JPH02152509A - Filter medium - Google Patents

Filter medium

Info

Publication number
JPH02152509A
JPH02152509A JP63306363A JP30636388A JPH02152509A JP H02152509 A JPH02152509 A JP H02152509A JP 63306363 A JP63306363 A JP 63306363A JP 30636388 A JP30636388 A JP 30636388A JP H02152509 A JPH02152509 A JP H02152509A
Authority
JP
Japan
Prior art keywords
fiber
fibers
fibrillated
filter medium
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306363A
Other languages
Japanese (ja)
Other versions
JP2672609B2 (en
Inventor
Takashi Yamazaki
山崎 岳志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP63306363A priority Critical patent/JP2672609B2/en
Publication of JPH02152509A publication Critical patent/JPH02152509A/en
Application granted granted Critical
Publication of JP2672609B2 publication Critical patent/JP2672609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To achieve high efficiency and performance of the subject filter medium by using a nonionic surfactant having 10-20 HLB value jointly with an org. fiber a part of which is fibrillated into the fiber having <=1mum diameter in the filter medium consisting of >=2 kinds of fibers. CONSTITUTION:The filter medium consists of >=2 kinds of fibers, contains an org. fiber a part of which is fibrillated into the fiber having <=1mum diameter, and is used jointly with a nonionic surfactant having 10-20 HLB value. The content of the fibrillated org. fiber is controlled to >=3% based on the total fiber weight from the standpoint of filtration efficiency. The org. fiber of aromatic polyester, aromatic polyamide, etc., having high crystallinity and orientational property is fibrillated to obtain the fibrillated org. fiber. The amt. of the nonionic surfactant to be added is preferably controlled to 0.1-5.0% based on the total fiber weight. An industrially useful high-performance filter medium is obtained without using glass fiber, and the consumption of the expensive fibrillated org. fiber is reduced by use of a surfactant.

Description

【発明の詳細な説明】 <A)産業上の利用分野 本発明は、高性能エアフィルター(HEPA)、自動車
用エアフィルター等の気体中に含有される微細な粉塵を
効率良く除去し、清浄な気体を得るためのエアフィルタ
ー用炉材、及び自動車用オイルフィルター 自動車用燃
料フィルター、放電加工機用フィルター、超純水回収用
水処理フィルター等の液体中の微細粒子を除去するため
の液体用r材等のが材に関するものである。
[Detailed Description of the Invention] <A) Industrial Application Field The present invention efficiently removes fine dust contained in gases such as high performance air filters (HEPA) and automobile air filters, resulting in clean air filters. Furnace materials for air filters to obtain gas, and oil filters for automobiles R-materials for liquids for removing fine particles in liquids such as automobile fuel filters, filters for electrical discharge machines, and water treatment filters for ultrapure water recovery. etc. are related to materials.

(B)従来の技術 液体又は気体中に含まれる微粒子を除去するための高性
能炉材としては、径の細いものが比較的安価に製造でき
ること等の理由から、ガラスが多く使われている。しか
しガラスの極細繊維を用いた炉材では、使用時にr材中
に含まれる微細なガラス繊維の脱落が避けられず、炉材
の振動等によるP材自体からの発塵が避けられないため
高性能炉材や食品用途等安全衛生上問題となる用途での
使用が制限されること、ガラスがフッ酸等の薬品に対し
て耐性を有しないためフッ酸蒸気にさらされる可能性の
ある用途での使用が制限されること、焼却による減容が
できない為原子力用途等での利用に限界があること等の
問題があった。
(B) Prior Art Glass is often used as a high-performance furnace material for removing particulates contained in liquid or gas because it can be produced with a small diameter at a relatively low cost. However, with furnace materials using ultra-fine glass fibers, it is inevitable that the fine glass fibers contained in the R material will fall off during use, and dust generation from the P material itself due to vibrations of the furnace material is unavoidable. Its use in applications that pose health and safety issues, such as high-performance furnace materials and food applications, is restricted, and glass is not resistant to chemicals such as hydrofluoric acid, so it cannot be used in applications where it may be exposed to hydrofluoric acid vapor. There were problems such as restrictions on its use, and there was a limit to its use in nuclear power applications because it could not be reduced in volume by incineration.

このため、上記ガラスの極細繊維を用いた炉材の欠点を
解決するものとしてフィブリル化された有機繊維を用い
た炉材が開発されている(特開昭59−92011号公
報、特開昭63−232814号公報、特開昭63−2
36512号公報)。
For this reason, furnace materials using fibrillated organic fibers have been developed to solve the drawbacks of furnace materials using ultrafine glass fibers (Japanese Patent Application Laid-Open Nos. 59-92011 and 63 -232814 Publication, JP-A-63-2
36512).

しかしながら、このような繊維を用いた場合でも繊維径
の細さにもかかわらず、ガラスの極細繊維で得られる高
い捕集効率、低い通過抵抗の両者を満足するような特性
が得られなかった。
However, even when such fibers are used, despite the small diameter of the fibers, characteristics that satisfy both the high collection efficiency and low passage resistance obtained with ultrafine glass fibers cannot be obtained.

又、これらのフィブリル化された有機繊維を用いた場合
には一部の湿式抄紙法により製造しようとした場合には
、ワイヤーからの流失が大きく、またワイヤーの目づま
りを生じる等の製造上の問題が避けられない。
In addition, when these fibrillated organic fibers are used in some wet papermaking methods, there are manufacturing problems such as a large amount of flow from the wire and clogging of the wire. is unavoidable.

(C)発明が解決しようとする課題 本発明は上記欠点や問題点を解決し、フィブリル化され
た有機繊維のろ材構成要素としての捕捉能を最大限に引
き出し、ガラス繊維を含まず、製造上も問題がなく、従
来技術ではマイクロガラス繊維なしには達成不可能であ
った高効率、高性能のろ材を提供することを目的として
いる。
(C) Problems to be Solved by the Invention The present invention solves the above-mentioned drawbacks and problems, maximizes the trapping ability of fibrillated organic fibers as a constituent element of filter media, does not contain glass fibers, and is easy to manufacture. The purpose of this invention is to provide a filter medium with high efficiency and high performance, which is not problematic in the prior art and could not be achieved without microglass fibers.

(D)課題を解決するための手段 これら課題を解決する方法として種々の検討を行なった
結果、特定の範囲のHLB値を有するノニオン性界面活
性剤をフィブリル化された有機繊維と併用することで、
フィブリル化された有機繊維の捕捉能を最大限に引き出
してやることが可能となることを見出し本発明を完成し
た。
(D) Means for solving the problems As a result of various studies as a method to solve these problems, we found that by using a nonionic surfactant with an HLB value in a specific range in combination with fibrillated organic fibers. ,
The present invention was completed by discovering that it is possible to maximize the capture ability of fibrillated organic fibers.

即ち、本発明は2種以上の繊維からなるろ材において、
一部が繊維径1μm以下のフィブリル化された有機繊維
とHLEI値が10以上20未満のノニオン性界面活性
剤を必須成分とする水性スラリーから湿式抄紙法にて製
造されたものであることを特徴とするろ材である。
That is, the present invention provides a filter medium made of two or more types of fibers,
It is characterized by being manufactured by a wet papermaking method from an aqueous slurry whose essential components are fibrillated organic fibers with a fiber diameter of 1 μm or less and a nonionic surfactant with an HLEI value of 10 or more and less than 20. It is a filter medium that

本発明でいう繊維の一部が繊維径1μm以下のフィブリ
ル化された有機繊維は、例えば、1)合成高分子溶液を
該高分子の貧溶媒中にせん断力をかけながら流下させ、
繊維状フィブリルを沈澱させる方法(フィブリッド法、
特公昭3511851号公報)。
The fibrillated organic fiber in which part of the fiber has a fiber diameter of 1 μm or less in the present invention can be obtained by, for example, 1) flowing a synthetic polymer solution into a poor solvent for the polymer while applying a shearing force;
Method for precipitating fibrous fibrils (fibrid method,
(Special Publication No. 3511851).

2)合成モノマーを重合させなからせん断をかけフィブ
リルを析出させる方法(重合せん新法、特公昭47−2
1898号公報)。
2) A method in which fibrils are precipitated by shearing synthetic monomers without polymerizing them (new method for polymerization, Japanese Patent Publication No. 47-2
Publication No. 1898).

3)二種以上の非相溶性高分子を混合し、溶融押し出し
又は紡糸し、切断後機械的な手段で繊維状にフィブリル
化する方法(スプリット法、特公昭35−9651公報
)。
3) A method in which two or more types of incompatible polymers are mixed, melt-extruded or spun, and then cut and fibrillated into fibers by mechanical means (split method, Japanese Patent Publication No. 35-9651).

4)二種以上の非相溶性高分子を混合し、溶融押し出し
又は紡糸し、切断後溶剤に浸漬して一方の高分子を溶解
し、繊維状にフィブリル化する方法(ポリマーブレンド
溶解法、米国特許3,382.305号公報)。
4) A method in which two or more types of incompatible polymers are mixed, melt-extruded or spun, and after cutting, immersed in a solvent to dissolve one of the polymers and fibrillate it into a fiber (polymer blend dissolution method, US Patent No. 3,382.305).

5)合成高分子をその溶媒の沸点以上でがっ高圧側から
低圧側へ爆発的に噴出させた後、繊維状にフィブリル化
する方法(フラッシュ紡糸法、特公昭36−16460
号公報)。
5) A method in which the synthetic polymer is explosively ejected from the high-pressure side to the low-pressure side at a temperature higher than the boiling point of the solvent, and then fibrillated into fibers (flash spinning method, Japanese Patent Publication No. 36-16460)
Publication No.).

6)ポリエステル系高分子に該ポリエステルに非相溶の
アルカリ可溶成分をブレンドし、成形後アルカリにより
減量加工後叩解し、繊維状にフィブリル化する方法〈ア
ルカリ減量叩解法、特開昭56−315号公報)。
6) A method in which a polyester polymer is blended with an alkali-soluble component that is incompatible with the polyester, and after molding, it is subjected to a weight loss treatment with an alkali, and then beaten to form fibrils into a fibrous form (alkali weight loss beating method, JP-A-1988-1999). Publication No. 315).

7)高結晶性、高配向性繊維を適当な繊維長に切断後、
水中に分散させ、ホモジナイザー、叩解機、サンドミル
等を用いて、フィブリル化する方法(特開昭56−10
0801号公報、特開昭59−92011号公報、US
−4761203号公報)等の方法によって得られる繊
維である。
7) After cutting the highly crystalline and highly oriented fibers to an appropriate fiber length,
A method of dispersing in water and fibrillating it using a homogenizer, a beater, a sand mill, etc.
No. 0801, JP-A-59-92011, US
-4761203).

これらフィブリル化された有機繊維の量は、要求される
r材の特性によるため特に限定はされないが、濾過効率
の点がら全繊維重量の3%以上が好ましい。
The amount of these fibrillated organic fibers is not particularly limited as it depends on the required characteristics of the r-material, but from the viewpoint of filtration efficiency it is preferably 3% or more of the total fiber weight.

これらフィブリル化された有機繊維で特に好まし例とし
ては、高結晶性、高配向性繊維を適当な繊維長に切断後
、水中に分散させ、ホモジナイザー、叩解機、サンドミ
ル等を用いて、フィブリル化したものが挙げられる。
Particularly preferred examples of these fibrillated organic fibers include highly crystalline and highly oriented fibers that are cut into appropriate fiber lengths, dispersed in water, and fibrillated using a homogenizer, beater, sand mill, etc. The following can be mentioned.

ここで言う高結晶性、高配向性繊維としては、例えば、
芳香族ポリエステル(エコノール 住友化学工業社製)
、芳香族ポリアミド(ケブラーデュポン社製)、テクノ
ーラ(量大社製)等が例示される。
The highly crystalline and highly oriented fibers mentioned here include, for example,
Aromatic polyester (Econol manufactured by Sumitomo Chemical Co., Ltd.)
, aromatic polyamide (manufactured by Kevlar DuPont), Technora (manufactured by Ryotaisha), and the like.

高結晶性、高配向性繊維をフィブリル化したものの具体
例としてはMFC−400(ダイセル化学工業社製)が
例示される。
A specific example of fibrillated highly crystalline and highly oriented fibers is MFC-400 (manufactured by Daicel Chemical Industries, Ltd.).

本発明でいうHLB値が10以上20未満のノニオン性
界面活性剤とはHLB値(HydrophileLip
ophile  Ba1ance)が10以上20未満
の親水性の高いノニオン性界面活性剤であり、化学構造
は特に限定されないが例えば、ポリオキシエチレンアル
キルエーテル系界面活性剤、ポリオキシエチレンアルキ
ルフェニルエーテル系界面活性剤、ポリオキシエチレン
ポリスチリルフェニルエーテル系界面活性剤、ポリオキ
シエチレン−ポリオ棹ジプロピレングリコール系界面活
性剤、ポリオキシエチレン−ポリオキシプロピレンアル
キルエーテル系界面活性剤、多価アルコール脂肪酸部分
エステル系界面活性剤、ポリオキシエチレン多価アルコ
ール脂肪酸部分エステル系界面活性剤、ポリオキシエチ
レン脂肪酸エステル系界面活性剤、ポリグリセリン脂肪
酸エステル系界面活性剤、ポリオキシエチレン化ヒマシ
油系界面活性剤、脂肪酸ジェタノールアミド系界面活性
剤、ポリオキシエチレンアルキルアミン系界面活性剤、
トリエタノールアミン脂肪酸部分エステル系界面活性剤
、トリアルキルアミノキサイド系界面活性剤等のノニオ
ン性界面活性剤であり、具体的な例としては、例えば、
エマルゲン108.109P、120.123P、14
7.130K、210.220.306P、320P、
408.409P、420.430.705.707.
709.810.840S、906.909.910、
PI−20T、911.913.920.930.93
1.935.950.985、A−60、A−90、A
300、B−66、レオドールTW−L120、TW−
LiO2、TW−PL20、TW−3L20、TW−9
320、TW−0120、TW−0106、TW−03
20,430,440,460、SEM、エマゾール0
−105R、エマノーン1112.3115.3130
.3170.3199.3299.4110(以上花王
株式会社製)、ニラサンノニオンL−4、F−2,5、
P−6、S−4、S−6,5−10,5−15,5−1
5,4,5−40,0−3、O−4、O−6、T−15
、K−207、K−211、K−220、K−230、
P−208、P−210,P−213、P−223、P
−240、E−212、E−215、E−220、E−
230,S−207、S−211、S−215、S−2
20,3−230、T−208,5、H8−206、H
S−208、H8−210、MS−215、)(S−2
20、H8−240、NS−206、NS−208,5
、H5−210、H5−212、H5−215、NS−
220、NS−230,NS−240,NS−240,
NS−270、LT−221、PT−221,5T−2
21,0T−221、ユニグリGL−102、GL−1
06、ユニオックスHc−40、HC−50、HC−6
0(以上日本油脂株式会社製)等が例示される。
In the present invention, the nonionic surfactant having an HLB value of 10 or more and less than 20 refers to an HLB value (Hydrophile Lip
It is a highly hydrophilic nonionic surfactant whose chemical structure is not particularly limited, such as polyoxyethylene alkyl ether surfactant, polyoxyethylene alkyl phenyl ether surfactant, etc. , polyoxyethylene polystyrylphenyl ether surfactant, polyoxyethylene-poliodipropylene glycol surfactant, polyoxyethylene-polyoxypropylene alkyl ether surfactant, polyhydric alcohol fatty acid partial ester surfactant agent, polyoxyethylene polyhydric alcohol fatty acid partial ester surfactant, polyoxyethylene fatty acid ester surfactant, polyglycerin fatty acid ester surfactant, polyoxyethylated castor oil surfactant, fatty acid jetanolamide surfactant, polyoxyethylene alkylamine surfactant,
Nonionic surfactants such as triethanolamine fatty acid partial ester surfactants and trialkylaminoxide surfactants, and specific examples include:
Emulgen 108.109P, 120.123P, 14
7.130K, 210.220.306P, 320P,
408.409P, 420.430.705.707.
709.810.840S, 906.909.910,
PI-20T, 911.913.920.930.93
1.935.950.985, A-60, A-90, A
300, B-66, Rheodor TW-L120, TW-
LiO2, TW-PL20, TW-3L20, TW-9
320, TW-0120, TW-0106, TW-03
20,430,440,460, SEM, Emazol 0
-105R, Emanone 1112.3115.3130
.. 3170.3199.3299.4110 (manufactured by Kao Corporation), Nirasan Nonion L-4, F-2,5,
P-6, S-4, S-6, 5-10, 5-15, 5-1
5,4,5-40,0-3,O-4,O-6,T-15
, K-207, K-211, K-220, K-230,
P-208, P-210, P-213, P-223, P
-240, E-212, E-215, E-220, E-
230, S-207, S-211, S-215, S-2
20,3-230, T-208,5, H8-206, H
S-208, H8-210, MS-215, ) (S-2
20, H8-240, NS-206, NS-208,5
, H5-210, H5-212, H5-215, NS-
220, NS-230, NS-240, NS-240,
NS-270, LT-221, PT-221, 5T-2
21,0T-221, Unigri GL-102, GL-1
06, Uniox Hc-40, HC-50, HC-6
0 (manufactured by NOF Corporation), etc. are exemplified.

)(LB値が10以上20未満のノニオン性界面活性剤
の添加量は特に制限されないが、対繊維分0.1%未満
では十分な効果が期待できず、又、5%を越えても一定
以上の効果が得られない為、対繊維分0.1%〜5%の
範囲が好ましい。
) (The amount of nonionic surfactant with an LB value of 10 or more and less than 20 is not particularly limited, but if it is less than 0.1% based on the fiber content, a sufficient effect cannot be expected, and even if it exceeds 5%, the effect remains constant.) Since the above effects cannot be obtained, a range of 0.1% to 5% of the fiber content is preferable.

又、上記以外のノニオン性界面活性剤や、アニオン性界
面活性剤、カチオン性界面活性剤、両性界面活性剤等の
併用も可能である。
Further, nonionic surfactants other than those mentioned above, anionic surfactants, cationic surfactants, amphoteric surfactants, etc. can also be used in combination.

本発明に用いられる上記フィブリル化された有機繊維以
外の繊維としては、木材バルブ、麻パルプ、エスパルト
、木綿繊維等の天然繊維、ポリエステル繊維、ビニロン
繊維、アクリル繊維、ポリエチレン繊維、ポリプロピレ
ン繊維、ポリアミド繊維、レーヨン繊維等の合成繊維及
び再生繊維、ガラス繊維、セラミック繊維、ロックウー
ル、アルミナ繊維、酸化ベリリウム繊維、炭化ホウ素繊
維、炭化ケイ素繊維、窒化ケイ素繊維、チタン酸カリ繊
維、グラファイト、シリカ等の無機繊維が例示され、1
種以上を用途に応じて適宜選択して配合すればよい。
Fibers other than the fibrillated organic fibers used in the present invention include natural fibers such as wood bulbs, hemp pulp, esparto, and cotton fibers, polyester fibers, vinylon fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, and polyamide fibers. , synthetic fibers and recycled fibers such as rayon fibers, glass fibers, ceramic fibers, rock wool, alumina fibers, beryllium oxide fibers, boron carbide fibers, silicon carbide fibers, silicon nitride fibers, potassium titanate fibers, graphite, silica, and other inorganic fibers. Fibers are exemplified, 1
One or more types may be appropriately selected and blended depending on the purpose.

本発明のろ材には、必要に応じ、炉材の特性を阻害しな
い範囲で、アクリル系エマルジョン等のバインダーや、
フッ素系、シリコン系等の撓水剤、粘剤、歩留り向上剤
、染料等の添加剤を配合することができる。
The filter medium of the present invention may contain a binder such as an acrylic emulsion, if necessary, to the extent that it does not impede the properties of the furnace material.
Additives such as fluorine-based or silicone-based water repellents, sticky agents, retention improvers, dyes, etc. can be blended.

本発明のろ材は、一般紙や湿式不織布を製造するための
抄紙機、例えば長網抄紙機、円網抄紙機、傾斜ワイヤー
式抄紙機等により、製造される。
The filter medium of the present invention is manufactured using a paper machine for manufacturing general paper or wet-laid nonwoven fabric, such as a Fourdrinier paper machine, a cylinder paper machine, or an inclined wire paper machine.

(E)作用 本発明のろ材においてフィブリル化された有機繊維とノ
ニオン性界面活性剤の組み合わせがなぜ有効なのかは定
かでは無いが、ノニオン性界面活性剤を含まない場合に
は、フィブリル化有機繊維を用いても濾過抵抗が大きい
割には高い濾過効率が得られず、又、極細ガラス繊維や
一般の有機繊維と界面活性剤の組み合わせでは本発明に
認められるような明らかな濾過効率の向上は認められな
い事から、本発明による濾過効率の向上は、繊維相互間
の分散性の改善のみによるものとは考えられず、ノニオ
ン性界面活性剤が脱水、乾燥時の水の表面張力による微
細なフィブリルどうしの収束を防止し、その結果として
、それぞれの微細なフィブリルが濾過に有効に機能する
ためではないかと推定している。
(E) Effect It is not clear why the combination of fibrillated organic fibers and nonionic surfactants is effective in the filter medium of the present invention, but when the nonionic surfactant is not included, fibrillated organic fibers However, even if the filtration resistance is large, high filtration efficiency cannot be obtained even if the filtration resistance is large, and the combination of ultrafine glass fibers or general organic fibers and surfactants does not improve the filtration efficiency as clearly as observed in the present invention. Therefore, it cannot be considered that the improvement in filtration efficiency achieved by the present invention is due solely to the improvement in the dispersibility between fibers, and that the nonionic surfactant causes fine particles due to the surface tension of water during dehydration and drying. It is presumed that this is because it prevents the fibrils from converging, and as a result, each fine fibril functions effectively for filtration.

(F)実施例 以下、本発明を実施例により説明するが、本発明はこれ
らに同等限定されるものではない。
(F) Examples Hereinafter, the present invention will be explained by examples, but the present invention is not limited to these examples.

実施例及び比較例中の%は重量%を表わす。% in Examples and Comparative Examples represents % by weight.

なお、実施例及び比較例における圧力損失、粉塵捕集効
率、濾過速度、及び液中粒子捕集効率は以下の方法で測
定した。
In addition, the pressure loss, dust collection efficiency, filtration rate, and in-liquid particle collection efficiency in Examples and Comparative Examples were measured by the following methods.

圧力損失:炉材に空気を流速4.75cm/秒で通気さ
せた時の通気抵抗を水柱マノ メーターにより求めた。
Pressure loss: The ventilation resistance when air was passed through the furnace material at a flow rate of 4.75 cm/sec was determined using a water column manometer.

粉塵捕集効率:平均粒径0.3μ−のジオクチルフタレ
ート粒子を発生させ、この 粒子を含有する空気を流速5.3 cm/秒で炉材を通過させ、炉材の前 後でサンプリングした空気中の粒子 数を光散乱式粒子計数器(KC−1 1、リオン株式会社製)を用いて測 定し、下記の式を用いて算出した。
Dust collection efficiency: Dioctyl phthalate particles with an average particle size of 0.3μ are generated, air containing these particles is passed through the furnace material at a flow rate of 5.3 cm/sec, and the air sampled before and after the furnace material is The number of particles was measured using a light scattering particle counter (KC-1 1, manufactured by Rion Co., Ltd.), and calculated using the following formula.

粉塵捕集効率(%’)= (A−B)/AX100(但
し、Aはr過前粒子数、 Bは濾過後粒子数を示す) 濾過速度:直径28o+mの円形の濾過面を1000 
mmAqの水柱圧で水を濾過した時の1分間での通液量
から算出し た。
Dust collection efficiency (%') = (A-B)/AX100 (A is the number of particles before r-filtration, B is the number of particles after filtration) Filtration speed: 1000
It was calculated from the amount of liquid passed in one minute when water was filtered at a water column pressure of mmAq.

液中粒子捕集効率:平均粒径0.34μ朧のポリスチレ
ン標準粒子希釈橡準液を炉材 により濾過し、濾過前後での液中の 粒子数を液中微粒子計数器(リオン 株式会社製)を用いて測定し、上記 粉塵捕集効率と同様の式を用いて算 出した。
Particle collection efficiency in liquid: Polystyrene standard particle dilution semi-liquid with an average particle size of 0.34μ is filtered through a furnace material, and the number of particles in the liquid before and after filtration is measured using a particle counter in liquid (manufactured by Rion Co., Ltd.). It was calculated using the same formula as the dust collection efficiency above.

実施例1〜4 ノニオン性界面活性剤(エマノーン3299、ポリオキ
シエチレン脂肪酸エステル系、HLB値=18.3、花
王社製)を全繊維重量に対してそれぞれ0.5%、1,
0%、3.0%、5.0%となるように溶解した水溶液
にケブラー微細繊維(MFC−400、ダイセル化学工
業社製)18%、ポリエステル繊維(旭化成工業社製、
0.1デニ一ルX3mm、 直径的3μm)8%、Y型
ビニロン繊維(クラレ社製、 2デニ一ル×6mm、M
t大投影径約20μ膳)74%を混合して水性スラリー
を作成し、このスラリーから標準角形手抄き抄紙機を用
いて坪量75g/n?となるようにシートを形成した後
、軽くプレスをし、乾燥してそれぞれ実施例1〜4のろ
材シートを得た。
Examples 1 to 4 Nonionic surfactant (Emanon 3299, polyoxyethylene fatty acid ester type, HLB value = 18.3, manufactured by Kao Corporation) was added at 0.5% and 1%, respectively, based on the total fiber weight.
Kevlar fine fiber (MFC-400, manufactured by Daicel Chemical Industries, Ltd.) 18%, polyester fiber (manufactured by Asahi Kasei Industries, Ltd.,
0.1 denier x 3 mm, diameter 3 μm) 8%, Y-type vinylon fiber (manufactured by Kuraray Co., Ltd., 2 denier x 6 mm, M
Aqueous slurry was prepared by mixing 74% of t large projected diameter (approximately 20μ), and from this slurry, a standard square hand paper machine was used to make a basis weight of 75g/n? After forming a sheet, it was lightly pressed and dried to obtain filter media sheets of Examples 1 to 4, respectively.

これ等シートの物性及び、フィルター性能を第1表に示
す、得られたr材シートは)(EPAフィルターとして
実用上問題のないフィルター性能を示し、かつガラスを
含まないため良好な減容性を示した。
Table 1 shows the physical properties and filter performance of these sheets. Indicated.

実施例5 ノニオン性界面活性剤(エマノーン3199、ポリオキ
シエチレン脂肪酸エステル系、HLB値=19.1、花
王社製)を全繊維重量に対して3.0%となるように溶
解した水溶液にケブラー微細繊維(MFC−400、ダ
イセル化学工業社製)18%、ポリエステル繊維(旭化
成工業社製、0.1デニ一ル×3膳m、 直径約3μ鴎
)8%、Y型ビニロン繊維(クラレ社製、 2デニール
×61、最大投影径約20μm)74%を混合して水性
スラリーを作成し、このスラリーから標準角形手抄き抄
紙機を用いて坪量75 g/rrrどなるようにシート
を形成した後、軽くプレスをし、乾燥し、得られたシー
トにアクリル系ラテックスバインダー(ブライマールH
A−8、日本アクリル化学社製)0.25%及びフッ素
系撓水剤(FP210、住友化学工業社製>0.15%
を含有した水溶液を固形分でIg/r[1′となるよう
に含浸し乾燥して、実施例5の沢材シートを得た。 こ
のシートの物性及び、フィルター性能を第1表に示す、
得られたP材シートはHEPAフィルターとして実用上
問題のないフィルター性能を示し、かつガラスを含まな
いため良好な減容性を示した。
Example 5 Kevlar was added to an aqueous solution in which a nonionic surfactant (Emanon 3199, polyoxyethylene fatty acid ester type, HLB value = 19.1, manufactured by Kao Corporation) was dissolved at a concentration of 3.0% based on the total fiber weight. Fine fiber (MFC-400, manufactured by Daicel Chemical Industries, Ltd.) 18%, polyester fiber (manufactured by Asahi Kasei Industries, Ltd., 0.1 denier x 3 m, diameter approximately 3μ), 8%, Y-type vinylon fiber (Kuraray Co., Ltd.) 2 denier x 61, maximum projected diameter approximately 20 μm) 74% was mixed to create an aqueous slurry, and from this slurry a sheet with a basis weight of 75 g/rrr was formed using a standard square hand paper machine. After that, it was lightly pressed and dried, and the resulting sheet was coated with an acrylic latex binder (Blymar H).
A-8, Nippon Acrylic Chemical Co., Ltd.) 0.25% and fluorine water repellent (FP210, Sumitomo Chemical Co., Ltd. >0.15%)
The swamp material sheet of Example 5 was obtained by impregnating the solid material with an aqueous solution containing Ig/r[1' in solid content and drying. The physical properties and filter performance of this sheet are shown in Table 1.
The obtained P material sheet exhibited filter performance without any practical problems as a HEPA filter, and also exhibited good volume reduction properties since it did not contain glass.

比較例1 ノニオン性界面活性剤を除いたほかは実施例1とまった
く同様にして比較例1のP材シートを得た。 このシー
トの物性及び、フィルター性能を第1表に示す、 得ら
れたP材シートは実施例1〜4のシートに比べ粉塵捕集
効率が低く、性能的に劣ったものであった。
Comparative Example 1 A P material sheet of Comparative Example 1 was obtained in exactly the same manner as in Example 1 except that the nonionic surfactant was removed. The physical properties and filter performance of this sheet are shown in Table 1. The obtained P material sheet had lower dust collection efficiency and inferior performance than the sheets of Examples 1 to 4.

比較例2 実施例3のノニオン性界面活性剤を(NS−204,5
、ポリオキシエチレンアルキルフェノールエーテル系、
HLB値=9.5、日本油脂社製)に置き換えたほかは
実施例3と同様にして比較例2のP材シートを得た。こ
のシートの物性及び、フィルター性能を第1表に示す、
得られた枦材シートは実施例1〜4のシートに比べ粉塵
捕集効率が低く、性能的に劣ったものであった。
Comparative Example 2 The nonionic surfactant of Example 3 (NS-204,5
, polyoxyethylene alkylphenol ether type,
A P material sheet of Comparative Example 2 was obtained in the same manner as in Example 3, except that the HLB value was 9.5 (manufactured by NOF Corporation). The physical properties and filter performance of this sheet are shown in Table 1.
The obtained oak sheets had lower dust collection efficiency and inferior performance than the sheets of Examples 1 to 4.

実施例6 ノニオン性界面活性剤(エマノーン3115、ポリオキ
シエチレン脂肪酸エステル系、HLB値=13.4、花
王社製)を全繊維重量に対して3.0%となるように溶
解した水溶液にケブラー@細繊維(MFC−400,ダ
イセル化学工業社製)3%、極細ポリエステル繊維(旭
化成工業社製、0.1デニ一ルX3mm>67%、ポリ
エステルバインダー繊維(ユニチカ社製、#4080.
2デニ一ル×5膳m)30%を混合して水性スラリーを
作成し、このスラリーから標準角形手抄き抄紙機を用い
て坪量40 g/rrlとなるようにシートを形成した
後、軽くプレスをし、乾燥し、更に熱カレンダー処理を
行ない、実施例6のP材シートを得た。このシートの物
性及び、フィルター性能を第2表に示す。
Example 6 Kevlar was added to an aqueous solution in which a nonionic surfactant (Emanon 3115, polyoxyethylene fatty acid ester type, HLB value = 13.4, manufactured by Kao Corporation) was dissolved at a concentration of 3.0% based on the total fiber weight. @Fine fiber (MFC-400, manufactured by Daicel Chemical Industries, Ltd.) 3%, ultrafine polyester fiber (manufactured by Asahi Kasei Industries, Ltd., 0.1 denier x 3 mm>67%), polyester binder fiber (manufactured by Unitika, #4080.
After mixing 30% of 2 denier x 5 m) to create an aqueous slurry and forming a sheet from this slurry using a standard square hand paper machine to have a basis weight of 40 g/rrl, The P material sheet of Example 6 was obtained by lightly pressing, drying, and further performing heat calender treatment. Table 2 shows the physical properties and filter performance of this sheet.

得られた炉材シートは液中粒子捕集効率が高く、濾過抵
抗が低く、良好なフィルター性能を示した。
The obtained furnace material sheet had high particle collection efficiency in liquid, low filtration resistance, and exhibited good filter performance.

比較例3 実施例6のノニオン性界面活性剤を除いたほがは実施例
6と全く同様にして、比較例3のシートを得た。このシ
ートの物性及び、フィルター性能を第2表に示す、得ら
れた炉材シートは捕集効率が実施例6のろ材シートに比
べて低く、フィルター性能の劣ったものであった。
Comparative Example 3 A sheet of Comparative Example 3 was obtained in exactly the same manner as in Example 6 except that the nonionic surfactant of Example 6 was removed. The physical properties and filter performance of this sheet are shown in Table 2. The obtained furnace material sheet had lower collection efficiency than the filter material sheet of Example 6 and had poor filter performance.

(G)発明の効果 本発明はガラスの極細繊維を用いたP材の欠点を取り除
き、従来、ガラスの極細繊維以外では達成不可能であっ
た高性能のろ材を提供するものであり、ガラス繊維を用
いた場合の欠点である自己発塵性や、微細ガラスの沢過
体への混入、焼却減容性が低い、フッ酸に弱い等の問題
を解決し、製造上の問題もない、産業上有用な高性能枦
材を提供するものである。又、界面活性剤の使用により
高価なフィブリル化された有機繊維の使用量を少なくす
ることを可能とするものである。
(G) Effects of the Invention The present invention eliminates the drawbacks of the P material using ultrafine glass fibers, and provides a high-performance filter medium that has hitherto been impossible to achieve with anything other than ultrafine glass fibers. It solves the disadvantages of self-dust generation, mixing of fine glass into the filter body, low volume reduction by incineration, and sensitivity to hydrofluoric acid, which are disadvantages when using The present invention provides a highly useful high-performance oak material. Furthermore, the use of surfactants makes it possible to reduce the amount of expensive fibrillated organic fibers used.

Claims (4)

【特許請求の範囲】[Claims] (1)2種以上の繊維からなるろ材において、一部が繊
維径1μm以下にフィブリル化された有機繊維とHLB
値が10以上20未満のノニオン性界面活性剤を含むこ
とを特徴とするろ材。
(1) In a filter medium consisting of two or more types of fibers, organic fibers partially fibrillated to a fiber diameter of 1 μm or less and HLB
A filter medium comprising a nonionic surfactant having a value of 10 or more and less than 20.
(2)ノニオン性界面活性剤の添加量が全繊維重量に対
して0.1〜5.0%であることを特徴とする請求項1
記載のろ材。
(2) Claim 1, characterized in that the amount of nonionic surfactant added is 0.1 to 5.0% based on the total fiber weight.
The filter media listed.
(3)一部が繊維径1μm以下のフィブリル化された有
機繊維が、高結晶性、高配向性繊維である請求項1又は
請求項2記載のろ材。
(3) The filter medium according to claim 1 or 2, wherein the fibrillated organic fibers, some of which have a fiber diameter of 1 μm or less, are highly crystalline and highly oriented fibers.
(4)一部が繊維径1μm以下のフィブリル化された有
機繊維の配合量が、全繊維重量の3%以上である請求項
1、請求項2又は請求項3記載のろ材。
(4) The filter medium according to claim 1, 2, or 3, wherein the amount of the organic fibers, some of which are fibrillated and have a fiber diameter of 1 μm or less, is 3% or more of the total fiber weight.
JP63306363A 1988-12-02 1988-12-02 ▲ Ro ▼ material Expired - Fee Related JP2672609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306363A JP2672609B2 (en) 1988-12-02 1988-12-02 ▲ Ro ▼ material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306363A JP2672609B2 (en) 1988-12-02 1988-12-02 ▲ Ro ▼ material

Publications (2)

Publication Number Publication Date
JPH02152509A true JPH02152509A (en) 1990-06-12
JP2672609B2 JP2672609B2 (en) 1997-11-05

Family

ID=17956157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306363A Expired - Fee Related JP2672609B2 (en) 1988-12-02 1988-12-02 ▲ Ro ▼ material

Country Status (1)

Country Link
JP (1) JP2672609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034710A (en) * 2003-07-17 2005-02-10 Toyobo Co Ltd Waterproof filter
JP2008238088A (en) * 2007-03-28 2008-10-09 Hokuetsu Paper Mills Ltd Filter medium for filtering liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034710A (en) * 2003-07-17 2005-02-10 Toyobo Co Ltd Waterproof filter
JP2008238088A (en) * 2007-03-28 2008-10-09 Hokuetsu Paper Mills Ltd Filter medium for filtering liquid

Also Published As

Publication number Publication date
JP2672609B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP6212619B2 (en) Air filter medium and air filter including the same
US5288402A (en) Liquid filter medium including a fibrillated filtering layer and an organic fiber support
JP5319380B2 (en) Low basis weight air filter media
JP2008000652A (en) Filter medium
JP2024020197A (en) Filtration media especially useful for filtering fluids associated with wire electron discharge machining (wedm) processes
JP3004021B2 (en) Filter media for air filter
JP3527793B2 (en) Filter media and air filters
JPH02152509A (en) Filter medium
JP3305372B2 (en) Filter media for liquid filtration
JPH09155127A (en) Filter medium
JPH1080612A (en) Filter material and air filter
JP5797175B2 (en) Air filter media
JPS59228918A (en) High-performance filter medium
JPH08196829A (en) Air cleaning filter medium and its production
JPH09841A (en) Filter material and filter for filtering liquid
JP3014439B2 (en) Filter media
JP2016137459A (en) Nonwoven fabric for filter, and filter medium for filter
JPH02303509A (en) Filter medium for high-performance air filter
JPS63236512A (en) Air filter filtering medium
JP2633355B2 (en) Filter media for liquid filtration
JP2020093209A (en) Filter medium
JPH1170305A (en) Filter material and air filter
JP7349414B2 (en) Filter medium for air filter and its manufacturing method
JP2020110749A (en) Filter medium
JP2020131065A (en) Filter medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees