JP4258103B2 - cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl - Google Patents
cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl Download PDFInfo
- Publication number
- JP4258103B2 JP4258103B2 JP2000191050A JP2000191050A JP4258103B2 JP 4258103 B2 JP4258103 B2 JP 4258103B2 JP 2000191050 A JP2000191050 A JP 2000191050A JP 2000191050 A JP2000191050 A JP 2000191050A JP 4258103 B2 JP4258103 B2 JP 4258103B2
- Authority
- JP
- Japan
- Prior art keywords
- tetramethyl
- tetracarboxylate
- dicyclohexyl
- cis
- dctm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル、および1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルと(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルとのラセミ体に関する。
【0002】
【従来の技術】
テトラカルボン酸テトラエステル類は耐熱性に優れたポリイミド樹脂の原料であるテトラカルボン酸ジ無水物の前駆体として有用な化合物である。
ベンゼン環を水素還元して対応のシクロヘキサン環へ変換することはよく知られており、例えば、synthetic communication,25,2079(1995)、特開平10‐36320号公報、特開平11‐189568号公報、特開平11‐349535号公報、特開平10‐204002号公報、特公平8‐30045号公報などに報告されている。
ビフェニル‐3,3’4,4’‐テトラカルボン酸テトラメチル(BPTMと略記)を水素還元すると、生成物には6個の不斉炭素が存在し、従って、26個の異性体が可能である。BPTMの水素還元についても、特開平7‐215912号公報、特開平8‐325196号公報、特開平8‐325201号公報などに報告されている。
【0003】
【発明が解決しようとする課題】
これらの報告では、異性体について一切ふれておらず、混合物のみについて言及している。
この発明は、多数の異性体混合物から特定の異性体を得ることを目的として、鋭意検討した。
【0004】
【課題を解決するための手段】
この発明は、(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐xと略記することもある)に関する。
また、この発明は、(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐yと略記することもある)と(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐zと略記することもある)とのラセミ体に関する。
【0005】
この発明のcis‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルの各異性体は、好適にはビフェニル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、BPTMと略記することもある)を水素還元して得た生成物(DCTM)を再結晶して、優先的にcis構造の異性体を分離し、これをさらに優先晶出法により、各異性体を単離することによって得ることができる。
【0006】
前記のBPTMを水素還元してDCTMとして、異性体が生成する反応式を次に示す。
【化1】
【0007】
前記の出発物質として用いるBPTMは、例えば特公昭60‐33379号公報に記載のフタル酸ジメチルを酸素、パラジウム塩および1,10−フェナントロリンまたはビピリジルの存在下にカップリングさせてビフェニル化合物を製造する方法によって容易に合成することができる。
【0008】
前記の水素還元は公知の方法が適用できて、溶媒としてはメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどの通常の有機溶媒が使用できる。溶媒の使用量はBPTMが十分溶解する量であれば特定されないが、通常、10gのBPTMに対して25〜100mLである。
【0009】
前記水素還元には、触媒として0.1〜10重量%担持のRu/C(カ−ボン)、Rh/C、Pd/C、あるいは、これらのアルミナ担持体、シリカ担持体などを使用できる。触媒量は10gのBPTMに対して0.1〜0.5gで十分である。反応条件としては、常圧でも進行するが、速度をあげるためには、加圧下に行う方がよく、2〜100気圧、好ましくは10〜50気圧で十分である。反応温度は50〜250℃、好ましくは100〜200℃で行う。反応を完結するために1〜10時間の反応を行う。反応は水素の吸収が終了するまで行い、通常、100℃では5時間程度で終了する。反応方法に限定されないが、水素を連続的に追加供給するとよい。
【0010】
反応液から濾過などの操作で触媒を除いた後、溶媒を除去すると粘凋な固体が生成物として残る。
この生成混合物から,cis‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM)は適当な溶媒中にて再結晶、または、減圧下に蒸留して、特定留分を集めることで得られる。
前記の再結晶に使用する溶媒はメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどの通常の有機溶媒が使用できる。その使用量は、この生成物100g当たり200〜1000mLである。
【0011】
この際、cis異性体が優先的に析出する。キャピラリ−クロマトグラフィ−(CGC)では、単一ピ−クを示すが、高速液体クロマトグラフィ−(HPLC)ではChiralcelODカラムを用いて分析すると3本のピ−クを示した。そこで、このcis異性体を通常の優先晶出法により分割した。
この分離に使用する溶媒はメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどを使用できる。使用量に限定はないが、100g当たり200〜500mL程度で繰り返し晶析して、純品の異性体を得ることができる。結晶の純度を上げるためには、20〜40℃程度の温度で晶析するのが良い。構造は単結晶を生長させることにより、最終的にはX線解析から決定することができる。
【0012】
この発明の1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐x)の化学式を次に示す。
【0013】
【化2】
【0014】
この発明における(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐y)は、次の化学式で表わすことができる。
【0015】
【化3】
【0016】
この発明における(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐z)は、次の化学式で表わすことができる。
【0017】
【化4】
【0018】
【実施例】
以下、実施例によってこの発明を具体的に説明するが、この発明はこれらの実施例に限定されるものではない。
【0019】
以下の実施例において、キャピラリ−クロマトグラフィ−は、日立GC263−70、カラム:DB−5(J&W Scientific)5%Phenyl−95%methylpolysiloxane0.25μm厚さ、0.25mmφ、60m、カラム温度275℃、にて測定した。
高速液体クロマトグラフィ−は島津SCL−10A、カラム:Chiralcel OD(ダイセル化学工業)0.46cmφ、25cm、20℃、EtOH/n−hexane(10/90)、0.5mL/minにて測定した。
1HNMRスペクトル(400MHz)は日本電子 JEOL 400X,CDCl3溶液、25℃にて測定した。
13CNMRスペクトル(100MHz)は日本電子JEOL 400X,CDCl3溶液、25℃にて測定した。
FTIRスペクトルは日本電子JIR−5500KBr錠剤法にて測定した。
質量スペクトルは日立M−80B、イオン化電圧70eVにて測定した。
単結晶X線解析は理学電機株式会社製のRASA‐7R型4軸回折装置、25℃にて測定した。
【0020】
(合成例1)
10gのBPTM、0.5gの5%Ru/C、およびテトラヒドロフラン50mLを300mL容のロッキング式オ−トクレ−ブに仕込み、水素50kg/cm2に加圧して100℃で5時間、振とうした(約3時間で水素の吸収が終了)。反応液をNo5cのろ紙を用い濾過後、テトラヒドロフランを留去して9.63gの粘凋な生成物を得た。CGCより、cis含量は73.1%であった。
【0021】
(合成例2)
10gのBPTM、0.5gの5%Rh/C、およびテトラヒドロフラン50mLを300mL容量のロッキング式オ−トクレ−ブに仕込み、水素50kg/cm2に加圧して100℃で5時間、振とうした(約1.5時間で水素の吸収が終了)。反応液をNo5cのろ紙を用い濾過後、テトラヒドロフランを留去して9.67gの粘凋な生成物を得た。CGCより、cis含量は77.7%であった。
【0022】
(合成例3)
10gのBPTM、0.5gの10%Pd/C、およびテトラヒドロフラン50mLを300mL容量のロッキング式オ−トクレ−ブに仕込み、水素50kg/cm2に加圧して200℃で7時間、振とうした(水素の吸収が遅い)。反応液をNo5cのろ紙を用い濾過した後,テトラヒドロフランを留去して9.82gの粘凋な生成物を得た。CGCより、cis含量は70.1%であった。
以上の結果において、cisの内訳に大差はなく、HPLCより、cis‐DCTM‐x/cis‐DCTM‐y/cis‐DCTM‐z=51/28/21であった。
なお、Fluofix120Eカラムでは、cis‐DCTM‐yとcis‐DCTM‐zが重なって一本のピ−クとなる。
【0023】
実施例1
500mL回転式オ−トクレ−ブに100gのBPTM、2.5gの5%Rh/C、およびテトラヒドロフラン200mLを仕込み、水素30kg/cm2の定圧下に100℃で、300rpmにて5.5時間、加熱した(約5時間で水素の吸収が終了)。反応液をNo5cのろ紙を用いて濾過した後、テトラヒドロフランを留去して101.8g(収率99%)の粘凋な生成物を得た。これを400mLのメタノ−ルに溶解させて晶析させて、72gのcis‐DCTMを得た。
同様の操作によって得られた、100gのcis‐DCTM(x/(y+z)=51/49):融点 ℃ を200mLのテトラヒドロフランに溶解させ、ゆっくりと晶析させた。結晶を分離して後,テトラヒドロフラン(1:2比)から、晶析を三回繰り返して100%純度のcis‐DCTM‐x(8.5g)を得た。
【0024】
実施例2
晶析途中の50gのcis‐DCTM(x/(y+z)=60/40):融点℃ を100mLのテトラヒドロフランに溶解させ、ゆっくりと晶析させた。結晶を分離して後、再度テトラヒドロフラン(1:2比)から晶析を繰り返して100%純度のcis‐DCTM‐x(11.6g)を得た。
【0025】
実施例3
晶析途中の40gのcis‐DCTM(x/(y+z)=32/68):融点℃を80mLのテトラヒドロフランに溶解させ、ゆっくりと晶析させた。結晶を分離して後、再度テトラヒドロフラン(1:2比)から晶析を繰り返して100%純度のcis‐DCTM‐(y+z)(9.0g)を得た。
【0026】
実施例4
100gのcis‐DCTMを4倍量のメタノ−ルに溶かし、ゆっくりと晶析させた。メタノ−ル(1:4比)から、晶析を4回繰り返して100%純度のcis‐DCTM‐x(8.2g)を得た。同様な操作を繰り返し、cis‐DCTM‐xおよびcis‐DCTM‐(y+z)を分割した。
【0027】
(cis‐DCTM‐xの構造確認)
cis‐DCTM‐xのメタノ−ル稀薄溶液を作製し、ゆっくりと自然蒸発させて,単結晶を得た。理学電機株式会社製のRASA‐7R型4軸回折装置にてX線解析を行い、図1の分子構造を得た。結晶デ−タは三斜晶、空間群P−1(No2)、a=9.550(1)、b=13.3351(6)、c=8.732(1)オングストロ−ム、α=102.561(7)、β=104.45(1)、γ=95.706(7)°、Z=2、R=0.051であった。
C20H30O8(398,45):計算値、C60.3、H7.6;実測値、C60.1、H7.5;融点:125−126℃,IR、ν(CO)、1741、1732cm-1、MS、m/z=398(M+)
【0028】
(cis‐DCTM‐yの構造確認)
cis‐DCTM‐(y+z)のメタノ−ル稀薄溶液を作製し、ゆっくりと自然蒸発させて、単結晶(yとzが等量から成る)を得た。理学電機株式会社製のRASA‐7R型4軸回折装置にてX線解析を行い、分子構造を得た。結晶デ−タは三斜晶、空間群P−1(No2)、a=11.613(1)、b=13.202(1)、c=7.0801(9)オングストロ−ム、α=102.448(8)、β=101.854(9)、γ=93.062(8)°、Z=2、R=0.046であった。
cis‐DCTM‐yとcis‐DCTM‐zは反転対称の関係にあり、cis‐DCTM‐zの分子構造を推定できた。
cis‐DCTM‐(y+z)(等量混合物、ラセミ)
C20H30O8(398、45):計算値、C60.3、H7.6;実測値、C60.0、H7.5;融点:111−113℃、IR、ν(CO),1722cm-1、MS、m/z=398(M+)
【0029】
(NMRによる確認)
cis‐DCTM‐xの1HNMRから、3,4および3’,4’位のプロトンの拡大図を見ると、3.20ppmのピ−クは分裂が小さく、これはエカトリアル位のプロトン(A)に、また、2.40ppmのピ−クは分裂が大きく、アキシャル位のプロトン(B)に帰属した。このプロトン(B)はダブルトリプレット(J(BF)=12.7Hz、J(BE)=J(BA)=3.9Hz)を示した。なお、二次元H―H COSYスペクトル、およびC‐H COSYスペクトルより、シクロヘキサン環のプロトンおよび炭素の帰属を行った。また、13CNMRを得た。
cis‐DCTM‐(y+z)と合わせて、これらの結果を表1(1HNMR)および表2(13CNMR)にまとめた。
【0030】
【表1】
【0031】
【表2】
【0032】
【発明の効果】
この発明は、ポリイミド樹脂などの原料であるテトラカルボン酸ジ無水物の前駆体として有用な(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル、および1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルと(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルとのラセミ体を提供できる。
【図面の簡単な説明】
【図1】図1は、実施例で得られた(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル[cis‐DCTM‐x]についてX線解析により測定した分子構造である。
【図2】図2は、X線解析によるcis‐DCTM‐yの分子構造である。
【図3】図3は、cis‐DCTM‐zの分子構造である。
【図4】図4は、cis‐DCTM‐xの1HNMRである。
【図5】図5は、cis‐DCTM‐xの1HNMRの3,4および3’,4’位のプロトンの拡大図をである。
【図6】図6は、cis‐DCTM‐xのH―H COSYスペクトルである。
【図7】図7は、cis‐DCTM‐xの13CNMRである。
【図8】図8は、cis‐DCTM‐xのC‐H COSYスペクトルである。[0001]
BACKGROUND OF THE INVENTION
This invention relates to tetramethyl (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate, and 1R, 1′R, 3R, 3'R, 4S, 4'S) -Dicyclohexyl-3,3'4,4'-tetracarboxylic acid tetramethyl and (1S, 1'S, 3S, 3'S, 4R, 4'R) -dicyclohexyl- Relates to racemates with
[0002]
[Prior art]
Tetracarboxylic acid tetraesters are useful compounds as precursors for tetracarboxylic dianhydrides, which are raw materials for polyimide resins having excellent heat resistance.
It is well known that a benzene ring is reduced to a corresponding cyclohexane ring by hydrogen reduction. For example, synthetic communication, 25 , 2079 (1995), JP-A-10-36320, JP-A-11-189568, These are reported in JP-A-11-349535, JP-A-10-204002, and JP-B-8-30045.
Hydrogen reduction of tetramethyl biphenyl-3,3'4,4'-tetracarboxylate (abbreviated as BPTM) has 6 asymmetric carbons in the product, thus allowing 26 isomers It is. The hydrogen reduction of BPTM is also reported in JP-A-7-215912, JP-A-8-325196, JP-A-8-325201, and the like.
[0003]
[Problems to be solved by the invention]
These reports mention nothing about the isomers, only the mixture.
The present invention has been intensively studied for the purpose of obtaining a specific isomer from a mixture of many isomers.
[0004]
[Means for Solving the Problems]
The present invention relates to tetramethyl (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate (hereinafter abbreviated as cis-DCTM-x). Sometimes).
The present invention also provides tetramethyl (1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate (hereinafter referred to as cis-DCTM-y). And (1S, 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (hereinafter referred to as cis-DCTM). -Sometimes abbreviated as -z).
[0005]
The isomers of tetramethyl cis-dicyclohexyl-3,3′4,4′-tetracarboxylate of the present invention are preferably tetramethyl biphenyl-3,3′4,4′-tetracarboxylate (hereinafter referred to as BPTM). The product (DCTM) obtained by hydrogen reduction of the cis structure is recrystallized to preferentially separate cis structure isomers, which are further separated by preferential crystallization. It can be obtained by isolation.
[0006]
A reaction formula in which the above BPTM is reduced to hydrogen to form DCTM is shown below.
[Chemical 1]
[0007]
The BPTM used as the starting material is a method for producing a biphenyl compound by coupling dimethyl phthalate described in JP-B-60-33379, for example, in the presence of oxygen, a palladium salt and 1,10-phenanthroline or bipyridyl. Can be easily synthesized.
[0008]
A known method can be applied to the hydrogen reduction, and a normal organic solvent such as methanol, ethanol, butanol, ethyl acetate, or tetrahydrofuran can be used as the solvent. Although the usage-amount of a solvent will not be specified if it is the quantity which BPTM melt | dissolves sufficiently, it is 25-100 mL normally with respect to 10g BPTM.
[0009]
For the hydrogen reduction, Ru / C (carbon), Rh / C, Pd / C supported by 0.1 to 10% by weight, or an alumina support, silica support or the like can be used. A catalyst amount of 0.1 to 0.5 g is sufficient for 10 g of BPTM. As the reaction conditions, the reaction proceeds even at normal pressure, but in order to increase the speed, it is better to carry out under pressure, and 2 to 100 atm, preferably 10 to 50 atm is sufficient. The reaction temperature is 50 to 250 ° C, preferably 100 to 200 ° C. In order to complete the reaction, the reaction is carried out for 1 to 10 hours. The reaction is carried out until the absorption of hydrogen is completed, and is usually completed in about 5 hours at 100 ° C. Although it is not limited to the reaction method, it is good to supply additional hydrogen continuously.
[0010]
After removing the catalyst from the reaction solution by an operation such as filtration, a viscous solid remains as a product when the solvent is removed.
From this product mixture, tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate (cis-DCTM) was recrystallized in a suitable solvent or distilled under reduced pressure to give a specific fraction. It is obtained by collecting.
As the solvent used for the recrystallization, a common organic solvent such as methanol, ethanol, butanol, ethyl acetate, tetrahydrofuran or the like can be used. The amount used is 200-1000 mL per 100 g of this product.
[0011]
At this time, the cis isomer is preferentially precipitated. Capillary chromatography (CGC) showed a single peak, but high performance liquid chromatography (HPLC) showed three peaks when analyzed using a Chiralcel OD column. Therefore, this cis isomer was resolved by the usual preferential crystallization method.
As the solvent used for the separation, methanol, ethanol, butanol, ethyl acetate, tetrahydrofuran or the like can be used. Although there is no limitation in the amount used, pure isomers can be obtained by repeated crystallization at about 200 to 500 mL per 100 g. In order to increase the purity of the crystal, it is preferable to crystallize at a temperature of about 20 to 40 ° C. The structure can ultimately be determined from X-ray analysis by growing single crystals.
[0012]
The chemical formula of 1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-x) Show.
[0013]
[Chemical formula 2]
[0014]
In this invention, (1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-y) It can be expressed as a chemical formula.
[0015]
[Chemical 3]
[0016]
In this invention, (1S, 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-z) It can be expressed as a chemical formula.
[0017]
[Formula 4]
[0018]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0019]
In the following examples, capillary chromatography was performed using Hitachi GC263-70, column: DB-5 (J & W Scientific) 5% Phenyl-95% methylpolysiloxane 0.25 μm thick, 0.25 mmφ, 60 m, column temperature 275 ° C. Measured.
High performance liquid chromatography was measured at Shimadzu SCL-10A, column: Chiralcel OD (Daicel Chemical Industries) 0.46 cmφ, 25 cm, 20 ° C., EtOH / n-hexane (10/90), 0.5 mL / min.
1 HNMR spectrum (400 MHz) was measured at 25 ° C. with JEOL JEOL 400X, CDCl 3 solution.
The 13 C NMR spectrum (100 MHz) was measured at 25 ° C. with JEOL JEOL 400X, CDCl 3 solution.
The FTIR spectrum was measured by JEOL JIR-5500KBr tablet method.
The mass spectrum was measured with Hitachi M-80B and an ionization voltage of 70 eV.
Single crystal X-ray analysis was performed at 25 ° C. using a RASA-7R type 4-axis diffractometer manufactured by Rigaku Corporation.
[0020]
(Synthesis Example 1)
10 g of BPTM, 0.5 g of 5% Ru / C, and 50 mL of tetrahydrofuran were charged into a 300 mL rocking autoclave, pressurized to 50 kg / cm 2 of hydrogen, and shaken at 100 ° C. for 5 hours ( The absorption of hydrogen is completed in about 3 hours). The reaction solution was filtered using No5c filter paper, and then tetrahydrofuran was distilled off to obtain 9.63 g of a viscous product. According to CGC, the cis content was 73.1%.
[0021]
(Synthesis Example 2)
10 g of BPTM, 0.5 g of 5% Rh / C, and 50 mL of tetrahydrofuran were charged into a 300 mL rocking autoclave, pressurized to 50 kg / cm 2 of hydrogen, and shaken at 100 ° C. for 5 hours ( Hydrogen absorption is completed in about 1.5 hours). The reaction solution was filtered using No5c filter paper, and then tetrahydrofuran was distilled off to obtain 9.67 g of a viscous product. According to CGC, the cis content was 77.7%.
[0022]
(Synthesis Example 3)
10 g of BPTM, 0.5 g of 10% Pd / C, and 50 mL of tetrahydrofuran were charged into a 300 mL rocking autoclave, pressurized to 50 kg / cm 2 of hydrogen, and shaken at 200 ° C. for 7 hours ( Hydrogen absorption is slow). The reaction solution was filtered using No5c filter paper, and then tetrahydrofuran was distilled off to obtain 9.82 g of a viscous product. According to CGC, the cis content was 70.1%.
In the above results, there was no big difference in the breakdown of cis, and it was cis-DCTM-x / cis-DCTM-y / cis-DCTM-z = 51/28/21 by HPLC.
In the Fluofix 120E column, cis-DCTM-y and cis-DCTM-z overlap to form a single peak.
[0023]
Example 1
A 500 mL rotary autoclave is charged with 100 g of BPTM, 2.5 g of 5% Rh / C, and 200 mL of tetrahydrofuran, and at a constant pressure of 30 kg / cm 2 of hydrogen at 100 ° C. and 300 rpm for 5.5 hours. Heated (absorption of hydrogen was completed in about 5 hours). After the reaction solution was filtered using No5c filter paper, tetrahydrofuran was distilled off to obtain 101.8 g (yield 99%) of a viscous product. This was dissolved in 400 mL of methanol and crystallized to obtain 72 g of cis-DCTM.
100 g of cis-DCTM (x / (y + z) = 51/49): melting point ° C. obtained by the same operation was dissolved in 200 mL of tetrahydrofuran and slowly crystallized. After separating the crystals, crystallization was repeated three times from tetrahydrofuran (1: 2 ratio) to obtain 100% pure cis-DCTM-x (8.5 g).
[0024]
Example 2
During the crystallization, 50 g of cis-DCTM (x / (y + z) = 60/40): melting point was dissolved in 100 mL of tetrahydrofuran and slowly crystallized. After separating the crystals, crystallization was repeated again from tetrahydrofuran (1: 2 ratio) to obtain 100% pure cis-DCTM-x (11.6 g).
[0025]
Example 3
40 g of cis-DCTM (x / (y + z) = 32/68) in the middle of crystallization: Melting point was dissolved in 80 mL of tetrahydrofuran and crystallized slowly. After separating the crystals, crystallization was repeated again from tetrahydrofuran (1: 2 ratio) to obtain 100% pure cis-DCTM- (y + z) (9.0 g).
[0026]
Example 4
100 g of cis-DCTM was dissolved in 4 times the amount of methanol and slowly crystallized. From methanol (1: 4 ratio), crystallization was repeated 4 times to obtain 100% pure cis-DCTM-x (8.2 g). Similar operations were repeated to split cis-DCTM-x and cis-DCTM- (y + z).
[0027]
(Confirmation of cis-DCTM-x structure)
A dilute methanol solution of cis-DCTM-x was prepared and allowed to spontaneously evaporate slowly to obtain a single crystal. X-ray analysis was performed with a Rasa-7R type 4-axis diffractometer manufactured by Rigaku Corporation, and the molecular structure of FIG. 1 was obtained. Crystal data are triclinic, space group P-1 (No. 2), a = 9.550 (1), b = 13.3351 (6), c = 8.732 (1) angstrom, α = The results were 102.561 (7), β = 104.45 (1), γ = 95.706 (7) °, Z = 2, and R = 0.051.
C 20 H 30 O 8 (398, 45): calculated value, C60.3, H7.6; measured value, C60.1, H7.5; melting point: 125-126 ° C., IR, ν (CO), 1741, 1732 cm −1 , MS, m / z = 398 (M + )
[0028]
(Confirmation of cis-DCTM-y structure)
A dilute methanol solution of cis-DCTM- (y + z) was prepared and allowed to spontaneously evaporate slowly to obtain a single crystal (y and z consisted of equal amounts). X-ray analysis was performed with a Rasa-7R 4-axis diffractometer manufactured by Rigaku Corporation, and a molecular structure was obtained. Crystal data are triclinic, space group P-1 (No. 2), a = 11.613 (1), b = 13.202 (1), c = 7.0801 (9) angstrom, α = 102.448 (8), β = 101.854 (9), γ = 93.062 (8) °, Z = 2, R = 0.046.
Since cis-DCTM-y and cis-DCTM-z are in an inversion symmetric relationship, the molecular structure of cis-DCTM-z could be estimated.
cis-DCTM- (y + z) (equal mixture, racemic)
C 20 H 30 O 8 (398, 45): Calculated value, C60.3, H7.6; Actual value, C60.0, H7.5; Melting point: 111-113 ° C., IR, ν (CO), 1722 cm − 1 , MS, m / z = 398 (M + )
[0029]
(Confirmation by NMR)
From the 1 HNMR of cis-DCTM-x, looking at the enlarged view of protons at
Combined with cis-DCTM- (y + z), these results are summarized in Table 1 ( 1 HNMR) and Table 2 ( 13 CNMR).
[0030]
[Table 1]
[0031]
[Table 2]
[0032]
【The invention's effect】
This invention is useful as a precursor of tetracarboxylic dianhydride, which is a raw material for polyimide resins and the like, (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4 , 4′-tetracarboxylate and tetramethyl 1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate and (1S, Racemates with tetramethyl 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate can be provided.
[Brief description of the drawings]
FIG. 1 shows tetramethyl (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate obtained in the examples. It is the molecular structure measured by X-ray analysis about [cis-DCTM-x].
FIG. 2 is a molecular structure of cis-DCTM-y by X-ray analysis.
FIG. 3 is the molecular structure of cis-DCTM-z.
FIG. 4 is a 1 HNMR of cis-DCTM-x.
FIG. 5 is an enlarged view of protons at
FIG. 6 is a HH COSY spectrum of cis-DCTM-x.
FIG. 7 is a 13 C NMR of cis-DCTM-x.
FIG. 8 is a CH COSY spectrum of cis-DCTM-x.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000191050A JP4258103B2 (en) | 2000-06-26 | 2000-06-26 | cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000191050A JP4258103B2 (en) | 2000-06-26 | 2000-06-26 | cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002003449A JP2002003449A (en) | 2002-01-09 |
JP4258103B2 true JP4258103B2 (en) | 2009-04-30 |
Family
ID=18690411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000191050A Expired - Lifetime JP4258103B2 (en) | 2000-06-26 | 2000-06-26 | cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258103B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4604380B2 (en) * | 2001-04-03 | 2011-01-05 | 宇部興産株式会社 | Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate |
CN102911359B (en) * | 2012-10-19 | 2014-04-23 | 中国科学院宁波材料技术与工程研究所 | Transparent polyimide and preparation method thereof |
-
2000
- 2000-06-26 JP JP2000191050A patent/JP4258103B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002003449A (en) | 2002-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109705011B (en) | Synthetic method of Upacatinib intermediate and intermediate | |
JP5696035B2 (en) | Polymorph of argatroban monohydrate and its synthesis | |
US4720556A (en) | 3-oxabicyclo-(3,1,0)-hexan-2-ones | |
JP4258103B2 (en) | cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl | |
TW200831478A (en) | Chromane derivatives, synthesis thereof, and intermediates thereto | |
KR101577362B1 (en) | Preparation method of 1,4-cyclohexanedimethanol | |
BE897000A (en) | NOVEL 1,4-DIHYDROPYRIDINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS | |
JP2002003474A (en) | Method of manufacturing piperidine | |
JP4604380B2 (en) | Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate | |
JP2021134141A (en) | Method for producing aromatic compound using heterogeneous noble metal catalyst | |
JP4258104B2 (en) | trans-dicyclohexyl-3,3'4,4'-tetracarboxylic acid tetramethyl and tetraethyl | |
KR101686087B1 (en) | Process for Production of Optically Active Indoline Derivatives or Salts Thereof | |
JP2002020345A (en) | Method for producing trans-dicyclohexyl-3,3',4,4'- tetracarboxylic acid | |
WO2008072773A1 (en) | Method for producing (1r,2r)-2-amino-1-cyclopentanol | |
JP4057088B2 (en) | Method for producing pyrrolidine derivative | |
JP4095698B2 (en) | Inclusion compound containing 1,4-butanediol as guest compound, method for producing the same, and method for separating and purifying 1,4-butanediol | |
JPH0227352B2 (en) | ||
JP3950423B2 (en) | Process for producing cis-2,6-dimethylpiperazine | |
JPS63239238A (en) | Manufacture of optically active carbonyl compound | |
JP2002030029A (en) | Method for producing trans-dicyclohexyl-3,3'4,4'- tetracarboxylic acid | |
JPS60500133A (en) | Method for producing cycloaddition compounds | |
CA2072808A1 (en) | Process for the synthesis of enantiomers of 3-amine chromane derivatives | |
JP3171919B2 (en) | Method for producing 3- (2,2,6-trimethylcyclohexane-1-yl) -2-propen-1-al and intermediates thereof | |
JP2003192651A (en) | Method for producing 3-aminocarboxylic acid and its ester | |
AU2003271056A1 (en) | Process for producing paroxetine hydrochloride hydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4258103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |