JP2008238088A - Filter medium for filtering liquid - Google Patents

Filter medium for filtering liquid Download PDF

Info

Publication number
JP2008238088A
JP2008238088A JP2007083985A JP2007083985A JP2008238088A JP 2008238088 A JP2008238088 A JP 2008238088A JP 2007083985 A JP2007083985 A JP 2007083985A JP 2007083985 A JP2007083985 A JP 2007083985A JP 2008238088 A JP2008238088 A JP 2008238088A
Authority
JP
Japan
Prior art keywords
filter medium
value
fiber
dop
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083985A
Other languages
Japanese (ja)
Other versions
JP2008238088A5 (en
JP5226235B2 (en
Inventor
Nobuyuki Sakazume
信之 坂爪
Tomohiko Soyama
智彦 楚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP2007083985A priority Critical patent/JP5226235B2/en
Publication of JP2008238088A publication Critical patent/JP2008238088A/en
Publication of JP2008238088A5 publication Critical patent/JP2008238088A5/ja
Application granted granted Critical
Publication of JP5226235B2 publication Critical patent/JP5226235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium for filtering a liquid having a high initial filtration efficiency and a long life. <P>SOLUTION: The filter medium for filtering a liquid is characterized in that PF value (Y) and repellency (X) satisfy the following equation 1: Y≤50e<SP>-0.0065X</SP>[wherein e is Napier's number (the base of natural logarithm) and is approximately 2.71828], with PF value (Y) determined from the following equation: PF value (Y)=Log<SB>10</SB>ä(DOP transmissivity (%))/100}×(-100)/ä(pressure drop (Pa))/9.81} wherein pressure drop (Pa) represents a pressure drop in a filter medium in a gas phase measured according to JIS B9908 under a condition of a face wind velocity of 5.3 cm/second and DOP transmissivity represents transmissivity of monodispersed dioctyl phthalate (DOP) particles of 0.3 μm, and with repellency (X) measured according to the measurement method specified in MIL-STD-282. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体中に含まれる微粒子を分離捕捉する液体濾過用フィルター濾材に関するものである。さらに詳しくは、金属の型彫り、切断加工等に使用される放電加工機の加工液中に含まれる加工屑やIC生産における基盤のウェハの切断、研磨、エッチングなどの工程で使用される超純水中に含まれる加工屑を効率よく除去し、清澄な液体を得るための濾材に関するものである。   The present invention relates to a filter medium for liquid filtration that separates and captures fine particles contained in a liquid. More specifically, ultra-pure used in processes such as cutting, polishing, and etching of processing waste contained in the machining fluid of electrical discharge machines used for metal engraving and cutting, etc. The present invention relates to a filter medium for efficiently removing processing waste contained in water and obtaining a clear liquid.

濾材の性能を評価するに際して、不可欠な項目には濾過効率と濾過抵抗がある。濾材としては、濾過効率ができるだけ高く、濾過抵抗ができるだけ低いことが望ましいが、この2つの性能は相反する性能である。即ち、濾材を緻密な構造とすれば濾過効率を高めることができるが、その場合濾過抵抗が大きくなる。反対に濾過抵抗を小さくすると、濾過効率が低くなる。   When evaluating the performance of the filter medium, the indispensable items are filtration efficiency and filtration resistance. As a filter medium, it is desirable that the filtration efficiency is as high as possible and the filtration resistance is as low as possible, but these two performances are contradictory. That is, if the filter medium has a dense structure, the filtration efficiency can be increased, but in this case, the filtration resistance increases. Conversely, if the filtration resistance is reduced, the filtration efficiency is lowered.

濾材の構造には大きく分けて2種類あり、一つは「内部濾過タイプ」であり、これは濾材の内部で固体粒子を捕捉する構造の濾材である。もう一つは「表面濾過タイプ」であり、これは濾材の表面で固体粒子を捕捉する構造の濾材である。   There are roughly two types of filter media structures, one is an “internal filtration type”, which is a filter media with a structure that traps solid particles inside the filter media. The other is a “surface filtration type”, which is a filter medium structured to trap solid particles on the surface of the filter medium.

従来、放電加工機やIC生産工程で使用されている液体濾過用の濾材としては、天然パルプと有機繊維の混抄シートにフェノール樹脂等を含浸処理したシートやポリエステル不織布などが使用されていた。しかし、これらは濾過効率が低く、寿命が短いなどの問題があった。また、高性能濾材としてフッ素系樹脂等の多孔質シートがあるが、高価なため特殊用途に限定され、多量の液体を処理する濾材としては不適当であった。   Conventionally, as a filter medium for liquid filtration used in an electric discharge machine or an IC production process, a sheet obtained by impregnating a natural pulp and organic fiber with a phenol resin or the like, a polyester nonwoven fabric, or the like has been used. However, these have problems such as low filtration efficiency and short life. Moreover, although a porous sheet such as a fluorine-based resin is available as a high-performance filter medium, it is expensive and limited to special applications, and is not suitable as a filter medium for treating a large amount of liquid.

これらの問題を解決する濾材の一つとして、水での湿潤時の破裂強度が5kgf/cm以上となるように部分的に熱圧着させていることが提案されている。(特許文献1)
しかしながら、熱圧着することにより、熱圧着された部分の濾材空隙が潰れ濾過効率が落ちる欠点があった。
As one of the filter media for solving these problems, it has been proposed that a part is thermocompression-bonded so that the burst strength when wet with water is 5 kgf / cm 2 or more. (Patent Document 1)
However, the thermocompression bonding has a drawback that the filter medium gap in the thermocompression-bonded portion is crushed and the filtration efficiency is lowered.

また、濾過層と支持体層を抄き合せ一体化した液体濾過用フィルター濾材で、支持体層にバインダーを付与させて、横方向の湿潤引張強度が0.98kN/m以上になるように提案されている。(特許文献2)
しかしながら、支持体層だけにバインダーを付与させることで、濾材の空隙構造が不均一になり、濾過が濾材内で均一に行われず、初期の濾過精度のばらつきが大きくなることなどの問題があった。
Also, it is a filter medium for liquid filtration in which the filtration layer and the support layer are combined and integrated, and a proposal is made that the wet tensile strength in the transverse direction is 0.98 kN / m or more by adding a binder to the support layer. Has been. (Patent Document 2)
However, when the binder is applied only to the support layer, the pore structure of the filter medium becomes non-uniform, the filtration is not performed uniformly in the filter medium, and the initial filtration accuracy varies greatly. .

また、2層構造の液体用濾過フィルター濾材で、基材は液晶性高分子パルプ1〜80重量%と繊維径5μm以上の有機繊維を20〜99重量%とにより構成し、支持体層に繊維径5μm以上で繊維長5mm以上の1種以上の有機繊維を含み、濾材層と支持体層の厚みの比、最大ポア径、捕集効率をコントロールすることが提案されている。(特許文献3)
しかしながら、2層構造であるため、ケークの形成が急激に起こり、初期濾過は良好であるが、ライフが短いなどの問題があった。
Moreover, it is a filter filter medium for liquids having a two-layer structure, and the substrate is composed of 1 to 80% by weight of liquid crystalline polymer pulp and 20 to 99% by weight of organic fibers having a fiber diameter of 5 μm or more, and the support layer has fibers It has been proposed to include one or more organic fibers having a diameter of 5 μm or more and a fiber length of 5 mm or more, and to control the ratio of the thickness of the filter medium layer to the support layer, the maximum pore diameter, and the collection efficiency. (Patent Document 3)
However, since it has a two-layer structure, the formation of cake is abrupt and the initial filtration is good, but there are problems such as short life.

また、繊維径5μm以下の極細有機繊維及び極細無機繊維を20〜80重量%と、繊維径5μm以上の有機繊維及び無機繊維を80〜20重量%からなる濾材が提案されている。(特許文献4)   Further, a filter medium comprising 20 to 80% by weight of ultrafine organic fiber and ultrafine inorganic fiber having a fiber diameter of 5 μm or less and 80 to 20% by weight of organic fiber and inorganic fiber having a fiber diameter of 5 μm or more has been proposed. (Patent Document 4)

また、シートの地合をコントロールすることにより、強度低下の少ない濾材が提案されている。(特許文献5)   In addition, a filter medium with less strength reduction has been proposed by controlling the formation of the sheet. (Patent Document 5)

しかしながら、近年の液体濾過の流速の高速化に伴い、一定時間当たりの加工屑の発生量が非常に多くなり、目詰まりが早くやってきていることから、新しいタイプの濾材を求められているのが現実である。
特開平11−165009号公報 特開2003−38918号公報 特開2006−61789号公報 特開2002−85918号公報 WO2006−008828号公報
However, with the recent increase in the flow rate of liquid filtration, the amount of processing waste generated per fixed time has become very large and clogging has come early. Reality.
JP-A-11-165209 JP 2003-38918 A JP 2006-61789 A JP 2002-85918 A WO2006-008828

本発明は、初期濾過効率が高く、ライフ(寿命)の長い液体濾過用フィルター濾材を提供するものである。   The present invention provides a filter medium for liquid filtration having a high initial filtration efficiency and a long life.

本発明者らは、上記課題を解決するために鋭意検討した結果、ライフと濾過液の処理流量を増加させるためには、気相中における濾材の圧力損失と透過率から求められるPF値と、濾材の撥水性をコントロールすることが最も重要なことであることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that in order to increase the life and the processing flow rate of the filtrate, the PF value obtained from the pressure loss and permeability of the filter medium in the gas phase, The inventors have found that controlling the water repellency of the filter medium is the most important, and have completed the present invention.

即ち、本発明はJIS B9908に準じて面風速5.3cm/秒の条件で測定された気相中における濾材の圧力損失と、フタル酸ジオクチル(DOP)粒子0.3μm単分散の透過率から以下の式で求められるPF値(Y)
PF値(Y)=Log10{(DOP透過率(%))/100}×(-100)/{(圧力損失(Pa)/9.81)
と,
MIL−STD−282記載の測定法に準拠し測定された撥水性(X)から算出される値が,
以下の式1
[数1]
Y≦50e−0.0065X
[式中、eはネイピア数(自然対数の底)であり、2.71828で近似される。]
を満足することを特徴とした液体濾過用フィルター濾材に関する。
That is, the present invention is as follows from the pressure loss of the filter medium in the gas phase measured under a surface wind speed of 5.3 cm / sec according to JIS B9908 and the transmittance of monodisperse dioctyl phthalate (DOP) particles of 0.3 μm. PF value (Y) calculated by the formula
PF value (Y) = Log 10 {(DOP transmittance (%)) / 100} × (-100) / {(pressure loss (Pa) /9.81)
When,
The value calculated from the water repellency (X) measured according to the measurement method described in MIL-STD-282 is
Equation 1 below
[Equation 1]
Y ≦ 50e −0.0065X
[Where e is the Napier number (the base of the natural logarithm) and is approximated by 2.71828. ]
It is related with the filter medium for liquid filtration characterized by satisfying these.

本発明の一つの実施態様は、濾材が繊維層濾材であり、合成樹脂系バインダーを付与することを特徴とした上記液体濾過用フィルター濾材に関する。   One embodiment of the present invention relates to the above-mentioned filter medium for liquid filtration, wherein the filter medium is a fiber layer filter medium and a synthetic resin binder is added.

本発明の別の一つの実施態様は、濾材が繊維層濾材であり、付与する合成樹脂系バインダーとしてアクリル系、酢酸ビニル系、スチレン−ブタジエン系、ウレタン系、ナイロン系バインダーの少なくとも1種以上が選ばれていることを特徴とした、液体濾過用フィルター濾材である。   In another embodiment of the present invention, the filter medium is a fiber layer filter medium, and the synthetic resin binder to be applied is at least one of acrylic, vinyl acetate, styrene-butadiene, urethane, and nylon binders. A filter medium for liquid filtration characterized by being selected.

更に別の一つの実施態様は、界面活性剤を付与してなることを特徴とした液体濾過用フィルター濾材である。   Yet another embodiment is a filter medium for liquid filtration characterized by being provided with a surfactant.

液体濾過用フィルター濾材で用いる合成樹脂系バインダーの種類、圧力損失、DOP透過率、撥水性をコントロールすることによって、初期濾過効率が高く、ライフが長い液体濾過用フィルター濾材が得られる。   By controlling the type, pressure loss, DOP permeability, and water repellency of the synthetic resin binder used in the filter medium for liquid filtration, a filter medium for liquid filtration with a high initial filtration efficiency and a long life can be obtained.

以下に本発明の詳細を記載する。   Details of the present invention will be described below.

本発明の濾材の重要な要件として、初期濾過効率とライフの向上並びに濾過水の処理流量の増加を同時に満たすには、JIS B9908に準じて気相中における面風速5.3cm/秒の条件で測定された気相中における濾材の圧力損失と気相中にて測定されるフタル酸ジオクチル(DOP)粒子0.3μm単分散の透過率から求められるPF値(Y)と,MIL−STD−282記載の測定法に準拠し測定された撥水性(X)から算出される値が,以下の式1
[数2]
Y≦ 50e−0.0065X
[式中、eはネイピア数(自然対数の底)であり、2.71828で近似される。]
に当てはまることが必要である。ただし、Xの値は0≦である。
As an important requirement of the filter medium of the present invention, in order to satisfy the improvement of the initial filtration efficiency and the life and the increase of the flow rate of the filtered water at the same time, the surface air velocity in the gas phase is 5.3 cm / sec in accordance with JIS B9908. PF value (Y) determined from the measured pressure loss of the filter medium in the gas phase and the transmittance of dioctyl phthalate (DOP) particles 0.3 μm monodisperse measured in the gas phase, and MIL-STD-282 The value calculated from the water repellency (X) measured in accordance with the measurement method described is the following formula 1
[Equation 2]
Y ≦ 50e −0.0065X
[Where e is the Napier number (the base of the natural logarithm) and is approximated by 2.71828. ]
It is necessary to apply to. However, the value of X is 0 ≦.

濾材の圧力損失と透過率から求められるPF値(Y)の値が、撥水性(X)から求められる値よりも低い場合は、初期濾過効率、並びにライフの向上と濾過液の処理流量の増加が同時にもたらされる。逆に、高い場合には初期濾過効率が高い値が得られたとしても、ライフと濾過液の処理流量が著しく低下する。   When the PF value (Y) obtained from the pressure loss and transmittance of the filter medium is lower than the value obtained from the water repellency (X), the initial filtration efficiency and the life are improved, and the processing flow rate of the filtrate is increased. Are brought at the same time. On the contrary, when the initial filtration efficiency is high, the life and the processing flow rate of the filtrate are remarkably lowered when the initial filtration efficiency is high.

また、ここで用いられるPF値とは、面積100cmの濾材に対し、JIS B9908に準じて気相中における面風速5.3cm/秒で測定される気相中における濾材の圧力損失と、0.3μmのフタル酸ジオクチル(DOP)粒子の透過率の以下の関係式から求められる。 The PF value used here is the pressure loss of the filter medium in the gas phase measured at a surface wind speed of 5.3 cm / sec in the gas phase in accordance with JIS B9908 with respect to the filter medium having an area of 100 cm 2 , and 0 It is obtained from the following relational expression of transmittance of 3 μm dioctyl phthalate (DOP) particles.

PF値 ={Log10(DOP透過率(%)/100)×(−100)}/(圧力損失(Pa)/9.81)
DOP透過率(%)=(濾過後の粒子数)/(濾過前の粒子数)×100
濾材の構成については、前記要件を満たす濾材であれば、本発明の効果を得ることができるので、制限されるものではないが、最良の形態を記載する。
PF value = {Log 10 (DOP transmittance (%) / 100) × (−100)} / (pressure loss (Pa) /9.81)
DOP permeability (%) = (number of particles after filtration) / (number of particles before filtration) × 100
The configuration of the filter medium is not limited as long as the filter medium satisfies the above requirements, and the best mode will be described.

本発明で濾材構成繊維としては、無機繊維、有機合成繊維、天然繊維及びその誘導体が挙げられる。具体的には、無機繊維としては、ガラス繊維、炭素繊維、ロックファイバー、ステンレスファイバーなどが挙げられる。有機合成繊維としては、ポリオレフィン、ポリアミド、ポリエステル、ビニロンなどが挙げられる。天然繊維及びその誘導体としては、パルプ、麻、リンター、綿、わら等が挙げられる。   In the present invention, the filter medium constituting fibers include inorganic fibers, organic synthetic fibers, natural fibers, and derivatives thereof. Specifically, examples of the inorganic fiber include glass fiber, carbon fiber, lock fiber, and stainless fiber. Examples of the organic synthetic fiber include polyolefin, polyamide, polyester, and vinylon. Examples of natural fibers and derivatives thereof include pulp, hemp, linter, cotton, and straw.

また、有機合成繊維の内、一部あるいは全部を熱融着型複合繊維、並びにビニロン繊維のような湿熱溶解繊維、いわゆる繊維状有機バインダーを使用してもかまわない。   In addition, a part or all of the organic synthetic fiber may be a heat-sealable composite fiber, a wet heat-dissolving fiber such as vinylon fiber, or a so-called fibrous organic binder.

熱融着型複合繊維とは、ポリオレフィン系複合繊維が挙げられ、芯鞘タイプ(コアシェルタイプ)、並列タイプ(サイドバイサイドタイプ)などが挙げられるが、これに限定されるものではない。代表的な複合繊維としては、例えばポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、ポリエステル(芯)とポリエチレン(鞘)の組み合わせなどが挙げられる。   Examples of the heat-sealable composite fiber include polyolefin-based composite fibers, and examples include a core-sheath type (core-shell type) and a parallel type (side-by-side type), but are not limited thereto. Representative composite fibers include, for example, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), and a combination of polyester (core) and polyethylene (sheath). .

また、組成の違う繊維状有機バインダーを2種類以上使用しても、なんら問題は無い。   Moreover, there is no problem even if two or more kinds of fibrous organic binders having different compositions are used.

これらの繊維をシート化する場合、一般的には乾式法、湿式法などの抄紙法が挙げられる。乾式法の抄紙機としては、メルトブロー法、スパンボンド法、スパンレース法などが挙げられる。また、湿式法の抄紙機としては、長網抄紙機、円網抄紙機、傾斜ワイヤー抄紙機などが挙げられるが、シートの地合の均一性が粒子の透過率に影響を及ぼす場合が大きいので、シートの地合が良好な湿式法でウェブを形成し、シート化を行うことが好ましい。   When these fibers are formed into a sheet, paper making methods such as a dry method and a wet method are generally used. Examples of the dry paper machine include a melt blow method, a spun bond method, and a spun lace method. In addition, examples of the wet type paper machine include a long net paper machine, a circular net paper machine, and an inclined wire paper machine, but the uniformity of the formation of the sheet largely affects the particle transmittance. The web is preferably formed into a sheet by a wet method with a good sheet formation.

本発明における合成樹脂系バインダーの付与は、本発明の効果を得るのに特に重要である。   The application of the synthetic resin binder in the present invention is particularly important for obtaining the effects of the present invention.

本発明で用いられる合成樹脂系バインダーとは、ラテックス状、溶液状、エマルジョン状等の液状乃至は粘ちょう性の合成樹脂系バインダー、特に好ましくはラテックス状バインダーである。その中でも、アクリル系ラテックス、酢ビ系ラテックス、ウレタン系ラテックス、スチレンーブタジエン系ラテックス、NBR系ラテックスを単独、又は2種類以上併用できる。   The synthetic resin binder used in the present invention is a liquid or viscous synthetic resin binder such as latex, solution or emulsion, and particularly preferably a latex binder. Among these, acrylic latex, vinyl acetate latex, urethane latex, styrene-butadiene latex, and NBR latex can be used alone or in combination of two or more.

しかしながら、これら合成樹脂系バインダーを使用することは、式1の関係を損なわない限り何ら問題無いが、対基材あたり20質量%以下の付与にとどめることが好ましい。20質量%を超えると,フィルター濾材繊維との交点に合成樹脂系バインダーの膜が多くなり、気相中における濾材の圧力損失と撥水性が大きくなりすぎ、式1の関係を損なう。   However, the use of these synthetic resin binders is not a problem as long as the relationship of Formula 1 is not impaired, but it is preferable to limit the amount to 20% by mass or less per substrate. When it exceeds 20 mass%, the film of the synthetic resin binder increases at the intersection with the filter medium fiber, the pressure loss and water repellency of the filter medium in the gas phase become too large, and the relationship of Formula 1 is impaired.

また、合成樹脂系バインダーを濾材に付与することにより、式1の関係を損なう恐れがある場合は、あらかじめ合成樹脂系バインダーの乾燥膜表面の接触角を測定し、接触角の値が大きく、水濡れ性の良好なものを選ぶことが好ましい。   If there is a risk of impairing the relationship of Formula 1 by applying a synthetic resin binder to the filter medium, the contact angle on the dry film surface of the synthetic resin binder is measured in advance. It is preferable to select one having good wettability.

また、式1の関係を維持するために、上記合成樹脂系ラテックスを使用した撥水性の高い濾材に対し、界面活性剤を撥水性低下の目的で用いることは、さらに効果を高める。   Moreover, in order to maintain the relationship of Formula 1, it is more effective to use a surfactant for the purpose of reducing water repellency with respect to a filter material having high water repellency using the synthetic resin latex.

本発明で用いられる界面活性剤とは、脂肪酸系、高級アルコール系、ベタイン系、アセチレン系等が挙げられる。   Examples of the surfactant used in the present invention include fatty acid series, higher alcohol series, betaine series, and acetylene series.

濾材への界面活性剤の付与については、濾過時の溶出による発泡を最小限にするため、添加率も最小限にとどめることが好ましく、対濾材あたり1質量%以下の付与にとどめることが望ましい。好ましくは、対濾材あたり0.01〜1質量%、さらに好ましくは、0.03〜0.5質量%である。   With regard to the application of the surfactant to the filter medium, it is preferable to keep the addition rate to a minimum in order to minimize foaming due to elution during filtration, and it is preferable to limit the addition to 1% by mass or less per filter medium. Preferably, it is 0.01-1 mass% per filter medium, More preferably, it is 0.03-0.5 mass%.

濾材への界面活性剤の付与方法は、濾材の製造段階の抄紙時に付与するのが好ましいが、製造された濾材を界面活性剤含有水溶液に浸漬し、乾燥することもできる。   The method for applying the surfactant to the filter medium is preferably applied at the time of papermaking in the production stage of the filter medium, but the manufactured filter medium can be dipped in a surfactant-containing aqueous solution and dried.

また、ウェブからシート化に際し、ウェブへのプレス、乾燥による加熱、キャレンダーリングによるシートの表面の均一性改善等を行うことは、式1の関係を損なわない限り何ら問題ない。   In addition, when forming a sheet from the web, there is no problem in pressing the web, heating by drying, improving the uniformity of the surface of the sheet by calendaring, etc., as long as the relationship of Formula 1 is not impaired.

乾燥する場合の方法として、シリンダーバインダー、スルードライヤー、赤外線ドライヤーなどがある。   As a method for drying, there are a cylinder binder, a through dryer, an infrared dryer, and the like.

ただし、乾燥温度は使用する熱融着繊維の種類にも左右されるが、60℃〜170℃の範囲が望ましい。60℃未満の場合は、繊維間や繊維と合成樹脂バインダーとの接着不良が起こりやすく、強度不足に陥る。 また、170℃よりも高い温度では、基材の繊維状バインダーや合成樹脂バインダーによる膜化や硬化が進み、撥水性が上昇しすぎるため、式1の関係を損なうことになる。   However, the drying temperature depends on the type of heat-sealing fiber to be used, but a range of 60 ° C to 170 ° C is desirable. When the temperature is less than 60 ° C., poor adhesion between the fibers or between the fibers and the synthetic resin binder easily occurs, resulting in insufficient strength. Further, at a temperature higher than 170 ° C., the film formation and curing by the fibrous binder or the synthetic resin binder of the base material proceed, and the water repellency increases too much, so that the relationship of Formula 1 is impaired.

また、キャレンダー加工の方法としては、スチール/スチール、スチール/樹脂、スチール/コットンなどのロール組合せが挙げられる。また、これら2種類以上の使用は、式1の関係を損なわない限り何ら問題無い。   Examples of the calendering method include roll combinations such as steel / steel, steel / resin, and steel / cotton. Moreover, there is no problem in using these two or more types as long as the relationship of Formula 1 is not impaired.

[実施例]
以下に実施例を挙げて、本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例及び比較例における目付質量、気相中における濾材の圧力損失、0.3μmDOP透過率、PF値、撥水性、初期濾過効率、ライフの測定に関しては、以下の方法で測定を行った。
[Example]
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples. In addition, about the mass per unit area in a Example and a comparative example, the pressure loss of the filter medium in a gaseous phase, 0.3 micrometer DOP transmittance | permeability, PF value, water repellency, initial stage filtration efficiency, and the measurement of the life were measured with the following method. .

本発明で測定を行った目付質量は、JIS L1096に準拠して行った。また、気相中における濾材の圧力損失は、有効面積100cmの濾紙に面風速5.3cm/秒で空気を通過させたときの差圧をマノメーターを用いて測定した。0.30μmDOP透過率については、ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cmの濾紙に面風速5.3cm/秒で通過させ、そのときの透過率を、レーザーパーティクルカウンターを用いて測定した。PF値は、上述の圧力損失とDOP透過率から、以下の式を用いて求めた。 The mass per unit area measured according to the present invention was measured according to JIS L1096. The pressure loss of the filter medium in the gas phase was measured using a manometer when the air was passed through a filter paper having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec. As for 0.30 μm DOP transmittance, air containing polydisperse DOP particles generated by a Ruskin nozzle is passed through a filter paper having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec. Measurement was performed using a counter. The PF value was determined from the above pressure loss and DOP transmittance using the following formula.

PF値=Log10(DOP透過率(%)/100)×(−100)/{(圧力損失)/9.81}
撥水性は、MIL−STD−282に準拠して測定した。
初期濾過効率は、JIS Z8901で規定されている試験用ダスト8種粉体を500ppmの濃度になるように水で希釈したものを試験用液体とした。この試験用液体100mlを、有効面積14cm、差圧320mmHOで濾過し、濾過前後の液を絶乾になるまで加熱後秤量し、以下の式から算出した値を初期濾過効率とした。
PF value = Log 10 (DOP transmittance (%) / 100) × (−100) / {(pressure loss) /9.81}
The water repellency was measured according to MIL-STD-282.
The initial filtration efficiency was obtained by diluting 8 kinds of test dust powders defined in JIS Z8901 with water to a concentration of 500 ppm as a test liquid. 100 ml of this test liquid was filtered with an effective area of 14 cm 2 and a differential pressure of 320 mmH 2 O, and the liquid before and after filtration was heated and weighed until it was completely dry, and the value calculated from the following formula was used as the initial filtration efficiency.

初期濾過効率(%)=[{(濾過前の粒子質量)−(濾過後の粒子質量)}/(濾過前の粒子質量)]×100
初期濾過効率が80%を超えると非常に良好であり、50%を超えていれば実使用に問題が無い。しかし、50%未満であれば濁りが目視でも確認できるレベルであり、実使用上で支障が出る。
Initial filtration efficiency (%) = [{(particle mass before filtration) − (particle mass after filtration)} / (particle mass before filtration)] × 100
When the initial filtration efficiency exceeds 80%, it is very good, and when it exceeds 50%, there is no problem in actual use. However, if it is less than 50%, turbidity is at a level that can be visually confirmed, which hinders practical use.

ライフは、上記試験液体を10回繰り返し濾過した後、上記試験と同様に11回目の濾過を行い、その時の濾過時間を測定して濾過速度(単位:cc/cm・min)を算出した。濾過速度の数値が大きいほどライフが良好であり、4cc/cm・minであればライフは良好である。 Life was obtained by filtering the test liquid 10 times repeatedly, performing the 11th filtration in the same manner as the above test, and measuring the filtration time at that time to calculate the filtration rate (unit: cc / cm 2 · min). The greater the value of the filtration rate, the better the life, and the better the life is 4 cc / cm 2 · min.

繊維径約5μmのポリエステル繊維(帝人ファイバー社製 0.3デシテックス×5mm)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で60:40の繊維配合になるように混合し、水性スラリーを作成して、これらのスラリーから抄紙機を用いて、目付質量68g/mになるシートを形成し、この湿紙の状態のシートに合成樹脂バインダーとして、アクリル系ラテックス(大日本インキ化学工業製 ボンコートSFA−33)を15質量%になるように基材に付与し,130℃で乾燥させ、圧力損失が25Pa、0.3μmDOP透過率が97.7%、PF値が0.40、撥水性が700mmの液体濾過用フィルター濾材を得た。 A polyester fiber having a fiber diameter of about 5 μm (0.3 Tex × 5 mm manufactured by Teijin Fibers Limited) and a polyester heat-bonding binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 60 : Mixing so as to have a fiber composition of 40, creating an aqueous slurry, and forming a sheet having a basis weight of 68 g / m 2 from these slurry using a paper machine. As a synthetic resin binder, acrylic latex (Dai Nippon Ink Chemical Co., Ltd. Boncoat SFA-33) was applied to the substrate so as to be 15% by mass, dried at 130 ° C., pressure loss 25 Pa, 0.3 μm DOP transmittance. Was 97.7%, the PF value was 0.40, and the water repellency was 700 mm.

繊維径約3μmのガラス繊維(ジョンズ マンビル社製 #110)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で60:40の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーを10質量%付与した以外は、実施例1と同様にして、圧力損失が30Pa、0.3μmDOP透過率が62.4%、PF値が6.7、撥水性が250mmの液体濾過用フィルター濾材を得た。   60:40 fiber by mass of glass fiber having a fiber diameter of about 3 μm (# 110 made by Johns Manville) and polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm made by Unitika) It mixed so that it might become a mixing | blending, an aqueous slurry was created, and the pressure loss was 30 Pa, 0.3 micrometer DOP transmittance | permeability was 62.4% like Example 1 except having provided 10 mass% of synthetic resin binders, A filter medium for liquid filtration having a PF value of 6.7 and a water repellency of 250 mm was obtained.

繊維径約0.7μmのガラス繊維(ジョンズ マンビル社製 #106)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で40:60の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーを5質量%付与した以外は、実施例1と同様にして、圧力損失が250Pa、0.3μmDOP透過率が0.40%、PF値が9.4、撥水性が200mmの液体濾過用フィルター濾材を得た。   A glass fiber having a fiber diameter of about 0.7 μm (# 106 manufactured by Johns Manville) and a polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 40:60. In the same manner as in Example 1 except that an aqueous slurry was prepared and 5% by mass of a synthetic resin binder was added, the pressure loss was 250 Pa, and the 0.3 μm DOP transmittance was 0.40. %, A PF value of 9.4 and a water repellency of 200 mm were obtained.

繊維径約0.7μmのガラス繊維(ジョンズ マンビル社製 #106)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で40:60の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーを10質量%及びアセチレン系界面活性剤(日信化学工業製 オルフィンSTG)を0.3質量%付与した以外は、実施例1と同様にして、圧力損失が245Pa、0.3μmDOP透過率が58.1%、PF値が10.1、撥水性が230mmの液体濾過用フィルター濾材を得た。   A glass fiber having a fiber diameter of about 0.7 μm (# 106 manufactured by Johns Manville) and a polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 40:60. Except for adding 10% by mass of a synthetic resin binder and 0.3% by mass of an acetylene surfactant (Olfin STG manufactured by Nissin Chemical Industry). In the same manner as in Example 1, a filter medium for liquid filtration having a pressure loss of 245 Pa, a 0.3 μm DOP transmittance of 58.1%, a PF value of 10.1, and a water repellency of 230 mm was obtained.

繊維径約0.7μmのガラス繊維(ジョンズ マンビル社製 #106)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で40:60の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーを2質量%付与した以外は、実施例1と同様にして、圧力損失が230Pa、0.3μmDOP透過率が0.15%、PF値が12.1、撥水性が150mmの液体濾過用フィルター濾材を得た。   A glass fiber having a fiber diameter of about 0.7 μm (# 106 manufactured by Johns Manville) and a polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 40:60. In the same manner as in Example 1 except that an aqueous slurry was prepared and 2% by mass of a synthetic resin binder was added, the pressure loss was 230 Pa, and the 0.3 μm DOP transmittance was 0.15. %, A PF value of 12.1, and a water repellency of 150 mm were obtained.

[比較例1]
繊維径約5μmのポリエステル繊維(帝人ファイバー社製 0.3デシテックス×5mm)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で60:40の繊維配合になるように混合し、水性スラリーを作成して、これらのスラリーから抄紙機を用いて、目付質量68g/mになるシートを形成し、この湿紙の状態のシートに合成樹脂バインダーとして、オレフィン系ラテックス(三井化学性製 ザイクセンA)を15質量%になるように基材に付与し,130℃で乾燥させ、圧力損失が25Pa、0.3μmDOP透過率が97.8%、PF値が0.38、撥水性が900mmの液体濾過用フィルター濾材を得た。
[Comparative Example 1]
A polyester fiber having a fiber diameter of about 5 μm (0.3 Tex × 5 mm manufactured by Teijin Fibers Limited) and a polyester heat-bonding binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 60 : Mixing so as to have a fiber composition of 40, creating an aqueous slurry, and forming a sheet having a basis weight of 68 g / m 2 from these slurry using a paper machine. As a synthetic resin binder, an olefin latex (Zyxen A manufactured by Mitsui Chemicals, Inc.) is applied to a substrate so as to be 15% by mass, dried at 130 ° C., a pressure loss is 25 Pa, and a 0.3 μm DOP transmittance is 97.8. %, A PF value of 0.38, and a water repellency of 900 mm were obtained.

[比較例2]
繊維径約3μmのガラス繊維(ジョンズ マンビル社製 #110)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で60:40の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーをオレフィン系ラテックス(三井化学製 ザイクセンA)5質量%付与した以外は、比較例1と同様にして、圧力損失が30Pa、0.3μmDOP透過率が60.4%、PF値が7.2、撥水性が330mmの液体濾過用フィルター濾材を得た。
[Comparative Example 2]
60:40 fiber by mass of glass fiber having a fiber diameter of about 3 μm (# 110 made by Johns Manville) and polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm made by Unitika) The mixture was mixed so as to form an aqueous slurry, and the pressure loss was 30 Pa, 0 in the same manner as in Comparative Example 1, except that 5% by mass of the synthetic resin binder was added to the olefin latex (Zyxen A manufactured by Mitsui Chemicals). A filter medium for liquid filtration having a 3 μm DOP transmittance of 60.4%, a PF value of 7.2, and a water repellency of 330 mm was obtained.

[比較例3]
繊維径約0.7μmのガラス繊維(ジョンズ マンビル社製 #106)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で40:60の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーをアクリル系ラテックス(大日本インキ化学製 ボンコートSFA−33)を10質量%付与した以外は、比較例1と同様にして、圧力損失が250Pa、0.3μmDOP透過率が0.64%、PF値が8.6、撥水性が450mmの液体濾過用フィルター濾材を得た。
[Comparative Example 3]
A glass fiber having a fiber diameter of about 0.7 μm (# 106 manufactured by Johns Manville) and a polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm manufactured by Unitika Co., Ltd.) in a mass ratio of 40:60. In the same manner as in Comparative Example 1, except that an aqueous slurry was prepared and an acrylic latex (Doncoat SFA-33 manufactured by Dainippon Ink Chemical Co., Ltd.) was added in an amount of 10% by mass. A filter medium for liquid filtration having a pressure loss of 250 Pa, a 0.3 μm DOP transmittance of 0.64%, a PF value of 8.6, and a water repellency of 450 mm was obtained.

[比較例4]
繊維径約0.7μmのガラス繊維(ジョンズ マンビル社製 #106)と、繊維径約12μmのポリエステル熱融着バインダー繊維(ユニチカ社製 エステル4080 1.7デシテックス×5mm)を質量比で60:40の繊維配合になるように混合し、水性スラリーを作成し、合成樹脂バインダーをオレフィン系ラテックス(三井化学製 ザイクセンA)2質量%付与した以外は、比較例1と同様にして、圧力損失が300Pa、0.3μmDOP透過率が0.014%、PF値が12.6、撥水性が250mmの液体濾過用フィルター濾材を得た。
[Comparative Example 4]
A glass fiber having a fiber diameter of about 0.7 μm (# 106 made by Johns Manville) and a polyester heat-fusing binder fiber having a fiber diameter of about 12 μm (Ester 4080 1.7 decitex × 5 mm made by Unitika) in a mass ratio of 60:40 In the same manner as in Comparative Example 1 except that 2% by mass of an olefin-based latex (Zyxen A manufactured by Mitsui Chemicals) was added, an aqueous slurry was prepared by mixing so as to have a fiber composition of A filter medium for liquid filtration having a 0.3 μm DOP transmittance of 0.014%, a PF value of 12.6, and a water repellency of 250 mm was obtained.

Figure 2008238088
Figure 2008238088

実施例1〜5で作成した液体濾過用フィルター濾材は、式1の関係を満たし、初期濾過効率およびライフも良好なものであった。   The filter medium for liquid filtration prepared in Examples 1 to 5 satisfied the relationship of Formula 1 and had good initial filtration efficiency and life.

比較例1は、合成樹脂系バインダーがオレフィン系ラテックスであり、PF値が式1から求められる値を超える値であったため、初期濾過効率及びライフが著しく低下した。   In Comparative Example 1, the synthetic resin binder was an olefin latex, and the PF value exceeded the value obtained from Formula 1, so that the initial filtration efficiency and life were significantly reduced.

比較例2は、実施例2と同じ繊維配合ではあるが、合成樹脂系バインダーがオレフィン系ラテックスであり、PF値が式1から求められる値を超える値であったため、初期濾過効率及びライフが著しく低下した。   Comparative Example 2 has the same fiber composition as Example 2, but the synthetic resin binder is an olefin latex and the PF value exceeds the value obtained from Formula 1, so the initial filtration efficiency and life are remarkably high. Declined.

比較例3は、実施例4と同じ繊維配合、合成樹脂系バインダーではあるが、撥水性が高く、PF値が式1から求められる値を超える値であったため、初期濾過効率は良好であったが、ライフが著しく低下した。   Comparative Example 3 was the same fiber formulation and synthetic resin binder as Example 4, but had high water repellency and the PF value exceeded the value obtained from Formula 1, so that the initial filtration efficiency was good. However, the life was significantly reduced.

比較例4は、PF値が式1から求められる値を超える値であったため、初期濾過効率は良好であったが、ライフが著しく低下した。   In Comparative Example 4, since the PF value exceeded the value obtained from Formula 1, the initial filtration efficiency was good, but the life was significantly reduced.

Claims (4)

JIS B9908に準じて面風速5.3cm/秒の条件で測定された気相中における濾材の圧力損失と、フタル酸ジオクチル(DOP)粒子0.3μm単分散の透過率から以下の式で求められるPF値(Y)
PF値(Y)=Log10{(DOP透過率(%))/100}×(-100)/{(圧力損失(Pa)/9.81)
と,
MIL−STD−282記載の測定法に準拠し測定された撥水性(X)から算出される値が,
以下の式1
[数1]
Y≦50e−0.0065X
[式中、eはネイピア数(自然対数の底)であり、2.71828で近似される。]
を満足することを特徴とした液体濾過用フィルター濾材。
From the pressure loss of the filter medium in the gas phase measured under conditions of a surface wind speed of 5.3 cm / sec in accordance with JIS B9908 and the transmittance of monodisperse dioctyl phthalate (DOP) particles of 0.3 μm, the following formula is used. PF value (Y)
PF value (Y) = Log 10 {(DOP transmittance (%)) / 100} × (-100) / {(pressure loss (Pa) /9.81)
When,
The value calculated from the water repellency (X) measured according to the measurement method described in MIL-STD-282 is
Equation 1 below
[Equation 1]
Y ≦ 50e −0.0065X
[Where e is the Napier number (the base of the natural logarithm) and is approximated by 2.71828. ]
A filter medium for liquid filtration, characterized by satisfying
該濾材において、濾材が繊維層濾材であり、合成樹脂系バインダーを付与することを特徴とした請求項1記載の液体濾過用フィルター濾材。   2. The filter medium for liquid filtration according to claim 1, wherein the filter medium is a fiber layer filter medium and is provided with a synthetic resin binder. 該濾材において、濾材が繊維層濾材であり、合成樹脂系バインダーとしてアクリル系、酢酸ビニル系、スチレン−ブタジエン系、ウレタン系、ナイロン系バインダーの少なくとも1種以上が選ばれていることを特徴とした、請求項1または2記載の液体濾過用フィルター濾材。   In the filter medium, the filter medium is a fiber layer filter medium, and at least one of an acrylic, vinyl acetate, styrene-butadiene, urethane, and nylon binder is selected as the synthetic resin binder. The filter medium for liquid filtration according to claim 1 or 2. 該濾材において、界面活性剤を付与してなる請求項1〜3のいずれか一つに記載の液体濾過用フィルター濾材。   The filter medium for liquid filtration according to any one of claims 1 to 3, wherein a surfactant is added to the filter medium.
JP2007083985A 2007-03-28 2007-03-28 Filter media for liquid filtration Active JP5226235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083985A JP5226235B2 (en) 2007-03-28 2007-03-28 Filter media for liquid filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083985A JP5226235B2 (en) 2007-03-28 2007-03-28 Filter media for liquid filtration

Publications (3)

Publication Number Publication Date
JP2008238088A true JP2008238088A (en) 2008-10-09
JP2008238088A5 JP2008238088A5 (en) 2009-05-21
JP5226235B2 JP5226235B2 (en) 2013-07-03

Family

ID=39910060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083985A Active JP5226235B2 (en) 2007-03-28 2007-03-28 Filter media for liquid filtration

Country Status (1)

Country Link
JP (1) JP5226235B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152509A (en) * 1988-12-02 1990-06-12 Mitsubishi Paper Mills Ltd Filter medium
JPH09155127A (en) * 1995-12-12 1997-06-17 Mitsubishi Paper Mills Ltd Filter medium
JPH09225226A (en) * 1996-02-22 1997-09-02 Hokuetsu Paper Mills Ltd Filter material for air filter and its production
JP2001113143A (en) * 1999-10-15 2001-04-24 Ube Ind Ltd Porous polymide film for filter and filter using it
JP2002085918A (en) * 2000-09-18 2002-03-26 Hokuetsu Paper Mills Ltd Filter medium for liquid filtration and production process of the same
JP2003135917A (en) * 2001-11-01 2003-05-13 Hokuetsu Paper Mills Ltd Filter medium for air filter
WO2004035173A1 (en) * 2002-10-16 2004-04-29 Hokuetsu Paper Mills, Ltd. Air purification filter and process for producing the same
JP2004154672A (en) * 2002-11-06 2004-06-03 Hokuetsu Paper Mills Ltd Filter medium for air filter and its manufacturing method
JP2004160361A (en) * 2002-11-13 2004-06-10 Hokuetsu Paper Mills Ltd Filter medium for air filter and its production method
JP2006167491A (en) * 2004-11-17 2006-06-29 Hokuetsu Paper Mills Ltd Filter medium for air filter and its manufacturing method
JP2007029916A (en) * 2005-07-29 2007-02-08 Hokuetsu Paper Mills Ltd Filter medium for air filter with little out gas

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152509A (en) * 1988-12-02 1990-06-12 Mitsubishi Paper Mills Ltd Filter medium
JPH09155127A (en) * 1995-12-12 1997-06-17 Mitsubishi Paper Mills Ltd Filter medium
JPH09225226A (en) * 1996-02-22 1997-09-02 Hokuetsu Paper Mills Ltd Filter material for air filter and its production
JP2001113143A (en) * 1999-10-15 2001-04-24 Ube Ind Ltd Porous polymide film for filter and filter using it
JP2002085918A (en) * 2000-09-18 2002-03-26 Hokuetsu Paper Mills Ltd Filter medium for liquid filtration and production process of the same
JP2003135917A (en) * 2001-11-01 2003-05-13 Hokuetsu Paper Mills Ltd Filter medium for air filter
WO2004035173A1 (en) * 2002-10-16 2004-04-29 Hokuetsu Paper Mills, Ltd. Air purification filter and process for producing the same
JP2004154672A (en) * 2002-11-06 2004-06-03 Hokuetsu Paper Mills Ltd Filter medium for air filter and its manufacturing method
JP2004160361A (en) * 2002-11-13 2004-06-10 Hokuetsu Paper Mills Ltd Filter medium for air filter and its production method
JP2006167491A (en) * 2004-11-17 2006-06-29 Hokuetsu Paper Mills Ltd Filter medium for air filter and its manufacturing method
JP2007029916A (en) * 2005-07-29 2007-02-08 Hokuetsu Paper Mills Ltd Filter medium for air filter with little out gas

Also Published As

Publication number Publication date
JP5226235B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP6916326B2 (en) Filter medium for liquid
US20200254367A1 (en) Filter media with fibrillated fibers
US20160256805A1 (en) Filter Medium, Method for Producing a Filter Medium and a Filter Element Having a Filter Medium
US20220362695A1 (en) Filter medium
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
US20100212272A1 (en) Filter media suitable for ashrae applications
EP3337589B1 (en) Fuel-water separator for removing water from water-hydrocarbon emulsions having improved efficiency
EP2414064A2 (en) Filter media suitable for hydraulic applications
WO2006008828A1 (en) Filter medium for liquid filtration and process for producing the same
CN117379875A (en) Composite media for fuel flow
JP2010167384A (en) Cartridge filter for liquid filtration
JP2015533645A (en) Filter material having a long service life and filter element including the filter material
JPH0549825A (en) Filtering material
JP2002085918A (en) Filter medium for liquid filtration and production process of the same
JP5226235B2 (en) Filter media for liquid filtration
JP5797175B2 (en) Air filter media
JP2005058832A (en) Filter medium for filtering liquid
JP2008515615A (en) Filtration material for gas filtration, filtration device, and production method of filtration material
JPH04193315A (en) Filter having porous layer
JP7015614B2 (en) Manufacturing method of filter media for filters
JP2001293316A (en) Method for producing unit filter
JP6964033B2 (en) Filter material for air filter
KR20070051837A (en) Filter medium for liquid filtration and process for producing the same
JP2023522315A (en) Glass-free filter media containing a densified layer made of synthetic fibers
JP2005211731A (en) Filtering medium for air filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250