JP4604380B2 - Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate - Google Patents

Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate Download PDF

Info

Publication number
JP4604380B2
JP4604380B2 JP2001104643A JP2001104643A JP4604380B2 JP 4604380 B2 JP4604380 B2 JP 4604380B2 JP 2001104643 A JP2001104643 A JP 2001104643A JP 2001104643 A JP2001104643 A JP 2001104643A JP 4604380 B2 JP4604380 B2 JP 4604380B2
Authority
JP
Japan
Prior art keywords
cis
dctm
crystal
tetramethyl
dicyclohexyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001104643A
Other languages
Japanese (ja)
Other versions
JP2002302467A (en
Inventor
陽則 塩谷
信 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001104643A priority Critical patent/JP4604380B2/en
Publication of JP2002302467A publication Critical patent/JP2002302467A/en
Application granted granted Critical
Publication of JP4604380B2 publication Critical patent/JP4604380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐xと略記することもある)、(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐yと略記することもある)と(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis‐DCTM‐zと略記することもある)との異性体の効率的な分離法に関する。
【0002】
【従来の技術】
テトラカルボン酸テトラエステル類は耐熱性に優れたポリイミド樹脂の原料であるテトラカルボン酸ジ無水物の前駆体として有用な化合物である。
ベンゼン環を水素還元して対応のシクロヘキサン環へ変換することはよく知られており、例えば、synthetic communication,25,2079(1995)、特開平10‐36320号公報、特開平11‐189568号公報、特開平11‐349535号公報、特開平10‐204002号公報、特公平8‐30045号公報などに報告されている。
【0003】
ビフェニル‐3,3’4,4’‐テトラカルボン酸テトラメチル(BPTMと略記)を水素還元すると、生成物には6個の不斉炭素が存在し、従って、26個の異性体が可能である。BPTMの水素還元についても、特開平7‐215912号公報、特開平8‐325196号公報、特開平8‐325201号公報などに報告されている。
【0004】
これらの報告では、異性体について一切ふれておらず、混合物のみについて言及している。
この発明は、多数の異性体混合物から特定の異性体を効率良く分離することを目的とするものである。
【0005】
【発明を解決するための手段】
この発明は、(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルおよび(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルと(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルとのラセミ体三種の混合物を分離するに際して、純品の異性体を用いて予め作成しておいた組成比と結晶の溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を示すグラフに基いて、a)異性体混合物のそれぞれの組成比に対応する結晶の溶解開始温度(Td)と生長開始温度(Tc)の範囲内の温度で種晶を添加すること、b)結晶を析出させる温度(Tm)を下記式の範囲にて操作すること、式
10℃≦(Tc−Tm)≦25℃
およびc)析出時間を30時間以下とすることを特徴とする異性体の効率的分離法に関する。
【0006】
この発明のcis‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチルの各異性体は、好適にはビフェニル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、BPTMと略記することもある)を水素還元して得た生成物(DCTM)を再結晶して、優先的にcis構造の異性体を分離し、これをさらに優先晶出法により、各異性体を単離することによって得ることができる。
前記のBPTMを水素還元してDCTMとして、異性体が生成する反応式を次に示す。
【0007】
【化1】

Figure 0004604380
【0008】
前記の出発物質として用いるBPTMは、例えば特公昭60‐33379号公報に記載のフタル酸ジメチルを酸素、パラジウム塩および1,10−フェナントロリンまたはビピリジルの存在下にカップリングさせてビフェニル化合物を製造する方法によって容易に合成することができる。
【0009】
前記の水素還元は公知の方法が適用できて、溶媒としてはメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどの通常の有機溶媒が使用できる。溶媒の使用量はBPTMが十分溶解する量であれば特定されないが、通常、10gのBPTMに対して25〜100mLである。
【0010】
前記水素還元には、触媒として0.1〜10重量%担持のRu/C(カ−ボン)、Rh/C、Pd/C、あるいは、これらのアルミナ担持体、シリカ担持体などを使用できる。触媒量は10gのBPTMに対して0.1〜0.5gで十分である。反応条件としては、常圧でも進行するが、速度をあげるためには、加圧下に行う方がよく、2〜100気圧、好ましくは10〜50気圧で十分である。反応温度は50〜250℃、好ましくは100〜200℃で行う。反応を完結するために1〜10時間の反応を行う。反応は水素の吸収が終了するまで行い、通常、100℃では5時間程度で終了する。反応方法に限定されないが、水素を連続的に追加供給するとよい。
【0011】
反応液から濾過などの操作で触媒を除いた後、溶媒を除去すると粘凋な固体が生成物として残る。
この生成混合物から,cis‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM)は適当な溶媒中にて再結晶、または、減圧下に蒸留して、特定留分を集めることで得られる。
【0012】
前記の再結晶に使用する溶媒はメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどの通常の有機溶媒が使用できる。その使用量は、この生成物100g当たり200〜1000mLである。
この際、cis異性体が優先的に析出する。キャピラリ−クロマトグラフィ−(CGC)では、単一ピ−クを示すが、高速液体クロマトグラフィ−(HPLC)ではChiralcelODまたはChiralpak ASカラムを用いて分析すると3本のピ−クを示した。そこで、このcis異性体を通常の優先晶出法により分割した。
【0013】
この分離に使用する溶媒はメタノ−ル、エタノ−ル、ブタノ−ル、酢酸エチル、テトラヒドロフランなどを使用できる。使用量に限定はないが、100g当たり200〜500mL程度で繰り返し晶析して、純品の異性体を得ることができる。
構造は単結晶を生長させることにより、最終的にはX線解析から決定することができる。
【0014】
この発明の1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐x)の化学式を次に示す。
【0015】
【化2】
Figure 0004604380
【0016】
この発明における(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐y)は、次の化学式で表わすことができる。
【0017】
【化3】
Figure 0004604380
【0018】
この発明における(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐z)は、次の化学式で表わすことができる。
【0019】
【化4】
Figure 0004604380
【0020】
上記の三種の異性体混合物を分離するに際して、予め液体クロマトグラフィ−(組成比は面積比から求める。)によって求めたcis‐DCTM‐xの組成比とx結晶の溶解開始温度(Td)およびx結晶の生長開始温度(Tc)との関係を示すグラフを作成しておき、別途に液クロマトグラフィ−によって求めた異性体混合物のそれぞれの組成比に対応するx結晶の溶解開始温度(Td)とx結晶の生長開始温度(Tc)の範囲内の温度でx種晶を添加する。Tdより高温で種晶を添加すると種晶が溶液中に拡散してしまい、結晶化させるのに不利である。
Tcより低温で種晶を添加すると、結晶化した製品の純度が低下する。
【0021】
次いで、b)結晶を析出させる温度(Tm)を下記式の範囲にて操作する。
式:10℃≦(Tc−Tm)≦25℃。
この温度差が10℃より小さいと結晶の析出が遅くなる。この温度差が25℃より大きいと結晶の純度が低下する。
この際に、c)析出時間を30時間以下、好適には10〜30時間とする。10時間より短くても結晶は析出するが、収量が少ない。30時間より長いと結晶の純度が低下する。
【0022】
次いで、同様にしてcis‐DCTM‐yzの組成比とyz結晶の溶解開始温度(Td)およびyz結晶の生長開始温度(Tc)との関係を示すグラフを作成しておき、別途に液クロマトグラフィ−によって求めた異性体混合物のそれぞれの組成比に対応するyz結晶の溶解開始温度(Td)とyz結晶の生長開始温度(Tc)の範囲内の温度で種晶を添加する。
次いで、b)結晶を析出させる温度(Tm)を下記式の範囲にて操作する。
式:10℃≦(Tc−Tm)≦25℃。
この際に、c)析出時間を30時間以下、好適には10〜30時間とする。
【0023】
この発明の分離法によって、cis‐DCTM−xおよびcis‐DCTM−yz(ラセミ体)のそれぞれを高純度で、高効率で得ることができる。
【0024】
【実施例】
以下、実施例によってこの発明を具体的に説明するが、この発明はこれらの実施例に限定されるものではない。
以下の実施例において、 高速液体クロマトグラフィ−は島津SCL−10A、カラム:Chirapak AS(ダイセル化学工業)0.46cmφ、25cm、20℃、EtOH/n−hexane(10/90)、0.5mL/minにて測定した。
【0025】
結晶の溶解開始温度および結晶の生長開始温度の測定
100mLの試験管に純品のx成分およびyz成分を特定の重量比に調製し(総量6g)、これにTHF12mLを添加、一旦均一溶液にして密栓した。温度調節器付きバス中に、この試験管を装入して、種晶xを加えて、その種晶xの溶解開始温度および種晶xの生長開始温度を目視にて測定した。この結果から求めたcis‐DCTM‐xの割合(重量%)と溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を示すグラフを図1(x成分基準)に示した。同様にして、種晶yzを加えて、その種晶yzの溶解開始温度および種晶yzの生長開始温度を目視にてを測定した。この結果から求めたcis‐DCTM‐yzの割合(重量%)と溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を示すグラフをを図2(yz成分基準)に示した。
【0026】
実施例1
500mL回転式オ−トクレ−ブに100gのBPTM、2.5gの5%Rh/C、およびテトラヒドロフラン200mLを仕込み、水素30kg/cm2の定圧下に100℃で、300rpmにて5.5時間、加熱した(約5時間で水素の吸収が終了)。反応液をNo5cのろ紙を用いて濾過した後、テトラヒドロフランを留去して101.8g(収率99%)の粘凋な生成物を得た。これを400mLのメタノ−ルに溶解させて晶析させて、72gのcis‐DCTMを得た。高速液体クロマトグラフィ−の分析より、cis‐DCTM(x/y/z)=(50/25/25)であった。4バッチ同様な操作を行い、cis‐DCTM結晶を単離した。
【0027】
このうち、200gのcis‐DCTM結晶(cis‐DCTM−x/yz=50/50)を採取し、テトラヒドロフラン400mLに溶解させた。溶液を28℃にした後、微量の種晶xを上記溶液に添加し、これを10℃にて20時間静置、保持した。29.2gの結晶(A)を分離し、そのx成分の比率は97.3%であった。濾液(L)の異性体組成はx/yz=45/55であった。Aをさらにテトラヒドロフラン58mLに溶解させて、48℃にて種晶xを添加して25℃にて20時間静置、保持した。18.8gの結晶(B)を分離し、そのx成分の比率は100%であった。
【0028】
Lの溶液を結晶/THF比1/2(181g/362mL)まで蒸発して、溶液を25℃にした後、微量の種晶yzを上記溶液に添加し、これを5℃にて20時間静置、保持した。22.8gの結晶(M)を分離し、そのyz成分の比率は96.0%であった。Mをさらに、テトラヒドロフラン46mLに溶解させて、40℃にて種晶yzを添加して18℃にて20時間静置、保持した。14.0gの結晶(N)を分離し、そのyz成分の比率は100%であった。
【0029】
実施例2
実施例1と同様の操作によって得られたcis‐DCTM結晶(cis‐DCTM−x/yz=50/50)を200g採取し、テトラヒドロフラン400mLに溶解させた。溶液を28℃にした後、微量の種晶xを上記溶液に添加し、これを5℃にて20時間静置、保持した。37.3gの結晶(A)を分離し、そのx成分の比率は96.3%であった。濾液(L)の異性体組成はx/yz=39/61であった。Aをさらにテトラヒドロフラン75mLに溶解させて、47℃にて種晶xを添加して27℃にて20時間静置、保持した。23.3gの結晶(B)を分離し、そのx成分の比率は100%であった。
【0030】
Lの溶液を結晶/THF比1/2(162g/324mL)まで蒸発して、溶液を30℃にした後、微量の種晶yzを上記溶液に添加し、これを3℃にて20時間静置、保持した。31.6gの結晶(M)を分離し、そのyz成分の比率は97.5%であった。Mをさらに、テトラヒドロフラン63mLに溶解させて、40℃にて種晶yzを添加して17℃にて20時間静置、保持した。20.4gの結晶(N)を分離し、そのyz成分の比率は100%であった。
【0031】
【発明の効果】
この発明によれば、ポリイミド樹脂などの原料であるテトラカルボン酸ジ無水物の前駆体として有用な(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐x)の高純度品および、(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐y)と(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(cis‐DCTM‐z)とのラセミ体の高純度品を分離取得することができる。
【図面の簡単な説明】
【図1】図1は、cis‐DCTM‐xの割合(重量%)と溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を示すグラフである。
【図2】図2は、cis‐DCTM‐yおよびcis‐DCTM‐zの割合(重量%)と溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to tetramethyl (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate (hereinafter abbreviated as cis-DCTM-x). Tetramethyl (1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate (hereinafter referred to as cis-DCTM-y) And (1S, 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (hereinafter referred to as cis-DCTM). -Sometimes abbreviated as -z).
[0002]
[Prior art]
Tetracarboxylic acid tetraesters are useful compounds as precursors for tetracarboxylic dianhydrides, which are raw materials for polyimide resins having excellent heat resistance.
It is well known that a benzene ring is reduced to a corresponding cyclohexane ring by hydrogen reduction. For example, synthetic communication, 25 , 2079 (1995), JP-A-10-36320, JP-A-11-189568, These are reported in JP-A-11-349535, JP-A-10-204002, and JP-B-8-30045.
[0003]
Hydrogen reduction of tetramethyl biphenyl-3,3'4,4'-tetracarboxylate (abbreviated as BPTM) has 6 asymmetric carbons in the product, thus allowing 26 isomers It is. The hydrogen reduction of BPTM is also reported in JP-A-7-215912, JP-A-8-325196, JP-A-8-325201, and the like.
[0004]
These reports mention nothing about the isomers, only the mixture.
The object of the present invention is to efficiently separate a specific isomer from a large number of isomer mixtures.
[0005]
[Means for Solving the Invention]
This invention relates to tetramethyl (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate and (1R, 1′R, 3R, 3'R, 4S, 4'S) -Dicyclohexyl-3,3'4,4'-tetracarboxylic acid tetramethyl and (1S, 1'S, 3S, 3'S, 4R, 4'R) -dicyclohexyl- When separating a mixture of three racemates with tetramethyl 3,3′4,4′-tetracarboxylate, a composition ratio and a crystal melting start temperature (Td) prepared in advance using pure isomers are used. ) And a graph showing the relationship between the crystal growth start temperature (Tc) and a) the range of the crystal melt start temperature (Td) and the growth start temperature (Tc) corresponding to each composition ratio of the isomer mixture A seed crystal is added at a temperature within the range, b) the temperature at which the crystal is precipitated (Tm Manipulating the at range of the following formula, wherein 10 ℃ ≦ (Tc-Tm) ≦ 25 ℃
And c) an efficient separation method of isomers characterized in that the precipitation time is 30 hours or less.
[0006]
The isomers of tetramethyl cis-dicyclohexyl-3,3′4,4′-tetracarboxylate of the present invention are preferably tetramethyl biphenyl-3,3′4,4′-tetracarboxylate (hereinafter referred to as BPTM). The product (DCTM) obtained by hydrogen reduction of the cis structure is recrystallized to preferentially separate cis structure isomers, which are further separated by preferential crystallization. It can be obtained by isolation.
A reaction formula in which the above BPTM is reduced to hydrogen to form DCTM is shown below.
[0007]
[Chemical 1]
Figure 0004604380
[0008]
The BPTM used as the starting material is a method for producing a biphenyl compound by coupling dimethyl phthalate described in JP-B-60-33379, for example, in the presence of oxygen, a palladium salt and 1,10-phenanthroline or bipyridyl. Can be easily synthesized.
[0009]
A known method can be applied to the hydrogen reduction, and a normal organic solvent such as methanol, ethanol, butanol, ethyl acetate, or tetrahydrofuran can be used as the solvent. Although the usage-amount of a solvent will not be specified if it is the quantity which BPTM melt | dissolves sufficiently, it is 25-100 mL normally with respect to 10g BPTM.
[0010]
For the hydrogen reduction, Ru / C (carbon), Rh / C, Pd / C supported by 0.1 to 10% by weight, or an alumina support, silica support or the like can be used. A catalyst amount of 0.1 to 0.5 g is sufficient for 10 g of BPTM. As the reaction conditions, the reaction proceeds even at normal pressure, but in order to increase the speed, it is better to carry out under pressure, and 2 to 100 atm, preferably 10 to 50 atm is sufficient. The reaction temperature is 50 to 250 ° C, preferably 100 to 200 ° C. In order to complete the reaction, the reaction is carried out for 1 to 10 hours. The reaction is carried out until the absorption of hydrogen is completed, and is usually completed in about 5 hours at 100 ° C. Although it is not limited to the reaction method, it is good to supply additional hydrogen continuously.
[0011]
After removing the catalyst from the reaction solution by an operation such as filtration, a viscous solid remains as a product when the solvent is removed.
From this product mixture, tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate (cis-DCTM) was recrystallized in a suitable solvent or distilled under reduced pressure to give a specific fraction. It is obtained by collecting.
[0012]
As the solvent used for the recrystallization, a common organic solvent such as methanol, ethanol, butanol, ethyl acetate, tetrahydrofuran or the like can be used. The amount used is 200-1000 mL per 100 g of this product.
At this time, the cis isomer is preferentially precipitated. Capillary chromatography (CGC) showed a single peak, but high performance liquid chromatography (HPLC) showed three peaks when analyzed using a Chiralcel OD or Chiralpak AS column. Therefore, this cis isomer was resolved by the usual preferential crystallization method.
[0013]
As the solvent used for the separation, methanol, ethanol, butanol, ethyl acetate, tetrahydrofuran or the like can be used. Although there is no limitation in the amount used, pure isomers can be obtained by repeated crystallization at about 200 to 500 mL per 100 g.
The structure can ultimately be determined from X-ray analysis by growing single crystals.
[0014]
The chemical formula of 1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-x) Show.
[0015]
[Chemical 2]
Figure 0004604380
[0016]
In this invention, (1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-y) It can be expressed as a chemical formula.
[0017]
[Chemical 3]
Figure 0004604380
[0018]
In this invention, (1S, 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (cis-DCTM-z) It can be expressed as a chemical formula.
[0019]
[Formula 4]
Figure 0004604380
[0020]
In separating the above three isomer mixtures, the composition ratio of cis-DCTM-x obtained by liquid chromatography (the composition ratio is determined from the area ratio), the melting start temperature (Td) of the x crystal, and the x crystal A graph showing the relationship between the growth start temperature (Tc) and the x crystal dissolution start temperature (Td) and x crystal corresponding to the respective composition ratios of the isomer mixture separately obtained by liquid chromatography. The seed x is added at a temperature within the range of the growth start temperature (Tc). If the seed crystal is added at a temperature higher than Td, the seed crystal diffuses into the solution, which is disadvantageous for crystallization.
When seed crystals are added at a temperature lower than Tc, the purity of the crystallized product decreases.
[0021]
Next, b) the temperature (Tm) for precipitating the crystals is controlled within the range of the following formula.
Formula: 10 ° C. ≦ (Tc−Tm) ≦ 25 ° C.
When this temperature difference is smaller than 10 ° C., the precipitation of crystals becomes slow. When this temperature difference is larger than 25 ° C., the purity of the crystal is lowered.
At this time, c) the deposition time is 30 hours or less, preferably 10 to 30 hours. Even if the time is shorter than 10 hours, crystals are precipitated, but the yield is low. If it is longer than 30 hours, the purity of the crystal is lowered.
[0022]
Subsequently, a graph showing the relationship between the composition ratio of cis-DCTM-yz and the dissolution start temperature (Td) of the yz crystal and the growth start temperature (Tc) of the yz crystal was prepared in advance, and separately obtained by liquid chromatography The seed crystal is added at a temperature within the range of the melting start temperature (Td) of the yz crystal and the growth starting temperature (Tc) of the yz crystal corresponding to the respective composition ratios of the isomer mixture obtained by (1).
Next, b) the temperature (Tm) for precipitating the crystals is controlled within the range of the following formula.
Formula: 10 ° C. ≦ (Tc−Tm) ≦ 25 ° C.
At this time, c) the deposition time is 30 hours or less, preferably 10 to 30 hours.
[0023]
According to the separation method of the present invention, each of cis-DCTM-x and cis-DCTM-yz (racemate) can be obtained with high purity and high efficiency.
[0024]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
In the following examples, high performance liquid chromatography is Shimadzu SCL-10A, column: Chirapak AS (Daicel Chemical Industries) 0.46 cmφ, 25 cm, 20 ° C., EtOH / n-hexane (10/90), 0.5 mL / min. Measured with
[0025]
Measurement of crystal dissolution start temperature and crystal growth start temperature In a 100 mL test tube, pure x component and yz component were prepared in a specific weight ratio (total amount 6 g), and 12 mL of THF was added thereto to make a homogeneous solution once. Sealed. This test tube was placed in a bath with a temperature controller, seed crystal x was added, and the melting start temperature of seed crystal x and the growth start temperature of seed crystal x were measured visually. A graph showing the relationship between the ratio (wt%) of cis-DCTM-x obtained from this result, the dissolution start temperature (Td), and the crystal growth start temperature (Tc) is shown in FIG. 1 (x component basis). Similarly, seed crystal yz was added, and the dissolution start temperature of seed crystal yz and the growth start temperature of seed crystal yz were measured visually. A graph showing the relationship between the ratio (wt%) of cis-DCTM-yz obtained from this result, the dissolution start temperature (Td), and the crystal growth start temperature (Tc) is shown in FIG. 2 (based on the yz component). .
[0026]
Example 1
A 500 mL rotary autoclave is charged with 100 g of BPTM, 2.5 g of 5% Rh / C, and 200 mL of tetrahydrofuran, and at a constant pressure of 30 kg / cm 2 of hydrogen at 100 ° C. and 300 rpm for 5.5 hours. Heated (absorption of hydrogen was completed in about 5 hours). After the reaction solution was filtered using No5c filter paper, tetrahydrofuran was distilled off to obtain 101.8 g (yield 99%) of a viscous product. This was dissolved in 400 mL of methanol and crystallized to obtain 72 g of cis-DCTM. From the analysis of high performance liquid chromatography, it was cis-DCTM (x / y / z) = (50/25/25). The same operation was performed for 4 batches to isolate cis-DCTM crystals.
[0027]
Of these, 200 g of cis-DCTM crystals (cis-DCTM-x / yz = 50/50) were collected and dissolved in 400 mL of tetrahydrofuran. After bringing the solution to 28 ° C., a small amount of seed crystal x was added to the above solution, and this was left to stand at 10 ° C. for 20 hours and held. 29.2 g of crystals (A) were separated, and the ratio of the x component was 97.3%. The isomer composition of the filtrate (L) was x / yz = 45/55. A was further dissolved in 58 mL of tetrahydrofuran, seed crystal x was added at 48 ° C., and the mixture was left to stand at 25 ° C. for 20 hours. 18.8 g of crystals (B) were separated, and the ratio of the x component was 100%.
[0028]
After the solution of L was evaporated to a crystal / THF ratio of 1/2 (181 g / 362 mL) and the solution was brought to 25 ° C., a small amount of seed crystal yz was added to the above solution, which was allowed to stand at 5 ° C. for 20 hours. Set and held. 22.8 g of crystals (M) were separated, and the ratio of the yz component was 96.0%. M was further dissolved in 46 mL of tetrahydrofuran, seed crystal yz was added at 40 ° C., and the mixture was allowed to stand at 18 ° C. for 20 hours and held. 14.0 g of crystals (N) were separated, and the ratio of the yz component was 100%.
[0029]
Example 2
200 g of cis-DCTM crystals (cis-DCTM-x / yz = 50/50) obtained by the same operation as in Example 1 was collected and dissolved in 400 mL of tetrahydrofuran. After bringing the solution to 28 ° C., a small amount of seed crystal x was added to the above solution, and this was left to stand at 5 ° C. for 20 hours and held. 37.3 g of crystals (A) were separated, and the ratio of the x component was 96.3%. The isomer composition of the filtrate (L) was x / yz = 39/61. A was further dissolved in 75 mL of tetrahydrofuran, seed crystal x was added at 47 ° C., and the mixture was allowed to stand at 27 ° C. for 20 hours and held. 23.3 g of crystals (B) were separated, and the ratio of the x component was 100%.
[0030]
After evaporating the solution of L to a crystal / THF ratio of 1/2 (162 g / 324 mL) and bringing the solution to 30 ° C., a small amount of seed crystal yz was added to the solution, and this was allowed to stand at 3 ° C. for 20 hours. Set and held. 31.6 g of crystals (M) were separated, and the ratio of the yz component was 97.5%. M was further dissolved in 63 mL of tetrahydrofuran, seed crystal yz was added at 40 ° C., and the mixture was allowed to stand at 17 ° C. for 20 hours and held. 20.4 g of crystals (N) were separated, and the ratio of the yz component was 100%.
[0031]
【The invention's effect】
According to the present invention, (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) -dicyclohexyl-3,3, which is useful as a precursor of tetracarboxylic dianhydride, which is a raw material for polyimide resins, etc. High purity product of tetramethyl '4,4'-tetracarboxylate (cis-DCTM-x) and (1R, 1'R, 3R, 3'R, 4S, 4'S) -dicyclohexyl-3,3' Tetramethyl 4,4'-tetracarboxylate (cis-DCTM-y) and (1S, 1'S, 3S, 3'S, 4R, 4'R) -dicyclohexyl-3,3'4,4'-tetra A racemic high-purity product with tetramethyl carboxylate (cis-DCTM-z) can be separated and obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio (% by weight) of cis-DCTM-x, the dissolution start temperature (Td), and the crystal growth start temperature (Tc).
FIG. 2 is a graph showing the relationship between the ratio (% by weight) of cis-DCTM-y and cis-DCTM-z, the dissolution start temperature (Td), and the crystal growth start temperature (Tc).

Claims (1)

テトラヒドロフランに(1R,1’S,3R,3’S,4S,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis−DCTM−xと略記する)および(1R,1’R,3R,3’R,4S,4’S)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis−DCTM−yと略記する)と(1S,1’S,3S,3’S,4R,4’R)‐ジシクロヘキシル‐3,3’4,4’‐テトラカルボン酸テトラメチル(以下、cis−DCTM−zと略記する)とのラセミ体三種の混合物が溶解した混合溶液から、cis−DCTM−x成分からなる結晶、またはcis−DCTM−yとcis−DCTM−zとの成分からなる結晶結晶化して分離する分離法であってテトラヒドロフランに対して純品の異性体を用いて組成比と結晶の溶解開始温度(Td)および結晶の生長開始温度(Tc)との関係を予め測定した後で、a)当該混合溶液中の異性体混合物のそれぞれの組成比に対応する結晶の溶解開始温度(Td)と生長開始温度(Tc)の範囲内の温度で、cis−DCTM−x成分、またはcis−DCTM−yとcis−DCTM−zとの成分からなる種晶を添加すること、b)結晶を析出させる温度(Tm)を下記式の範囲にて操作すること、式
10℃≦(Tc−Tm)≦25℃
およびc)析出時間を30時間以下とすることを特徴とするcis−DCTM−x成分からなる結晶、またはcis−DCTM−yとcis−DCTM−zとの成分からなる結晶の効率的分離法。
In tetrahydrofuran (1R, 1'S, 3R, 3'S, 4S, 4'R) - dicyclohexyl -3,3'4,4'- tetracarboxylic acid tetramethyl (hereinafter, abbreviated as cis-DCTM-x) And (1R, 1′R, 3R, 3′R, 4S, 4 ′S) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (hereinafter abbreviated as cis-DCTM-y) (1S, 1 ′S, 3S, 3 ′S, 4R, 4′R) -dicyclohexyl-3,3′4,4′-tetracarboxylate tetramethyl (hereinafter abbreviated as cis-DCTM-z) This is a separation method in which a crystal composed of a cis-DCTM-x component or a crystal composed of a component of cis-DCTM-y and cis-DCTM-z is crystallized and separated from a mixed solution in which three racemic mixtures are dissolved. Te, tetrahydrofuran After previously measured relationship between dissolution starting temperature (Td) and the crystal growth starting temperature of crystal and compositional ratio using the isomer of pure (Tc) for, a) an isomeric mixture of the mixed solution The cis-DCTM-x component, or cis-DCTM-y and cis-DCTM-z , at a temperature within the range of the melting start temperature (Td) and the growth start temperature (Tc) corresponding to the respective composition ratios of Adding a seed crystal composed of the following components : b) operating the temperature (Tm) for precipitating the crystal within the range of the following formula, formula 10 ° C. ≦ (Tc−Tm) ≦ 25 ° C.
And c) A method for efficiently separating crystals comprising a cis-DCTM-x component or crystals comprising a component of cis-DCTM-y and cis-DCTM-z, wherein the precipitation time is 30 hours or less.
JP2001104643A 2001-04-03 2001-04-03 Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate Expired - Fee Related JP4604380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104643A JP4604380B2 (en) 2001-04-03 2001-04-03 Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104643A JP4604380B2 (en) 2001-04-03 2001-04-03 Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate

Publications (2)

Publication Number Publication Date
JP2002302467A JP2002302467A (en) 2002-10-18
JP4604380B2 true JP4604380B2 (en) 2011-01-05

Family

ID=18957470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104643A Expired - Fee Related JP4604380B2 (en) 2001-04-03 2001-04-03 Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate

Country Status (1)

Country Link
JP (1) JP4604380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279085B (en) * 2016-08-17 2018-07-10 万华化学集团股份有限公司 A kind of preparation method for mixing isomery bis ether tetracarboxylic acid dianhydride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196147A (en) * 1987-10-08 1989-04-14 Hitachi Chem Co Ltd Novel dicyclohexyl-3,4,3',4'-tetracarboxylic acid or its dianhydride and production thereof
JPH07215912A (en) * 1994-09-06 1995-08-15 Hitachi Chem Co Ltd New dicyclohexyl-3,4,3',4'-tetracarboxylic acid and its production
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride
JPH08325201A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid ester
JP2002003449A (en) * 2000-06-26 2002-01-09 Ube Ind Ltd Tetramethyl cis-dicyclohexyl-3,3',4,4'-tetracarboxylate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196147A (en) * 1987-10-08 1989-04-14 Hitachi Chem Co Ltd Novel dicyclohexyl-3,4,3',4'-tetracarboxylic acid or its dianhydride and production thereof
JPH07215912A (en) * 1994-09-06 1995-08-15 Hitachi Chem Co Ltd New dicyclohexyl-3,4,3',4'-tetracarboxylic acid and its production
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride
JPH08325201A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid ester
JP2002003449A (en) * 2000-06-26 2002-01-09 Ube Ind Ltd Tetramethyl cis-dicyclohexyl-3,3',4,4'-tetracarboxylate

Also Published As

Publication number Publication date
JP2002302467A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
Smrcina et al. Synthesis of enantiomerically pure 2, 2'-dihydroxy-1, 1'-binaphthyl, 2, 2'-diamino-1, 1'-binaphthyl, and 2-amino-2'-hydroxy-1, 1'-binaphthyl. Comparison of processes operating as diastereoselective crystallization and as second order asymmetric transformation
WO2003053929A1 (en) Process for production of optically active cis-piperidine derivatives
JPS5827276B2 (en) Process for producing vincamine and related compounds
JP2898758B2 (en) Method for producing 2- (1-azabicyclo [2.2.2] -oct-3-yl) -2,4,5,6-tetrahydro-1H-benza [de] isoquinolin-1-one and intermediate products
TWI335320B (en)
EP1973895A1 (en) Process for isolation of desired isomers of nebivolol intermediates
JP4604380B2 (en) Separation of tetramethyl cis-dicyclohexyl-3,3'4,4'-tetracarboxylate
EP1700851B1 (en) Crystalline citalopram diol intermediate alkali
JP4258103B2 (en) cis-Dicyclohexyl-3,3'4,4'-tetracarboxylate tetramethyl
KR20220143897A (en) Optically resolved Trolox intermediate and method for preparing the same
EP1670767B2 (en) Resolution of a narwedine amide derivative
JPH08157419A (en) Production of dimethyl trans-1,4-cyclohexanedicarboxylate
CN102219729B (en) Method for preparing optically pure 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)3,5-dipicolinic acid 2-[(3,3-diphenylpropyl)methylamino]-1,1-dimethyl methyl ester
JP4258104B2 (en) trans-dicyclohexyl-3,3'4,4'-tetracarboxylic acid tetramethyl and tetraethyl
TWI723455B (en) Lubiprostone crystals and methods for preparing the same
KR101001646B1 (en) Method of preparing r-+-lansoprazole and intermediate used therein
CN111454318A (en) Crystal form of antidepressant SAGE-217 and preparation method thereof
JP4057088B2 (en) Method for producing pyrrolidine derivative
JP2688528B2 (en) Process for producing optically active 2-hydroxy-4-phenylbutyric acid alkyl ester
JP2002020345A (en) Method for producing trans-dicyclohexyl-3,3',4,4'- tetracarboxylic acid
JP2018016569A (en) Production method of (1s)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile oxalate
JP4768145B2 (en) Optical purification method of optically active 2-phenoxypropionic acid
JPS62158268A (en) Asymmetric hydrogenation of alpha-ketolactone
JP2562955B2 (en) Method for producing (R) -4-hydroxy-5-tetradecic acid- (R)-(+)-α- (1-naphthyl) ethylamine salt
JP2003342259A (en) Method for producing optically active cis-piperidine derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees