JP4112651B2 - Process for producing cis-hexahydroisoindoline - Google Patents

Process for producing cis-hexahydroisoindoline Download PDF

Info

Publication number
JP4112651B2
JP4112651B2 JP12914297A JP12914297A JP4112651B2 JP 4112651 B2 JP4112651 B2 JP 4112651B2 JP 12914297 A JP12914297 A JP 12914297A JP 12914297 A JP12914297 A JP 12914297A JP 4112651 B2 JP4112651 B2 JP 4112651B2
Authority
JP
Japan
Prior art keywords
cis
hexahydroisoindoline
hexahydrophthalimide
borane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12914297A
Other languages
Japanese (ja)
Other versions
JPH10287648A (en
Inventor
哲聖 上條
敏章 山口
孝志 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kissei Pharmaceutical Co Ltd
Original Assignee
Kissei Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kissei Pharmaceutical Co Ltd filed Critical Kissei Pharmaceutical Co Ltd
Priority to JP12914297A priority Critical patent/JP4112651B2/en
Publication of JPH10287648A publication Critical patent/JPH10287648A/en
Application granted granted Critical
Publication of JP4112651B2 publication Critical patent/JP4112651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、シス−ヘキサヒドロフタルイミドをボラン試薬を用いて還元することを特徴とする、医薬品の製造原料として有用な、シス−ヘキサヒドロイソインドリンの製造方法に関するものである。
【0002】
更に詳しく述べれば、本発明は、シス−ヘキサヒドロフタルイミドをボラン試薬を用いて還元することを特徴とする、例えば、糖尿病治療薬として有用な、べンジルコハク酸誘導体(特開平4−356459号公報、特開平6−340623号公報)の製造原料であるシス−ヘキサヒドロイソインドリンの製造方法に関するものである。
【0003】
【従来の技術】
これまでに、シス−ヘキサヒドロイソインドリンの製造方法としては、シス−1,2,3,6−テトラヒドロフタルイミドをパラジウムの存在下に接触還元し、シス−ヘキサヒドロフタルイミドを得た後、水素化リチウムアルミニウムを用いて還元する方法が報告されている(WO94/03437号公報)。
【0004】
また、ヘキサヒドロイソインドリンの製造方法に関しては、1,2,3,6−テトラヒドロフタルイミドを水素化リチウムアルミニウムを用いて還元し、3a,4,7,7a−テトラヒドロイソインドリンを得た後、酸化白金を用いて接触還元する方法、テトラヒドロフタルイミドを金属触媒を用いて高圧接触還元する方法等が報告されている(J.Org.Chem.,20巻,1687−1694ページ(1955年)、特開平6−298727号公報)。
【0005】
【発明が解決しようとする課題】
本発明者らは、シス−ヘキサヒドロイソインドリンの製造方法を検討すべく、シス−1,2,3,6−テトラヒドロフタルイミドをパラジウムの存在下に接触還元し、シス−ヘキサヒドロフタルイミドを得た後、水素化リチウムアルミニウムで還元したところ、シス−ヘキサヒドロイソインドリンと共にトランス−ヘキサヒドロイソインドリンが副生することが判った。
【0006】
また、シス−1,2,3,6−テトラヒドロフタルイミドを水素化リチウムアルミニウムで還元し、シス−3a,4,7,7a−テトラヒドロイソインドリンを得た後、パラジウムの存在下に接触還元を行いシス−ヘキサヒドロイソインドリンを製造したところ、反応生成物中に副生物としてトランス−ヘキサヒドロイソインドリンが存在することが判った。
【0007】
副生物であるトランス体はシス体と同様に油状物質であり、その沸点はシス体の沸点と非常に近いため、精製上取り扱いが非常に煩わしく、通常行われる蒸留操作では分離精製が非常に困難である。
【0008】
通常、最終製品の品質向上および安定供給のために高品質の製造原料の供給が要求されるが、現在、トランス体を含有しないシス体の効率的な製造方法は確立されていない。
【0009】
さらに、前記製造方法において、還元剤として用いられる水素化リチウムアルミニウムは実験室レベルでは汎用される試薬であるが、工業生産規模での製造に用いるには反応性が高いため危険を伴う等の問題がある。また、前述の金属触媒を用いた高圧接触還元による方法は特別な製造装置および施設を必要とするものであり、必ずしも簡便な方法とは言えない。
【0010】
以上述べるように、トランス体の副生を伴うことなく、より簡便に実施でき、工業生産に好適な高品質のシス−ヘキサヒドロイソインドリンの製造方法の開発が望まれていた。
【0011】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究した結果、ボラン試薬を用いてシス−ヘキサヒドロフタルイミドを還元すると、トランス体を副生せずに立体を保持してシス−ヘキサヒドロイソインドリンが得られることを見出し、本発明を成すに至った。
【0012】
【発明の実施の形態】
本発明は新規なシス−ヘキサヒドロイソインドリンの製造方法に関するものであり、シス−ヘキサヒドロフタルイミドを不活性溶媒中、ボラン試薬を用いて還元することにより行うことができる。
【0013】
本発明の前記製造方法において使用されるボラン試薬とは、ボラン錯体またはジボランを反応系内で発生させることのできる試薬(例えば、Org.Reactions,1963年,13巻,1〜54ページ)を挙げることができ、好ましい試薬としては、ボラン−テトラヒドロフラン錯体、水素化ホウ素ナトリウム/三フッ化ホウ素−ジエチルエーテル錯体等を挙げることができる。
【0014】
本発明の前記製造方法において使用される不活性溶媒とは、本反応を阻害しない溶媒であれば使用することができるが、好ましくは、ジエチルエーテル、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル系溶媒を挙げることができ、特に好ましい溶媒としてはテトラヒドロフランを挙げることができる。
【0015】
また、本発明の前記製造方法において、使用される試薬の量はボランの量に換算して基質に対して2.3〜10倍モル量が好ましく、反応温度は0℃〜還流温度が好ましく、反応時間は普通2〜48時間で実施することができる。
【0016】
本発明の前記製造方法において製造されたシス−ヘキサヒドロイソインドリンは減圧蒸留または水蒸気蒸留により容易に精製することができる。
【0017】
本発明をより好適に実施する方法としては、テトラヒドロフラン中、氷冷攪拌下にシス−ヘキサヒドロフタルイミドに対して2.6倍モル量(ボラン換算)の水素化ホウ素ナトリウム/三フッ化ホウ素−ジエチルエーテル錯体を混合し、シス−ヘキサヒドロフタルイミドを加え、22〜24時間加熱還流する方法を挙げることができ、得られた反応生成物は、放冷後、塩酸を加え2時間加熱還流した後、反応混合物を減圧下に濃縮し、残渣を一旦酸性条件で水蒸気蒸留した後、再度、アルカリ条件下で水蒸気蒸留し、留分を酸性とした後、減圧濃縮し、残留物を常法に従い処理することにより精製することができる。
【0018】
本発明において、出発原料として用いられるシス−ヘキサヒドロフタルイミドは、例えば、シス−テトラヒドロフタルイミドをパラジウム等の金属触媒の存在下に接触還元するか、無水シス−ヘキサヒドロフタル酸を尿素、アンモニア等と加熱することにより製造することができる。
【0019】
このように、本発明のボラン試薬を用いたシス−ヘキサヒドロイソインドリンの製造方法は、副生物であるトランス体が全く生成することのない優れた製造方法である。また、温和かつ簡便に実施できる非常に有用な製造方法であり、工業生産に好適である。
【0020】
【実施例】
本発明を以下の参考例、実施例および比較例で更に詳細に説明するが、本発明はその内容に限定されるものではない。なお、実施例および比較例におけるガスクロマトグラフィー分析は以下の条件で実施した。
使用カラム:GL Science社 NEUTRABOND−5(0.25mm i.d.×60m、膜厚1.5μm)
カラム温度:100℃(1min.)〜10℃/min.〜160℃(8min.)〜10℃/min.〜220℃
注入口温度:150℃
キャリアーガス:ヘリウム
流量:3ml/min.
検出器:水素炎イオン化検出器
スプリット比:33:1
【0021】
参考例1
シス−ヘキサヒドロフタルイミド
シス−1,2,3,6−テトラヒドロフタルイミド51.6gをメタノール500mlに溶かし、10%パラジウム炭素2.0gを加え、水素気流中、室温常圧下で2日間攪拌した。不溶物をろ去し、ろ液を減圧下に濃縮した後、残渣をメタノールから再結晶し、無色結晶のシス−ヘキサヒドロフタルイミド47.78gを得た。
【0022】
H−NMR(CDCl)δppm:
1.4−1.55(m,4H),1.7−2.0(m,4H),2.85−3.0(m,2H),8.2−8.6(br,1H)
【0023】
参考例2
シス−ヘキサヒドロフタルイミド
無水シス−ヘキサヒドロフタル酸3.59gおよび尿素1.54gを混合し、160℃で加熱溶融し、そのまま1時間攪拌した。放冷後、反応混合物に水4mlを加え、氷冷し析出した結晶をろ取し、無色結晶のシス−ヘキサヒドロフタルイミド2.80gを得た。物性値は参考例1の化合物と一致した。
【0024】
実施例1
ボラン−テトラヒドロフラン錯体を用いたシス−ヘキサヒドロフタルイミドの還元
シス−ヘキサヒドロフタルイミド3.00gの乾燥テトラヒドロフラン20ml溶液に、アルゴン気流中、氷冷攪拌下に1.0モル濃度ボラン−テトラヒドロフラン錯体テトラヒドロフラン溶液60mlを滴下し、24時間加熱還流した。放冷後、氷冷下に濃塩酸20mlを加え、2時間加熱還流した後、減圧下に溶媒を留去した。残渣を水蒸気蒸留にて120ml蒸留した後、残渣に氷冷下、水酸化ナトリウムを加えアルカリ性として、再び水蒸気蒸留を行った。約100mlの留液に濃塩酸3mlを加えた後、減圧濃縮し、無色結晶のシス−ヘキサヒドロイソインドリン塩酸塩1.51gを得た。
【0025】
H−NMR(DMSO−d)δppm:
1.25−1.65(m,8H),2.15−2.3(m,2H),2.85−3.2(m,4H),9.5−10.0(br,2H)
【0026】
シス−ヘキサヒドロイソインドリン塩酸塩0.5gを水0.2mlに溶かし、室温攪拌下に水酸化ナトリウム185mgを加えた。反応液に塩化メチレン5mlを加え激しく攪拌した後、反応液を無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去した後、残渣を減圧蒸留し、無色の油状物345mgを得た。得られた油状物をガスクロマトグラフィーで分析したところ、この油状物は100%シス−ヘキサヒドロイソインドリンであり、トランス体の存在は確認されなかった。
【0027】
H−NMR(CDCl)δppm:
1.2−1.7(m,8H),2.0−2.5(m,2H),2.33(brs,1H),2.7−2.85(m,2H),2.85−3.0(m,2H)
【0028】
実施例2
水素化ホウ素ナトリウム/三フッ化ホウ素−ジエチルエーテル錯体を用いたシス−ヘキサヒドロフタルイミドの還元
水素化ホウ素ナトリウム1.68gの乾燥テトラヒドロフラン20ml溶液にアルゴン気流中、氷冷攪拌下に三フッ化ホウ素−ジエチルエーテル錯体6.6mlを加えた。混合液にシス−ヘキサヒドロフタルイミド3.00gの乾燥テトラヒドロフラン40ml溶液を加え、23時間加熱還流し、以下実施例1と同様に処理して、無色結晶のシス−ヘキサヒドロイソインドリン塩酸塩1.73gを得た。ここで得られたシス−ヘキサヒドロイソインドリン塩酸塩を実施例1と同様に処理して油状物を得た。得られた油状物をガスクロマトグラフィーで分析したところ、この油状物は100%シス−ヘキサヒドロイソインドリンであり、トランス体の存在は確認されなかった。なお、物性値は実施例1の化合物と一致した。
【0029】
比較例1
シス−1,2,3,6−テトラヒドロフタルイミドの水素化リチウムアルミニウムでの還元および還元成績体の接触還元
水素化リチウムアルミニウム7.6gの乾燥テトラヒドロフラン150ml懸濁液にアルゴン気流中、80℃攪拌下にシス−1,2,3,6−テトラヒドロフタルイミド15.1gの乾燥テトラヒドロフラン100ml溶液を滴下した。一晩加熱還流した後、反応混合物を氷冷し、水10mlを少しずつ加えた。析出物をろ去し、ろ液を減圧濃縮した後、残渣を減圧蒸留(96〜103℃/20mmHg)し、無色油状の3a,4,7,7a−テトラヒドロイソインドリン6.6gを得た。
【0030】
3a,4,7,7a−テトラヒドロイソインドリン2.00gのエタノール3ml溶液に10%パラジウム炭素0.1gを加え、水素気流中、室温常圧下で一晩攪拌した。不溶物をろ去し、ろ液を減圧下に濃縮した後、残渣を減圧蒸留(88〜92℃/20mmHg)し、無色の油状物1.42gを得た。得られた油状物をガスクロマトグラフィーで分析したところ、この油状物はシス−ヘキサヒドロイソインドリンとトランス−ヘキサヒドロイソインドリンの混合物であり、その存在比は94.46:5.54であった。
【0031】
比較例2
シス−ヘキサヒドロフタルイミドの水素化リチウムアルミニウムでの還元
水素化リチウムアルミニウム1.52gの乾燥テトラヒドロフラン20ml懸濁液にアルゴン気流中、シス−ヘキサヒドロフタルイミド3.06gの乾燥テトラヒドロフラン15ml溶液を滴下し、一晩加熱還流した。放冷後、反応液に水を加え不溶物をろ去し、ろ液を減圧下に濃縮した後、残渣を減圧蒸留(92〜99℃/20mmHg)し、無色の油状物1.40gを得た。得られた油状物をガスクロマトグラフィーで分析したところ、この油状物はシス−ヘキサヒドロイソインドリンとトランス−ヘキサヒドロイソインドリンの混合物であり、その存在比は98.87:1.13であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing cis-hexahydroisoindoline useful as a raw material for producing pharmaceuticals, characterized by reducing cis-hexahydrophthalimide using a borane reagent.
[0002]
More specifically, the present invention is characterized in that cis-hexahydrophthalimide is reduced using a borane reagent, for example, a benzyl succinic acid derivative useful as a therapeutic agent for diabetes (Japanese Patent Laid-Open No. 4-356458, The present invention relates to a method for producing cis-hexahydroisoindoline, which is a production raw material of JP-A-6-340623.
[0003]
[Prior art]
Until now, cis-hexahydroisoindoline has been produced by catalytic reduction of cis-1,2,3,6-tetrahydrophthalimide in the presence of palladium to obtain cis-hexahydrophthalimide, followed by hydrogenation. A method of reducing using lithium aluminum has been reported (WO94 / 03437).
[0004]
As for the method for producing hexahydroisoindoline, 1,2,3,6-tetrahydrophthalimide is reduced with lithium aluminum hydride to obtain 3a, 4,7,7a-tetrahydroisoindoline, and then oxidized. A method of catalytic reduction using platinum, a method of high-pressure catalytic reduction of tetrahydrophthalimide using a metal catalyst, etc. have been reported (J. Org. Chem., 20, 1687-1694 (1955), Japanese Patent Laid-Open 6-298727).
[0005]
[Problems to be solved by the invention]
In order to examine the production method of cis-hexahydroisoindoline, the present inventors catalytically reduced cis-1,2,3,6-tetrahydrophthalimide in the presence of palladium to obtain cis-hexahydrophthalimide. Thereafter, reduction with lithium aluminum hydride revealed that trans-hexahydroisoindoline was produced as a by-product together with cis-hexahydroisoindoline.
[0006]
Also, cis-1,2,3,6-tetrahydrophthalimide is reduced with lithium aluminum hydride to obtain cis-3a, 4,7,7a-tetrahydroisoindoline, and then catalytic reduction is performed in the presence of palladium. When cis-hexahydroisoindoline was produced, it was found that trans-hexahydroisoindoline was present as a by-product in the reaction product.
[0007]
The trans product, which is a by-product, is an oily substance similar to the cis product, and its boiling point is very close to the boiling point of the cis product. It is.
[0008]
Usually, supply of a high-quality production raw material is required for improving the quality and stable supply of the final product, but at present, an efficient method for producing a cis isomer that does not contain a trans isomer has not been established.
[0009]
Furthermore, in the above production method, lithium aluminum hydride used as a reducing agent is a reagent widely used at the laboratory level, but there is a problem such as danger because it is highly reactive for use in production on an industrial production scale. There is. Further, the above-described method using high-pressure catalytic reduction using a metal catalyst requires a special production apparatus and facility, and is not necessarily a simple method.
[0010]
As described above, it has been desired to develop a method for producing a high-quality cis-hexahydroisoindoline that can be carried out more easily without accompanying by-product of the trans form and is suitable for industrial production.
[0011]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have reduced cis-hexahydrophthalimide using a borane reagent and retained the steric form without generating a trans form as a by-product. The inventors have found that indoline can be obtained and have accomplished the present invention.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a novel process for producing cis-hexahydroisoindoline, which can be carried out by reducing cis-hexahydrophthalimide in an inert solvent using a borane reagent.
[0013]
The borane reagent used in the production method of the present invention includes a reagent capable of generating a borane complex or diborane in the reaction system (for example, Org. Reactions, 1963, Vol. 13, pages 1 to 54). Preferred examples of the reagent include borane-tetrahydrofuran complex, sodium borohydride / boron trifluoride-diethyl ether complex, and the like.
[0014]
The inert solvent used in the production method of the present invention can be used as long as it does not inhibit this reaction, and preferably includes ether solvents such as diethyl ether, tetrahydrofuran, diethylene glycol dimethyl ether and the like. Tetrahydrofuran can be mentioned as a particularly preferred solvent.
[0015]
In the production method of the present invention, the amount of the reagent used is preferably 2.3 to 10 times the molar amount of the substrate in terms of the amount of borane, and the reaction temperature is preferably 0 ° C. to reflux temperature. The reaction time is usually 2 to 48 hours.
[0016]
The cis-hexahydroisoindoline produced in the production method of the present invention can be easily purified by vacuum distillation or steam distillation.
[0017]
As a method for carrying out the present invention more suitably, sodium borohydride / boron trifluoride-diethyl in 2.6-fold molar amount (in terms of borane) with respect to cis-hexahydrophthalimide in tetrahydrofuran with stirring under ice-cooling. A method of mixing an ether complex, adding cis-hexahydrophthalimide and heating to reflux for 22 to 24 hours can be mentioned. After cooling, the resulting reaction product was added with hydrochloric acid and heated to reflux for 2 hours. The reaction mixture is concentrated under reduced pressure, and the residue is once steam-distilled under acidic conditions, then again steam-distilled under alkaline conditions to acidify the fraction, and then concentrated under reduced pressure, and the residue is treated according to a conventional method. Can be purified.
[0018]
In the present invention, the cis-hexahydrophthalimide used as a starting material is, for example, catalytically reducing cis-tetrahydrophthalimide in the presence of a metal catalyst such as palladium, or cis-hexahydrophthalic anhydride with urea, ammonia or the like. It can be manufactured by heating.
[0019]
Thus, the method for producing cis-hexahydroisoindoline using the borane reagent of the present invention is an excellent method for producing no trans product as a by-product. Moreover, it is a very useful manufacturing method which can be carried out mildly and simply, and is suitable for industrial production.
[0020]
【Example】
The present invention will be described in more detail with reference to the following reference examples, examples and comparative examples, but the present invention is not limited to the contents thereof. In addition, the gas chromatography analysis in an Example and a comparative example was implemented on condition of the following.
Column used: GL Science Company NEUTRABOND-5 (0.25 mm id × 60 m, film thickness 1.5 μm)
Column temperature: 100 ° C. (1 min.) To 10 ° C./min. -160 ° C (8 min.)-10 ° C / min. ~ 220 ° C
Inlet temperature: 150 ° C
Carrier gas: helium flow rate: 3 ml / min.
Detector: Hydrogen flame ionization detector Split ratio: 33: 1
[0021]
Reference example 1
51.6 g of cis-hexahydrophthalimide cis-1,2,3,6-tetrahydrophthalimide was dissolved in 500 ml of methanol, 2.0 g of 10% palladium carbon was added, and the mixture was stirred in a hydrogen stream at room temperature and normal pressure for 2 days. Insoluble matter was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was recrystallized from methanol to obtain 47.78 g of cis-hexahydrophthalimide as colorless crystals.
[0022]
1 H-NMR (CDCl 3 ) δ ppm:
1.4-1.55 (m, 4H), 1.7-2.0 (m, 4H), 2.85-3.0 (m, 2H), 8.2-8.6 (br, 1H) )
[0023]
Reference example 2
Cis-hexahydrophthalimide 3.59 g of cis-hexahydrophthalic anhydride and 1.54 g of urea were mixed, heated and melted at 160 ° C., and stirred as it was for 1 hour. After allowing to cool, 4 ml of water was added to the reaction mixture, and the mixture was cooled with ice. The precipitated crystals were collected by filtration to obtain 2.80 g of colorless crystals of cis-hexahydrophthalimide. The physical property values agreed with those of the compound of Reference Example 1.
[0024]
Example 1
Reduction of cis-hexahydrophthalimide using borane-tetrahydrofuran complex 60 ml of 1.0 molar borane-tetrahydrofuran complex tetrahydrofuran solution in a 20 ml dry tetrahydrofuran solution of 3.00 g of cis-hexahydrophthalimide in an argon stream under ice-cooling and stirring. Was added dropwise and heated to reflux for 24 hours. After allowing to cool, 20 ml of concentrated hydrochloric acid was added under ice cooling, and the mixture was heated to reflux for 2 hours, and then the solvent was distilled off under reduced pressure. After 120 ml of the residue was distilled by steam distillation, the residue was made alkaline by adding sodium hydroxide under ice cooling, and steam distillation was performed again. After adding 3 ml of concentrated hydrochloric acid to about 100 ml of the distillate, the filtrate was concentrated under reduced pressure to obtain 1.51 g of cis-hexahydroisoindoline hydrochloride as colorless crystals.
[0025]
1 H-NMR (DMSO-d 6 ) δ ppm:
1.25-1.65 (m, 8H), 2.15-2.3 (m, 2H), 2.85-3.2 (m, 4H), 9.5-10.0 (br, 2H) )
[0026]
0.5 g of cis-hexahydroisoindoline hydrochloride was dissolved in 0.2 ml of water, and 185 mg of sodium hydroxide was added with stirring at room temperature. After adding 5 ml of methylene chloride to the reaction solution and stirring vigorously, the reaction solution was dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, the residue was distilled under reduced pressure to obtain 345 mg of a colorless oil. When the obtained oil was analyzed by gas chromatography, this oil was 100% cis-hexahydroisoindoline, and the presence of the trans isomer was not confirmed.
[0027]
1 H-NMR (CDCl 3 ) δ ppm:
1.2-1.7 (m, 8H), 2.0-2.5 (m, 2H), 2.33 (brs, 1H), 2.7-2.85 (m, 2H), 2. 85-3.0 (m, 2H)
[0028]
Example 2
Reduction of cis-hexahydrophthalimide with sodium borohydride / boron trifluoride-diethyl ether complex 1.68 g of sodium borohydride in 20 ml of dry tetrahydrofuran Boron trifluoride- 6.6 ml of diethyl ether complex was added. To the mixed solution was added a solution of 3.00 g of cis-hexahydrophthalimide in 40 ml of dry tetrahydrofuran, heated under reflux for 23 hours, and treated in the same manner as in Example 1 to obtain 1.73 g of colorless crystals of cis-hexahydroisoindoline hydrochloride. Got. The cis-hexahydroisoindoline hydrochloride obtained here was treated in the same manner as in Example 1 to obtain an oily substance. When the obtained oil was analyzed by gas chromatography, this oil was 100% cis-hexahydroisoindoline, and the presence of the trans isomer was not confirmed. The physical property values were the same as those of the compound of Example 1.
[0029]
Comparative Example 1
Reduction of cis-1,2,3,6-tetrahydrophthalimide with lithium aluminum hydride and catalytic reduction of the resulting product Reduction of lithium aluminum hydride (7.6 g) in a dry tetrahydrofuran (150 ml) suspension in an argon stream at 80 ° C. with stirring A solution of 15.1 g of cis-1,2,3,6-tetrahydrophthalimide in 100 ml of dry tetrahydrofuran was added dropwise. After heating to reflux overnight, the reaction mixture was ice-cooled and 10 ml of water was added little by little. The precipitate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was distilled under reduced pressure (96 to 103 ° C./20 mmHg) to obtain 6.6 g of colorless oily 3a, 4,7,7a-tetrahydroisoindoline.
[0030]
To a solution of 3a, 4,7,7a-tetrahydroisoindoline (2.00 g) in ethanol (3 ml) was added 10% palladium carbon (0.1 g), and the mixture was stirred overnight at room temperature and normal pressure in a hydrogen stream. The insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was distilled under reduced pressure (88-92 ° C./20 mmHg) to obtain 1.42 g of a colorless oil. When the obtained oil was analyzed by gas chromatography, this oil was a mixture of cis-hexahydroisoindoline and trans-hexahydroisoindoline, and the abundance ratio was 94.46: 5.54. .
[0031]
Comparative Example 2
Reduction of cis-hexahydrophthalimide with lithium aluminum hydride 1.52 g of lithium aluminum hydride suspension in 20 ml of dry tetrahydrofuran In a stream of argon, a solution of 3.06 g of cis-hexahydrophthalimide in 15 ml of dry tetrahydrofuran was added dropwise. Refluxed overnight. After allowing to cool, water was added to the reaction solution, the insoluble material was removed by filtration, the filtrate was concentrated under reduced pressure, and the residue was distilled under reduced pressure (92-99 ° C / 20 mmHg) to obtain 1.40 g of a colorless oil. It was. When the obtained oil was analyzed by gas chromatography, this oil was a mixture of cis-hexahydroisoindoline and trans-hexahydroisoindoline, and the abundance ratio was 98.87: 1.13. .

Claims (2)

シス−ヘキサヒドロフタルイミドをボラン試薬を用いて還元することを特徴とするシス−ヘキサヒドロイソインドリンの製造方法。A method for producing cis-hexahydroisoindoline, comprising reducing cis-hexahydrophthalimide using a borane reagent. ボラン試薬がボラン−テトラヒドロフラン錯体または水素化ホウ素ナトリウム/三フッ化ホウ素−ジエチルエーテル錯体である請求項1記載のシス−ヘキサヒドロイソインドリンの製造方法。The method for producing cis-hexahydroisoindoline according to claim 1, wherein the borane reagent is borane-tetrahydrofuran complex or sodium borohydride / boron trifluoride-diethyl ether complex.
JP12914297A 1997-04-10 1997-04-10 Process for producing cis-hexahydroisoindoline Expired - Lifetime JP4112651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12914297A JP4112651B2 (en) 1997-04-10 1997-04-10 Process for producing cis-hexahydroisoindoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12914297A JP4112651B2 (en) 1997-04-10 1997-04-10 Process for producing cis-hexahydroisoindoline

Publications (2)

Publication Number Publication Date
JPH10287648A JPH10287648A (en) 1998-10-27
JP4112651B2 true JP4112651B2 (en) 2008-07-02

Family

ID=15002170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12914297A Expired - Lifetime JP4112651B2 (en) 1997-04-10 1997-04-10 Process for producing cis-hexahydroisoindoline

Country Status (1)

Country Link
JP (1) JP4112651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003284592A1 (en) * 2002-11-25 2004-06-18 New Japan Chemical Co., Ltd. Process for producing cyclic amine
CN103497139B (en) * 2013-10-18 2015-10-28 河南中医学院 A kind of method utilizing boron lithium thing to prepare cis-hexahydroisoindoline

Also Published As

Publication number Publication date
JPH10287648A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US20040106818A1 (en) Process for the preparation of cyclohexanol derivatives
TW526192B (en) Process for producing optically active alcohol
TW483882B (en) Process for the production of 6-aminocapronitrile and/or hexamethylenediamine
JP2010202666A (en) Method for producing hydroxyethylcyclohexane and hydroxyethylpiperidine
JP4112651B2 (en) Process for producing cis-hexahydroisoindoline
JPS63230694A (en) Manufacture of silane of siloxane having at least one cycloalkyl ring
CN111454166B (en) Process for the preparation of (2S,3S) -3-amino-bicyclo [2.2.2] octane-2-carboxylate
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
JPS63297363A (en) Production of 3-methylindoles
TW593228B (en) Production of alkyl 6-aminocaproate
CN107445879B (en) Preparation method of Latricinib intermediate
JPH01121268A (en) Production of 3,5-dichloropyridine
JP2002030048A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-METHYL- BIS-3,5-(TRIFLUOROMETHYL)BENZYLAMINE
JPH06199705A (en) Production of tetralin derivative
JP2002506845A (en) Method for producing 4-substituted cis-cyclohexylamine
JP4178345B2 (en) Standard product of 1-phenyl-4- (1-phenylethyl) tetralin for styrene oligomer analysis
JPH02180856A (en) Nitroamine
JPS624266A (en) Novel 4-pyridyl-4-cyanopimelic acid ester and production thereof
CN116063347A (en) Phosphine-1, 2-diphenyl ethylenediamine ligand with chiral benzene ring framework, and preparation method and application thereof
JPS63141964A (en) Production of 4-piperidinopiperidines
JPH05310631A (en) Production of 1,6-hexanedial
CN116891418A (en) Method for synthesizing amide by directly oxidizing and coupling amine
MXPA04006772A (en) Process for the preparation of phytone.
JPS63192751A (en) Production of 4-hydroxypiperidine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term