction time, and atmosphere may be appropriately controlled.

(反応温度)
本発明方法の反応温度は、脱水素反応が進行するのであれば特に限定されないが、40〜200℃が好ましく、特に50〜150℃が好ましい。
(Reaction temperature)
The reaction temperature of the method of the present invention is not particularly limited as long as the dehydrogenation reaction proceeds, but is preferably 40 to 200 ° C, particularly preferably 50 to 150 ° C.

(反応時間)
本発明方法の反応時間は、特に限定されないが、例えば、1〜48時間、好ましくは6〜26時間である。また、反応の際には撹拌をすることが好ましい。
(Reaction time)
The reaction time of the method of the present invention is not particularly limited, but is, for example, 1 to 48 hours, preferably 6 to 26 hours. Further, it is preferable to stir during the reaction.

(雰囲気)
本発明方法での反応雰囲気は、不均一系貴金属触媒による脱水素反応が進行するものであれば特に限定されないが、例えば、アルゴンや窒素等の不活性雰囲気で行われることが好ましく、特にアルゴンが好ましい。
(atmosphere)
The reaction atmosphere in the method of the present invention is not particularly limited as long as the dehydrogenation reaction by the heterogeneous noble metal catalyst proceeds, but it is preferably carried out in an inert atmosphere such as argon or nitrogen, and argon is particularly used. preferable.

(反応容器)
本発明方法で用いる容器は、特に限定されず、試験管、フラスコ、バッチ式反応器等、反応のスケールにあわせたものを用いればよい。
(Reaction vessel)
The container used in the method of the present invention is not particularly limited, and a test tube, a flask, a batch reactor, or the like may be used according to the scale of the reaction.

以上説明した本発明方法により、シクロヘキサジエン類またはシクロヘキセン類が脱水素され、芳香族化合物が得られる。脱水素反応した後は、冷却、ろ過等をし、更に、常法に従って精製等を行ってもよい。なお、芳香族化合物が得られたかどうかはNMR等公知の方法で確認することができる。 By the method of the present invention described above, cyclohexadienes or cyclohexenes are dehydrogenated to obtain an aromatic compound. After the dehydrogenation reaction, cooling, filtration, or the like may be performed, and further purification or the like may be carried out according to a conventional method. Whether or not an aromatic compound has been obtained can be confirmed by a known method such as NMR.

また、本発明方法を終了した後は、ろ過、遠心分離等で不均一系貴金属触媒を回収し、再利用することができる。 Further, after the method of the present invention is completed, the heterogeneous noble metal catalyst can be recovered and reused by filtration, centrifugation or the like.

更に、本発明方法を行う前に、反応容器中でまず、公知の方法に従ってディールス・アルダー(Diels-Alder)反応を行い、共役ジエンとジエノフィル(アルケンまたはアルキン)を付加重合させてシクロヘキサジエン類またはシクロヘキセン類を得て、次いで、同一反応容器中で、本発明方法を行うこともできる。これにより1ポット(1pot)での芳香族化合物の製造が可能となる。 Further, before carrying out the method of the present invention, first, a Diels-Alder reaction is carried out in a reaction vessel according to a known method, and conjugated diene and dienofil (alkene or alkyne) are additionally polymerized to form cyclohexadienes or cyclohexadienes. Cyclohexenes can then be obtained and then the method of the invention can be carried out in the same reaction vessel. This makes it possible to produce an aromatic compound in one pot (1 pot).

本発明方法における好ましいシクロヘキサジエン類またはシクロヘキセン類と、それを脱水素反応して得られる芳香族化合物の例は以下の表1に記載の通りである。なお、これらの芳香族化合物は、何れも複素環を有し、それがシクロヘキサジエン構造と隣接するシクロヘキサジエン類またはシクロヘキセン構造と隣接するシクロヘキセン類である。これらの中でも特にシクロヘキサジエン類と、それを脱水素反応して得られる芳香族化合物が好ましい。 Examples of preferable cyclohexadienes or cyclohexenes in the method of the present invention and aromatic compounds obtained by dehydrogenating them are shown in Table 1 below. All of these aromatic compounds have a heterocycle, and they are cyclohexadienes adjacent to the cyclohexadiene structure or cyclohexenes adjacent to the cyclohexene structure. Among these, cyclohexadienes and aromatic compounds obtained by dehydrogenating them are particularly preferable.

Figure 2021134141
※上記化学式において、RとR〜Rはそれぞれ独立して水素、メトキシ基、アセチル基、ニトロ基、ニトリル基、ハロゲン基、フェニル基、ベンジル基または炭素数1〜20のカルボン酸誘導体、炭素数1〜20のアルキル基またはアルカン基で縮環や上記置換基があってもよい群から選ばれる基である。
Figure 2021134141
* In the above chemical formula, R and R 1 to R 6 are independently hydrogen, methoxy group, acetyl group, nitro group, nitrile group, halogen group, phenyl group, benzyl group or carboxylic acid derivative having 1 to 20 carbon atoms. It is a group selected from the group in which an alkyl group or an alkane group having 1 to 20 carbon atoms may have a condensed ring or the above-mentioned substituent.

以下、本発明を実施例を挙げて詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、以下の実施例において、1H及び13C NMRはJEOL JNM ECA-500 (1H NMR, 500 MHz; 13C NMR, 125 MHz)またはJEOL JNM ECZ-400 (1H NMR, 400 MHz; 13C NMR, 100 MHz)で測定した。NMRの化学シフト値はCDCl3中の微量未標識体の吸収(1H NMR: δ = 0.00; 13C NMR: δ = 77.0)を内部標準として、ppm単位で表示した。高分解能マススペクトルは Shimazu hybrid IT-TOF mass spectrometer で測定した。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. In the following examples, 1 H and 13 C NMR are JEOL JNM ECA-500 ( 1 H NMR, 500 MHz; 13 C NMR, 125 MHz) or JEOL JNM ECZ-400 ( 1 H NMR, 400 MHz; 13). It was measured by C NMR, 100 MHz). The chemical shift value of NMR was expressed in ppm with the absorption of trace unlabeled material in CDCl 3 (1 H NMR: δ = 0.00; 13 C NMR: δ = 77.0) as an internal standard. High-resolution mass spectra were measured with a Shimazu hybrid IT-TOF mass spectrometer.

実 施 例 1
貴金属種の検討:
以下の式で示される脱水素反応を行った。まず、N−ベンジル−6,7−ジヒドロインドール−4,5−ジカルボン酸ジメチル(65mg、0.2mmol)と各10%触媒10mol%に蒸留水(1mL)を加え、アルゴン雰囲気下、100℃で24時間攪拌した。反応液を室温まで放冷し、メンブランフィルター(Millipore, Millex-LH:0.20mm)でろ過した。フィルター中の触媒を酢酸エチル(10mL×3)で洗浄し、ろ液と合わせてから蒸留水(20mL)を加え、分液抽出した。水層をさらに酢酸エチル(10mL×2)で抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥、ろ過した。得られたろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製した収率を表2に示す。
Example 1
Examination of precious metal species:
The dehydrogenation reaction represented by the following formula was carried out. First, distilled water (1 mL) was added to dimethyl N-benzyl-6,7-dihydroindole-4,5-dicarboxylic acid (65 mg, 0.2 mmol) and 10 mol% of each 10% catalyst, and at 100 ° C. under an argon atmosphere. The mixture was stirred for 24 hours. The reaction mixture was allowed to cool to room temperature and filtered through a membrane filter (Millipore, Millex-LH: 0.20 mm). The catalyst in the filter was washed with ethyl acetate (10 mL × 3), combined with the filtrate, distilled water (20 mL) was added, and the mixture was separated and extracted. The aqueous layer was further extracted with ethyl acetate (10 mL × 2), the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. The yield of the obtained filtrate concentrated under reduced pressure and the residue purified by silica gel column chromatography is shown in Table 2.

Figure 2021134141
Figure 2021134141

Figure 2021134141
Figure 2021134141

この結果により、ルテニウム、イリジウム、パラジウム、白金またはロジウムを炭素担体に担持した不均一系貴金属触媒を用いることにより、シクロヘキサジエン類の脱水素反応が行われ、1の芳香族化合物が収率よく得られることが分かった。 Based on this result, the dehydrogenation reaction of cyclohexadiene was carried out by using a heterogeneous noble metal catalyst in which ruthenium, iridium, palladium, platinum or rhodium was supported on a carbon carrier, and one aromatic compound was obtained in good yield. It turned out to be.

実 施 例 2
1−Pot反応:
以下の式で示される脱水素反応を1−Potで行った。まず、N−ベンジル−2−ビニルピロール(1a:37mg、0.2mmol)のトルエン(1mL)溶液にアセチレンジカルボン酸ジメチル(2a:30μL、0.24mmol)を加えてアルゴン雰囲気下120℃で24時間撹拌して、シクロヘキサジエン類を含む反応液を得た。次に、この反応液を室温まで放冷し、10%Ruカーボン粉末(乾燥品)Kタイプ(エヌ・イー ケムキャット社製)20mg(10mol%)を加えてから酸素雰囲気下110℃で24時間さらに攪拌した。反応液を室温まで放冷し、酢酸エチル(50mL)を用いてメンブランフィルター(Millipore, Millex-LH、0.20mm)でろ過した。得られたろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製したところ、4a(46.5mg、72%)が得られた。
Example 2
1-Pot reaction:
The dehydrogenation reaction represented by the following formula was carried out in 1-Pot. First, dimethyl acetylenedicarboxylate (2a: 30 μL, 0.24 mmol) was added to a solution of N-benzyl-2-vinylpyrrole (1a: 37 mg, 0.2 mmol) in toluene (1 mL) at 120 ° C. for 24 hours under an argon atmosphere. The mixture was stirred to obtain a reaction solution containing cyclohexadienes. Next, the reaction solution was allowed to cool to room temperature, 20 mg (10 mol%) of 10% Ru carbon powder (dried product) K type (manufactured by NE Chemcat) was added, and then the reaction solution was further added at 110 ° C. for 24 hours under an oxygen atmosphere. Stirred. The reaction mixture was allowed to cool to room temperature and filtered through a membrane filter (Millipore, Millex-LH, 0.20 mm) using ethyl acetate (50 mL). The obtained filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a (46.5 mg, 72%).

Figure 2021134141
Figure 2021134141

この結果により、本発明方法は1−Potで行えることが分かった。 From this result, it was found that the method of the present invention can be carried out by 1-Pot.

実 施 例 3
基質多様性の検討:
以下の式で示される脱水素反応を実施例2と同様にして1−Potで行った。また、この脱水素反応における基質、反応条件、生成物等は表3に示した。
Actual example 3
Examination of substrate diversity:
The dehydrogenation reaction represented by the following formula was carried out in 1-Pot in the same manner as in Example 2. The substrate, reaction conditions, products, etc. in this dehydrogenation reaction are shown in Table 3.

Figure 2021134141
Figure 2021134141

Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141

この結果から、種々の共役ジエンとアルキンをディールス・アルダー反応で付加重合させてシクロヘキサジエン類またはシクロヘキセン類を得て、更にシクロヘキサジエン類またはシクロヘキセン類を脱水素して芳香族化合物が得られることが分かった。 From this result, it is possible to obtain cyclohexadiene or cyclohexene by addition polymerization of various conjugated diene and alkyne by Diels-Alder reaction, and further dehydrogenate cyclohexadiene or cyclohexene to obtain aromatic compound. Do you get it.

実 施 例 4
触媒の繰り返し使用:
以下の式で示される脱水素反応を行った。まず、N−ベンジル−6,7−ジヒドロインドール−4,5−ジカルボン酸ジメチル(3a:65mg、0.2mmol)と10%Ruカーボン粉末(乾燥品)Kタイプ(エヌ・イー ケムキャット社製)20mg、10mol%に蒸留水(1mL)を加え、アルゴン雰囲気下、100℃で24時間攪拌した。反応液を室温まで放冷し、メンブランフィルター(Millipore, Millex-LH、0.20mm)でろ過した。フィルター中の触媒を酢酸エチル(10mL×3)で洗浄し、ろ液と合わせてから蒸留水(20mL)を加え、分液抽出した。水層をさらに酢酸エチル(10mL ×2)で抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥、ろ過した。ろ液を減圧留去し、残渣をシリカゲルカラムクロマトグラフィーで精製したところ、4a(56.1mg、 87%)が得られた。使用した触媒をろ紙上でメタノール(10mL×5)と蒸留水(10mL×5)で交互に洗浄し、24時間減圧乾燥して回収し、再度利用した結果を表4に示す。
Example 4
Repeated use of catalyst:
The dehydrogenation reaction represented by the following formula was carried out. First, dimethyl N-benzyl-6,7-dihydroindole-4,5-dicarboxylic acid (3a: 65 mg, 0.2 mmol) and 10% Ru carbon powder (dried product) K type (manufactured by N.E.Chemcat) 20 mg. Distilled water (1 mL) was added to 10 mol%, and the mixture was stirred at 100 ° C. for 24 hours under an argon atmosphere. The reaction mixture was allowed to cool to room temperature and filtered through a membrane filter (Millipore, Millex-LH, 0.20 mm). The catalyst in the filter was washed with ethyl acetate (10 mL × 3), combined with the filtrate, distilled water (20 mL) was added, and the mixture was separated and extracted. The aqueous layer was further extracted with ethyl acetate (10 mL × 2), the organic layers were combined, dried over anhydrous sodium sulfate, and filtered. The filtrate was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a (56.1 mg, 87%). The catalyst used was washed alternately with methanol (10 mL × 5) and distilled water (10 mL × 5) on a filter paper, dried under reduced pressure for 24 hours, recovered, and reused. The results are shown in Table 4.

Figure 2021134141
Figure 2021134141

Figure 2021134141
Figure 2021134141

本発明方法で用いられる不均一系貴金属触媒は、繰り返し使用できることが分かった。なお、2回目と3回目の転化率や収率が下がっているのは、触媒自体の賦活処理や還元処理を行っていないためであり、それらの処理を行えば1回目と同等の添加率や収率となると考えられる。 It was found that the heterogeneous noble metal catalyst used in the method of the present invention can be used repeatedly. The conversion rates and yields of the second and third times are reduced because the catalyst itself has not been activated or reduced, and if these treatments are performed, the addition rate and the yield are the same as those of the first time. It is considered to be the yield.

実 施 例 5
芳香化反応:
以下の式で示される脱水素反応を実施例1と同様にして行った。また、この脱水素反応における基質、反応条件、生成物等は表5に示した。
Example 5
Aromatization reaction:
The dehydrogenation reaction represented by the following formula was carried out in the same manner as in Example 1. The substrate, reaction conditions, products, etc. in this dehydrogenation reaction are shown in Table 5.

Figure 2021134141
Figure 2021134141

Figure 2021134141
Figure 2021134141

この結果から、種々の複素環を有するシクロヘキサジエン類またはシクロヘキセン類からインドールの合成が可能なことが分かった。 From this result, it was found that indole can be synthesized from cyclohexadienes or cyclohexenes having various heterocycles.

実 施 例 6
ピロロカルバゾールジオン誘導体の1−Pot合成:
以下の式で示される脱水素反応を1−Potで行った。まず、N−ベンジル−3−ビニルインドール(1a:46mg、0.2mmol)のトルエン(1mL)溶液に、アセチレンジカルボン酸ジメチル(2a:30μL、0.24mmol)を加えてアルゴン雰囲気下150℃で24時間撹拌した。反応液を室温まで放冷し、10%Ruカーボン粉末(乾燥品)Kタイプ (エヌ・イー ケムキャット社製)20mg、(10mol%)を加えてから酸素雰囲気下110℃で48時間攪拌した。反応液を室温まで放冷し、トルエンを減圧留去してN,N−ジメチルエチレンジアミン(1.5mL)とDMF(1.5mL)を加えて150℃でさらに24時間攪拌した。反応液を室温まで放冷し、減圧濃縮した。残渣をエーテル(50mL)でメンブランフィルター(Millipore, Millex-LH、0.20mm)を用いてろ過した。ろ液を分液抽出し、有機層を無水硫酸ナトリウムで乾燥後ろ過した。ろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製したところ2−[2−(ジメチルアミノ)エチル]−10−ベンジル−1,2,3,10−テトラヒドロピロロ[3,4−a]カルバゾール−1,3−ジオン(1H NMR (400 MHz, CDCl3): δ 8.34 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.35-7.28 (m, 2H) 7.25-7.17 (m, 3H), 7.08 (d, J = 6.4 Hz, 2H), 6.30 (s, 2H), 3.79 (t, J = 6.8 Hz, 2H), 2.59 (t, J = 6.8 Hz, 2H), 2.28 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 169.0, 168.3, 142.4, 137.8, 136.7, 130.9, 130.2, 128.6, 128.1, 127.2, 126.3, 125.3, 122.5, 120.8, 120.7, 113.9, 113.3, 110.6, 57.1, 50.0, 45.5, 35.9; HRMS: m/z [M+H]+ Calcd for C25H24N3O2 398.1863; Found 398.1869.47mg、0.118mmol、59%)が1−Potで得られた。
Example 6
1-Pot Synthesis of Pyrrolocarbazoledione Derivatives:
The dehydrogenation reaction represented by the following formula was carried out in 1-Pot. First, dimethyl acetylenedicarboxylate (2a: 30 μL, 0.24 mmol) was added to a solution of N-benzyl-3-vinyl indole (1a: 46 mg, 0.2 mmol) in toluene (1 mL) at 150 ° C. under an argon atmosphere at 24 ° C. Stirred for hours. The reaction mixture was allowed to cool to room temperature, 20 mg (10 mol%) of 10% Ru carbon powder (dried product) K type (manufactured by N.E.Chemcat) was added, and then the mixture was stirred at 110 ° C. for 48 hours under an oxygen atmosphere. The reaction mixture was allowed to cool to room temperature, toluene was distilled off under reduced pressure, N, N-dimethylethylenediamine (1.5 mL) and DMF (1.5 mL) were added, and the mixture was further stirred at 150 ° C. for 24 hours. The reaction mixture was allowed to cool to room temperature and concentrated under reduced pressure. The residue was filtered through ether (50 mL) using a membrane filter (Millipore, Millex-LH, 0.20 mm). The filtrate was separated and extracted, and the organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography. 2- [2- (dimethylamino) ethyl] -10-benzyl-1,2,3,10-tetrahydropyrrolo [3,4-a] Carbazole-1,3-dione ( 1 H NMR (400 MHz, CDCl 3 ): δ 8.34 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.49-7.45 (m, 1H), 7.35-7.28 (m, 2H) 7.25-7.17 (m, 3H), 7.08 (d, J = 6.4 Hz, 2H), 6.30 (s, 2H) , 3.79 (t, J = 6.8 Hz, 2H), 2.59 (t, J = 6.8 Hz, 2H), 2.28 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 169.0, 168.3, 142.4, 137.8, 136.7, 130.9, 130.2, 128.6, 128.1, 127.2, 126.3, 125.3, 122.5, 120.8, 120.7, 113.9, 113.3, 110.6, 57.1, 50.0, 45.5, 35.9; HRMS: m / z [M + H] + Calcd For C 25 H 24 N 3 O 2 398.1863; Found 398.1869.47 mg, 0.118 mmol, 59%) was obtained in 1-Pot.

Figure 2021134141
Figure 2021134141

実 施 例 7
2-[2-(ジメチルアミノ)エチル]-6-ベンジル-1,2,3,6-テトラヒドロピロロ[3,4-e]インドール-1,3-ジオンの1−Pot合成:
実施例6において、基質をN−ベンジル−3−ビニルインドールにかえてN−ベンジル−2−ビニルピロールとした以外は同様に反応を行ったところ、2-[2-(ジメチルアミノ)エチル]-6-ベンジル-1,2,3,6-テトラヒドロピロロ[3,4-e]インドール-1,3-ジオン(1H NMR (400 MHz, CDCl3): δ 7.59 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 3.2 Hz, 1H), 7.33-7.29 (m, 3H), 7.09 (dd, J = 7.2, 1.6 Hz, 1H) , 7.05 (d, J = 3.2 Hz, 1H), 5.39 (s, 2H), 3.81 (t, J = 7.2 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.30 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 169.9, 169.5, 140.6, 136.2, 133.7, 129.0, 128.1, 126.6, 125.0, 124.3, 123.9, 116.0, 114.2, 101.2, 57.4, 50.6, 45.5, 35.7; HRMS: m/z [M+H]+ Calcd for C21H22N3O2 348.1707; Found 348.1706.)が1−Potで得られ、その収率は64%となった。
Example 7
1-Pot synthesis of 2- [2- (dimethylamino) ethyl] -6-benzyl-1,2,3,6-tetrahydropyrrolo [3,4-e] indole-1,3-dione:
In Example 6, the reaction was carried out in the same manner except that the substrate was replaced with N-benzyl-3-vinylindole to N-benzyl-2-vinylpyrrole. As a result, 2- [2- (dimethylamino) ethyl]- 6-benzyl-1,2,3,6-tetrahydropyrrolo [3,4-e] indol-1,3-dione ( 1 H NMR (400 MHz, CDCl 3 ): δ 7.59 (d, J = 8.0 Hz,) 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 3.2 Hz, 1H), 7.33-7.29 (m, 3H), 7.09 (dd, J = 7.2, 1.6 Hz, 1H), 7.05 (d, J = 3.2 Hz, 1H), 5.39 (s, 2H), 3.81 (t, J = 7.2 Hz, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.30 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ): δ 169.9, 169.5, 140.6, 136.2, 133.7, 129.0, 128.1, 126.6, 125.0, 124.3, 123.9, 116.0, 114.2, 101.2, 57.4, 50.6, 45.5, 35.7; HRMS: m / z [M + H] + Calcd for C 21 H 22 N 3 O 2 348.1707; Found 348.1706.) Was obtained in 1-Pot, and the yield was 64%.

Figure 2021134141
Figure 2021134141

本発明方法は、香料や抗菌剤などの医薬品やその合成中間体として知られているインドール等の芳香族化合物を製造するのに利用できる。 The method of the present invention can be used to produce pharmaceuticals such as fragrances and antibacterial agents and aromatic compounds such as indole known as synthetic intermediates thereof.

Claims (9)

シクロヘキサジエン類またはシクロヘキセン類を、溶媒と分子状酸素の存在下、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属の1種または2種以上を炭素担体に担持した不均一系貴金属触媒を用いて脱水素反応することを特徴とする芳香族化合物の製造方法。 A heterogeneous noble metal in which cyclohexadienes or cyclohexenes are supported on a carbon carrier in the presence of a solvent and molecular oxygen, with one or more noble metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium. A method for producing an aromatic compound, which comprises a dehydrogenation reaction using a catalyst. 溶媒が、水、トルエン、ジオキサンおよびt−ブチルアルコールからなる群から選ばれる溶媒の1種または2種以上である請求項1記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 1, wherein the solvent is one or more of the solvents selected from the group consisting of water, toluene, dioxane and t-butyl alcohol. 脱水素反応を50〜150℃で行う請求項1または2に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 1 or 2, wherein the dehydrogenation reaction is carried out at 50 to 150 ° C. シクロヘキサジエン類またはシクロヘキセン類が、複素環を有するものである請求項1〜3の何れかに記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to any one of claims 1 to 3, wherein the cyclohexadienes or cyclohexenes have a heterocycle. 反応容器中で、共役ジエンとジエノフィルをディールス・アルダー反応で付加重合させてシクロヘキサジエン類またはシクロヘキセン類を得て、次いで、同一反応容器中でシクロヘキサジエン類またはシクロヘキセン類を溶媒と分子状酸素の存在下、ルテニウム、イリジウム、パラジウム、白金およびロジウムからなる群から選ばれる貴金属の1種または2種以上を炭素担体に担持した不均一系貴金属触媒を用いて脱水素反応することを特徴とする芳香族化合物の製造方法。 In the reaction vessel, conjugated diene and dienophile are dehydrogenated by the Diels-Alder reaction to obtain cyclohexadienes or cyclohexenes, and then cyclohexadienes or cyclohexenes are used as a solvent and the presence of molecular oxygen in the same reaction vessel. Lower, aromatics characterized by dehydrogenation reaction using a heterogeneous noble metal catalyst in which one or more noble metals selected from the group consisting of ruthenium, iridium, palladium, platinum and rhodium are supported on a carbon carrier. Method for producing a compound. 溶媒が、水、トルエン、ジオキサンおよびt−ブチルアルコールからなる群から選ばれる溶媒の1種または2種以上である請求項5記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 5, wherein the solvent is one or more of the solvents selected from the group consisting of water, toluene, dioxane and t-butyl alcohol. 脱水素反応を50〜150℃で行う請求項5または6に記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to claim 5 or 6, wherein the dehydrogenation reaction is carried out at 50 to 150 ° C. シクロヘキサジエン類またはシクロヘキセン類が、複素環を有するものである請求項5〜7の何れかに記載の芳香族化合物の製造方法。 The method for producing an aromatic compound according to any one of claims 5 to 7, wherein the cyclohexadienes or cyclohexenes have a heterocycle. 下記化学式の何れかで表される芳香族化合物。
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
An aromatic compound represented by any of the following chemical formulas.
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
Figure 2021134141
JP2020028526A 2020-02-21 2020-02-21 Method for producing aromatic compound using heterogeneous noble metal catalyst Pending JP2021134141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028526A JP2021134141A (en) 2020-02-21 2020-02-21 Method for producing aromatic compound using heterogeneous noble metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028526A JP2021134141A (en) 2020-02-21 2020-02-21 Method for producing aromatic compound using heterogeneous noble metal catalyst

Publications (1)

Publication Number Publication Date
JP2021134141A true JP2021134141A (en) 2021-09-13

Family

ID=77660186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028526A Pending JP2021134141A (en) 2020-02-21 2020-02-21 Method for producing aromatic compound using heterogeneous noble metal catalyst

Country Status (1)

Country Link
JP (1) JP2021134141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831259A (en) * 2021-11-05 2021-12-24 内蒙古工业大学 Synthetic method of aromatic azo compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069072A (en) * 1973-07-18 1975-06-09
JPH023653A (en) * 1988-06-13 1990-01-09 Mitsui Toatsu Chem Inc Production of benzonitriles
JP2001131121A (en) * 1999-08-20 2001-05-15 Nippon Kayaku Co Ltd Production process of biphenyl derivative
JP2013133293A (en) * 2011-12-26 2013-07-08 Waseda Univ Method for producing indane and/or indene
JP2018197218A (en) * 2017-05-25 2018-12-13 エヌ・イーケムキャット株式会社 Manufacturing method of aromatic compound by dehydrogenation reaction of compound having cycloalkadiene or cycloalkene structure using heterogeneous palladium catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069072A (en) * 1973-07-18 1975-06-09
JPH023653A (en) * 1988-06-13 1990-01-09 Mitsui Toatsu Chem Inc Production of benzonitriles
JP2001131121A (en) * 1999-08-20 2001-05-15 Nippon Kayaku Co Ltd Production process of biphenyl derivative
JP2013133293A (en) * 2011-12-26 2013-07-08 Waseda Univ Method for producing indane and/or indene
JP2018197218A (en) * 2017-05-25 2018-12-13 エヌ・イーケムキャット株式会社 Manufacturing method of aromatic compound by dehydrogenation reaction of compound having cycloalkadiene or cycloalkene structure using heterogeneous palladium catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831259A (en) * 2021-11-05 2021-12-24 内蒙古工业大学 Synthetic method of aromatic azo compound
CN113831259B (en) * 2021-11-05 2023-07-25 内蒙古工业大学 Synthesis method of aromatic azo compound

Similar Documents

Publication Publication Date Title
EP2097431B1 (en) Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis
CN105175328B (en) It is a kind of using aromatic amine, aromatic aldehyde, ketone synthesis of quinoline derivatives method
WO2020057274A1 (en) Method for preparing substituted primary amine
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
CN102197016B (en) Process for preparation of benzonorbornenes
CN109134267B (en) Synthetic method of aromatic amine compound
JP4817527B2 (en) Method for producing piperidine
Schultz et al. 2, 4-Cyclohexadien-1-ones in organic synthesis. Further studies of molecular rearrangements occurring from products in intramolecular azide-olefin cycloadditions
CN108017579B (en) Method for synthesizing quinoline compound by oxidative dehydrogenation of tetrahydroquinoline compound under synergistic catalysis of visible light
JPWO2007063974A1 (en) Method for adding hydrogen to aromatic ring of aromatic ring compound
Anacardio et al. Palladium-Catalyzed Selective Carbonylation of Vinyl Triflates in the Presence of 2-Iodophenols: A New Route to 3-Spiro-Fused Benzofuran-2 (3H)-ones
JP6918577B2 (en) A method for producing an aromatic compound by a dehydrogenation reaction of a compound having a cycloalkane or cycloalkene structure using a heterogeneous palladium catalyst.
WO2008090078A1 (en) Method for the synthesis of rhein and derivatives thereof
CN113195460A (en) Enantioselective process
JP4258103B2 (en) cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl
CN108794378B (en) Synthesis method of indole-2, 3-diketone compound
US6048983A (en) Process for the preparation of benzopyran compounds
KR102088972B1 (en) Benzosulfamidate-fused-isoindoline compounds and method for the stereoselective preparation thereof
JP4112651B2 (en) Process for producing cis-hexahydroisoindoline
JP3008296B2 (en) Method for producing diaryl glycolic acid
Karmokar Oxidative Palladium Catalyzed Cross Coupling C-O Bond Formation: Synthesis of Aryl Benzoates
JPS63297363A (en) Production of 3-methylindoles
JPS63421B2 (en)
JP5039271B2 (en) 4- (Trialkylsilylethynyl) phenanthrene derivatives
CN117603129A (en) Method for preparing 2-substituted pyridine from succinic acid diester

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240626