JPH02151405A - Cutting method and device - Google Patents

Cutting method and device

Info

Publication number
JPH02151405A
JPH02151405A JP63305192A JP30519288A JPH02151405A JP H02151405 A JPH02151405 A JP H02151405A JP 63305192 A JP63305192 A JP 63305192A JP 30519288 A JP30519288 A JP 30519288A JP H02151405 A JPH02151405 A JP H02151405A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
blade
driving source
holding means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63305192A
Other languages
Japanese (ja)
Other versions
JP2678487B2 (en
Inventor
Takatoshi Ono
小野 喬利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP30519288A priority Critical patent/JP2678487B2/en
Publication of JPH02151405A publication Critical patent/JPH02151405A/en
Application granted granted Critical
Publication of JP2678487B2 publication Critical patent/JP2678487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce each moving stroke and time by half, to improve workability while reducing an accumulated error by half and to enhance the accuracy of cutting by simultaneously moving a holding means and a cutting means in the approaching or separating direction regarding the cutting dividing direction and cutting direction of a workpiece. CONSTITUTION:When a blade 5 is moved among cutting lines CLx in a cutting process, an arm member 4 is lifted up to specified height by driving a driving source 18 while a driving source 10 and a driving source 37 are synchronized and driven, a movable carriage 3 and a moving table 31 are shifted simultaneously at every half width mutually at regular intervals Px in the cutting lines CLx, and the blade 5 is located accurately onto the next cutting line CLx. The driving source 18 is driven and the arm member 4 is lowered up to a specified location while a driving source 14 and a driving source 34 are synchronized and driven on cutting, and the movable carriage 3 and a base member 30 are moved in the direction approaching to the cutting direction simultaneously, thus bringing the blade 5 into contact with a workpiece 50 only by the length of the cutting line CLx, then cutting predetermined length.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は被加工物、例えば半導体ウェーハ等をダイヤモ
ンド砥粒で形成された回転切断刃で所定の大きさに切断
するための切削方法及び装置に関するものである。
The present invention relates to a cutting method and apparatus for cutting a workpiece, such as a semiconductor wafer, into a predetermined size using a rotating cutting blade made of diamond abrasive grains.

【従来技術1 一般にこの種の切断方法に用いられる切断装置としては
、例えば同一出願人に係る特開昭62−54101号公
報に開示された構成のものが従来例として周知である。 この従来例の切断装置においては、被加工物を保持する
保持手段即ちチャックテーブルと、その被加工物を切断
するブレードを装備した支持部材即ちスピンドルとを具
備し、前記チャックテーブルは被加工物の切削方向に対
して往復動じ、前記スピンドルは被加工物を所定大きさ
に切削するための割出し方向に対して往復動するように
構成されている。 【発明が解決しようとする課題1 前記従来例においては、被加工物の保持手段は飽くまで
も被加工物の切削方向に対してのみ往復動する構成であ
るため、保持手段の往復動のストロークが大きくなるば
かりでなく、そのストロークが大きいために切削作業に
時間が掛かり作業性が悪いという課題を有している。又
、ブレードの支持部材は被加工物を所定大ぎさに切削す
るための割出し方向にのみ往復動するように構成されて
おり、且つ割出し制御の信号検出源であるスケール並び
にその駆動伝達機構及びスピンドル等が滞熱し易いブー
ス内に納められているため、スケール自体は熱の影響を
受()難いものであっても、他の駆動伝達機構及びスピ
ンドル等が熱の影響を受けてその移8Mに累積誤差が生
じ、特に切削割出しの移動を支持部材だけに頼ることで
移flIffiの累積”J3< mがそのままブレード
に伝達され、結果として累積誤差を吸収できないという
課題を有するばかり′Cなく、その移動ストロークによ
る作業性にも課題を有している。 つまり、この種業界において、ウェーハ等の切断には、
高い精度が要求されると共に生産効率の高さも同時に要
求されているが、従来例では機械的構成から、より高い
精度及び生産効率を望むことは困難である。 [発明の目的] 本発明は、前記従来例における被加工物の保持手段と、
ブレードを支持する支持手段とに機械的構成の改良を加
え、より高い精度及び生産効率が望める切削方法及び装
置を提供しようとするものである。 【課題を解決するための手段】 前記従来例の課題を解決し、且つ前記目的を達成させる
ためになされた本発明の切削方法は、被加工物を保持す
る保持手段と、該保持手段に保持されている被加工物を
切削する切削手段とを(N^え、前記保持手段と前記切
削手段とを前記被加工物の切削割出し方向に関して、同
時に接近又は離隔する方向に移動させるようにしたこと
、並びに前記保持手段と前記切削手段とを前記被加工物
の切削方向に関して、同時に接近又は離隔する方向に移
動させるようにしたものであり、又この切削方法を実f
Mする具体的装置としては、被加工物を保持する保持手
段と、該保持手段に保持されている被加工物を切削する
切削手段とを備え、前記保持手段と前記切削手段とを前
記被加工物の切削割出し方向じ関して、夫々被加工物の
最大割出し長さの1/2以−に移動可能にすると11:
、に、前記保持手段と+iQ記切削手段とを萌に被加工
物の切削方向に関して、夫々被加工物の最大切削長さの
1/2以上切削移動可能な構成にしたことによって、割
出し時においても切削時においても被加工物とそれを切
削する切削部材が相互に移動するので、各移動ストロー
ク及び時間が夫々半減して作業性が向上すると共に、前
記相互の移動によって割出しの累積誤差も半減し精度も
高くなるのである。 [実施例] 次に本発明を図示の実施例により更に詳しく説明すると
、1は基台であり、該基台上に被加工物の切削手段Aと
被加工物を保持する保持手段Bとが配設される。 被加工物の切削手段へは、前記基台1」−に配設された
複数のレール2に載置される第1のi’iT @台3と
、該再動台3に横方向に取り付けられたアーム部材4と
、該アーム部材の先端に回転自在に取り付けられたブレ
ード5とを含むものである。前記第1のIi′J動台3
は水平部6と垂直部7とからなる略し字状を呈する台で
あって、前記水平部6の内側に組み込まれたガイド部材
8を介しでdFrFr−ル2上にt置され、該ガイド部
材8に対して水平部6が複数のガイドレール9を介して
摺動自在に係合し組み込まれている。従って、可動台3
は前記基台1に対して前記レール2により、図において
左右方向に、前記ガイドレール9により前後方向に移動
できるように配設されている。 前記左右方向の移動は被加工物を所定の大きざに切削す
るための寸法割出しに寄与するものであり、パルスモー
タ等の適宜の駆動源10によって駆動される。即ち、基
台1上に駆動源10を配設し、該駆動源の減速機構11
に連結され且つ前記レール2と略平行に配設された雄ネ
ジロッド12と前記ガイド部材8とを螺合させ、前記駆
動源10を駆動することにより、ガイド部材8が前記レ
ール2上を左右方向に移動し、それによって可動台3を
含む切削手段Aが切削寸法の割出し方向に移動すること
になるのである。尚、移動の精度を要求されるために、
前記雄ネジロッド12の自由端側は適宜の軸受部材13
によって軸受されている。 前記前後方向の移動は被加工物を切削するためであって
、前記駆動源と同様にパルスモータ等の駆動源14が前
記基台1上に取り付けられ、該駆動源の減速機構15に
雄ネジロッド16が連結され、該雄ネジロッド16は前
記ガイドレール9と略平行に配設し、前記可動台3の適
宜位置において螺合させである。そして、駆動源14を
駆動することで可動台3を含む切削手段Aがガイドレー
ル9に沿つて切削方向に移動するのである。 前記アーム部材4は、前記第1の可動台3の垂直部7に
対して上下動可能に配設されている。即ち、垂直部7の
一側面に上下方向に略垂直に副レール1γを配設すると
共に、その副レール17の一側端寄りに前述した駆動源
と同様の駆動源18を取り付け、該駆動源の減速機構1
9に雄ネジロッド20が連結され、該雄ネジロッド20
は前記mJレール17に沿って略平行に配設され、前記
アーム部材4の基部に取り付けられた副基台21に螺合
させである。 そして、駆動1iaを駆動することでアーム部材4を適
宜上下方向に略垂直に移動できるのである。 尚、雄ネジロッド20の自由端は適宜の軸受部材22に
よって軸受されている。 前記ブレード5は前記アーム部材4の先端に回転自在に
取り付けられるものであるが、その具体的構成は、アー
ム部材4内に配設された適宜の電動モータ23の回転軸
24の先端に取り付けられ、該回転軸24はその先端寄
りにフランジ部25が一体的に形成され、該7ランジ部
25を両側から挾み付ける構成の二分割できる軸受部材
26によってアーム部材4の先端側で軸受し、実質的に
回転軸24がその軸方向に全く移動しないように軸受さ
れ、前記ブレード5は前記電動モータ23の駆動により
、回転軸24を介して切削のための回転が付与されるの
である。 被加工物を保持する保持手段Bは、移動可能なベース部
材30と、移動テーブル31と、チャックテーブル32
とを含み、前記ベース部材30は前記基台1上で且つ前
記アーム部材4の先端位置に対応して該アーム部材と直
交する方向に配設した複数のレール33上に往復移動可
能に配設載置させ、その移動は前述した各機構又は手段
の移動と同様に駆動源34及び雄ネジロッド35により
行うように構成されている。この場合も、雄ネジロッド
35はレール33と略平行に配設されていることは勿論
である。 そして、ベース部材30の移動は被加工物を切削するた
めであり、その駆動源34は前記駆動源14と同期して
駆動される。 このベース部材30の上部に複数のレール36を介して
移動テーブル31が配設され、該移動テーブル上に被加
工物をセットし保持するチャックテーブル32が配設さ
れている。前記移動テーブル31の移動も前述の駆動機
構と同様に、駆動源31及び雄ネジロッド38により行
うように構成され、この駆動源37は前記駆動源10と
同期して駆動される。従って、移動テーブル31の移動
は被加工物を所定の大きさに切削するための寸法割出し
に寄与するものである。前記チャックテーブル32は従
来例と同様に被加工物を吸着保持する機能と、略90°
ターンする回転機能とを有している。 前記各構成部分の移動する部位にはその移OJ潰を正確
に制御するための信号検出機構が夫々配設されている。 つまり、可動台3が切削寸法の割出し方向に移動する移
動量を検出する第1の信号検出機構a、可動台3が切削
方向に移動する移動量を検出する第2の信号検出機構(
図示せず)、アーム部材4が上下方向に移動する移動量
を検出する第3の信号検出機構b、ベース部材30が切
削方向に移動する移#J邑を検出する第4の信号検出機
構〈図示せず)、及び移動テーブル31が切削寸法の割
出し方向に移動する移8mを検出する第5の信号検出機
構Cとが夫々移動部位に近接して配設されている。これ
ら信号検出機構は、前記従来例で使用されているものと
路間−の構成であるため、その一つの信号検出機構aに
ついて説明し、その伯は主要部分に同一符号を付してそ
の詳細は省略する。 信号検出機構aは、基台1の内部において前記レール2
と略平行に配設された所定の目盛りを有するリニアスケ
ール40と、該リニアスケールの目盛りを読み取る光゛
上式検出器41とから構成され、該リニアスケール40
はその両端が弾性部材42を介してブラケット43で支
持されている。又、前記光電式検出器41は移動する部
材、この検出機構の場合には、ガイド部材8に植設状態
に取り付けられたアーム44に支持させである。尚、前
記目盛りは例えば、1μmの幅の線を1μmの間隔をも
って配設したものである。
BACKGROUND ART 1 As a cutting device generally used in this type of cutting method, one having a configuration disclosed in, for example, Japanese Unexamined Patent Publication No. 62-54101 filed by the same applicant is well known as a conventional example. This conventional cutting device includes a holding means, ie, a chuck table, for holding a workpiece, and a support member, ie, a spindle, equipped with a blade for cutting the workpiece. The spindle is configured to reciprocate in a cutting direction, and the spindle reciprocates in an indexing direction for cutting a workpiece to a predetermined size. Problem 1 to be Solved by the Invention In the conventional example, since the holding means for the workpiece is configured to reciprocate only in the cutting direction of the workpiece, the stroke of the reciprocating movement of the holding means is large. In addition, since the stroke is large, the cutting operation takes time, resulting in poor workability. In addition, the supporting member of the blade is configured to reciprocate only in the indexing direction for cutting the workpiece to a predetermined size, and the supporting member of the blade is configured to reciprocate only in the indexing direction for cutting the workpiece to a predetermined size. Because the scale and spindle are housed in a booth where heat tends to accumulate, even if the scale itself is not easily affected by heat, other drive transmission mechanisms, spindles, etc. may be affected by heat and transfer. A cumulative error occurs in 8M, and in particular, by relying only on the support member for the movement of the cutting index, the cumulative shift flIffi "J3<m" is directly transmitted to the blade, resulting in the problem that the cumulative error cannot be absorbed. There are also problems with workability due to the movement stroke.In other words, in this type of industry, cutting wafers, etc.
High precision and high production efficiency are required at the same time, but in the conventional example, it is difficult to desire higher precision and production efficiency from the mechanical configuration. [Object of the Invention] The present invention provides the workpiece holding means in the conventional example;
The present invention aims to provide a cutting method and device that improves the mechanical structure of the support means that supports the blade and allows for higher precision and production efficiency. [Means for Solving the Problems] The cutting method of the present invention, which has been made to solve the problems of the conventional example and achieve the above object, includes a holding means for holding a workpiece, and a method for holding a workpiece in the holding means. The holding means and the cutting means are moved toward or away from each other at the same time with respect to the cutting index direction of the workpiece. In addition, the holding means and the cutting means are moved toward or away from each other at the same time with respect to the cutting direction of the workpiece, and this cutting method is implemented in a practical manner.
A specific device for performing M is equipped with a holding means for holding a workpiece, and a cutting means for cutting the workpiece held by the holding means, and the holding means and the cutting means are connected to the workpiece. Regarding the cutting index direction of the workpiece, if each workpiece can be moved by more than 1/2 of the maximum index length, 11:
By configuring the holding means and the +iQ cutting means to be movable in the cutting direction of the workpiece, each of them can cut at least 1/2 of the maximum cutting length of the workpiece. Since the workpiece and the cutting member that cuts it move relative to each other during both cutting and cutting, each movement stroke and time are halved, improving work efficiency, and the cumulative error in indexing is reduced due to the mutual movement. This reduces the amount of noise by half and improves accuracy. [Example] Next, the present invention will be explained in more detail with reference to the illustrated example. Reference numeral 1 denotes a base, and a cutting means A for the workpiece and a holding means B for holding the workpiece are mounted on the base. will be placed. The cutting means for the workpiece includes a first i'iT @ stand 3 placed on a plurality of rails 2 disposed on the base 1'', and a first i'iT @ stand 3 attached laterally to the re-movement stand 3. The blade 5 includes an arm member 4 that is attached to the arm member 4, and a blade 5 that is rotatably attached to the tip of the arm member. Said first Ii'J moving base 3
is an abbreviated stand consisting of a horizontal part 6 and a vertical part 7, and is placed on the dFrFr-ru 2 via a guide member 8 incorporated inside the horizontal part 6, and the guide member 8, a horizontal portion 6 is slidably engaged with and incorporated via a plurality of guide rails 9. Therefore, movable base 3
is disposed so as to be movable relative to the base 1 by the rails 2 in the left-right direction in the figure and by the guide rails 9 in the front-rear direction. The horizontal movement contributes to determining the dimensions for cutting the workpiece into a predetermined size, and is driven by an appropriate drive source 10 such as a pulse motor. That is, a drive source 10 is disposed on a base 1, and a deceleration mechanism 11 of the drive source is installed.
By screwing together the guide member 8 with a male threaded rod 12 connected to the rail 2 and disposed substantially parallel to the rail 2, and driving the drive source 10, the guide member 8 moves on the rail 2 in the left-right direction. As a result, the cutting means A including the movable table 3 moves in the direction of indexing the cutting dimension. In addition, since precision of movement is required,
A suitable bearing member 13 is provided on the free end side of the male threaded rod 12.
is supported by. The movement in the back and forth direction is for cutting the workpiece, and similarly to the drive source, a drive source 14 such as a pulse motor is mounted on the base 1, and a reduction mechanism 15 of the drive source is connected to a male threaded rod. 16 are connected to each other, and the male threaded rod 16 is disposed substantially parallel to the guide rail 9 and is screwed together at an appropriate position on the movable base 3. By driving the drive source 14, the cutting means A including the movable table 3 moves in the cutting direction along the guide rail 9. The arm member 4 is arranged to be movable up and down with respect to the vertical portion 7 of the first movable base 3. That is, a sub-rail 1γ is disposed substantially perpendicularly in the vertical direction on one side of the vertical portion 7, and a drive source 18 similar to the above-described drive source is attached near one side end of the sub-rail 17. reduction mechanism 1
A male threaded rod 20 is connected to the male threaded rod 9.
are disposed substantially parallel to the mJ rail 17 and are screwed into a sub-base 21 attached to the base of the arm member 4. By driving the drive 1ia, the arm member 4 can be moved approximately vertically in the up and down direction as appropriate. The free end of the male threaded rod 20 is supported by a suitable bearing member 22. The blade 5 is rotatably attached to the tip of the arm member 4, and its specific configuration is such that the blade 5 is attached to the tip of a rotating shaft 24 of a suitable electric motor 23 disposed within the arm member 4. , the rotary shaft 24 is integrally formed with a flange portion 25 near its tip, and is supported on the tip side of the arm member 4 by a bearing member 26 that can be divided into two and is configured to sandwich the seven flange portions 25 from both sides; The rotary shaft 24 is mounted on a bearing so that it does not move at all in the axial direction, and the blade 5 is rotated for cutting via the rotary shaft 24 by the drive of the electric motor 23. The holding means B that holds the workpiece includes a movable base member 30, a moving table 31, and a chuck table 32.
The base member 30 is reciprocally disposed on the base 1 and on a plurality of rails 33 disposed in a direction perpendicular to the arm member 4 in correspondence with the tip position of the arm member 4. It is configured to be placed thereon and its movement is performed by a drive source 34 and a male threaded rod 35 in the same manner as the movement of each mechanism or means described above. Of course, in this case as well, the male threaded rod 35 is arranged substantially parallel to the rail 33. The movement of the base member 30 is for cutting the workpiece, and its drive source 34 is driven in synchronization with the drive source 14. A movable table 31 is disposed above the base member 30 via a plurality of rails 36, and a chuck table 32 for setting and holding a workpiece is disposed on the movable table. The movement of the movable table 31 is also performed by a drive source 31 and a male threaded rod 38, similar to the drive mechanism described above, and this drive source 37 is driven in synchronization with the drive source 10. Therefore, the movement of the moving table 31 contributes to dimensional indexing for cutting the workpiece to a predetermined size. The chuck table 32 has the function of suctioning and holding the workpiece as in the conventional example, and also has the function of holding the workpiece by suction and
It has a rotation function to turn. A signal detection mechanism for accurately controlling the displacement and OJ collapse is disposed at each movable portion of each of the constituent parts. That is, the first signal detection mechanism a detects the amount of movement of the movable table 3 in the cutting dimension indexing direction, and the second signal detection mechanism a detects the amount of movement of the movable table 3 in the cutting direction.
(not shown), a third signal detection mechanism b that detects the amount of movement of the arm member 4 in the vertical direction, and a fourth signal detection mechanism that detects the amount of movement of the base member 30 in the cutting direction. (not shown) and a fifth signal detection mechanism C that detects the movement 8 m of movement of the moving table 31 in the direction of indexing the cutting dimension are respectively arranged close to the moving part. Since these signal detection mechanisms have a configuration similar to that used in the conventional example, one of them, signal detection mechanism a, will be explained, and the main parts will be given the same reference numerals and the details will be explained. is omitted. The signal detection mechanism a detects the rail 2 inside the base 1.
It is composed of a linear scale 40 having a predetermined scale arranged substantially parallel to the linear scale 40 and an optical detector 41 for reading the scale of the linear scale.
is supported at both ends by brackets 43 via elastic members 42. Further, the photoelectric detector 41 is supported by a moving member, in the case of this detection mechanism, an arm 44 attached to the guide member 8 in an implanted state. Incidentally, the scale is, for example, a line having a width of 1 μm arranged at an interval of 1 μm.

【方法の説明1 前記構成の装置の動作説明と共に本発明の詳細な説明す
ると、例えば半導体ウェーハ等の被加工物50を切削す
る場合に、該被加工物50には、第2図に示したように
、複数本の切削ラインが格子状に設けられている。即ち
、第1の組の切削ラインCLXが一定の間隔pxをもっ
て多数列形成され、この切削ラインCLxと直交する方
向に第2の組の切削ラインCLyが一定の間隔Pyをち
って多数列形成されている。そして、これ等格子状に設
けられた各切削ラインで区画された多数の各矩形領域R
Aには夫々所要の回路パターンが施されており、これ自
体は一般的なものである。 このような被加工物50をチャックテーブル32上に載
置し吸着保持させ、切削ラインとブレード5との位置合
わせをする。この位置合わせは、従来から行っている光
学的検出手段を用いて行えば良い。 この位置合わせ作業が終了した後において、まずブレー
ド5により第1の組の切削ラインCLXに冶って順次切
削する。この場合に、ウェーハを完全に切削分離するの
ではなく、その厚みの少なくとも半分又はそれ以上に亘
って切削する場合もあるので、益では「切削」という語
を用いである。 そして、第1の組の切削ラインCLxの順次切削は、そ
の端部に位置する切削ラインから切削を行イ【い、次の
切削ラインにブレード5が順次移動して連続した切削工
程が行われるのである。 この切削工程において、ブレード5が切削ラインCLx
間を移動する際、アーム部材4が駆動源18の駆動によ
って所定の高さまで持ち上げられると共に、駆動源10
及び駆動源37が同期して駆動され、可動台3と移動テ
ーブル31とが、切削ラインCLxにおける一定の間隔
pxを、相互に半幅づつ同時に移動してブレード5が次
の切削ラインCLx上に正確に位置するようになる。前
記可動台3と移動テーブル31との移動は夫々用1の信
号検出機構aと第5の信号検出機構Cとで行い、その移
動市を両者で分担することにより、移動作業が速やかに
行われ、且つ累積誤差も軽減される。 次に切削の際には、駆動源18を駆動してアーム部材4
を所定位置まで下降させると共に、駆動源14と駆動源
34とを同期して駆動させ、可動台3とベース部材30
とを同時に切削方向に対して接近する方向に移動させ、
相互に各切削ラインCL X a3ける長さの略1/2
を超えて移動させることで、ブレード5が切削ラインC
LXの長さ分波加工物50に接触して予定された長さの
切削が行われる。 この−本の切削ラインCLxに沿う切削が行われた復に
、次の切削ラインにブレード5が移動する際、アーム部
材4が駆動源18の駆動によって所定の高さまで持ち上
げられ、駆動源10及び駆動源37が同期して駆動され
、可動台3と移動テーブル31とが、切削ラインCLx
における一定の間隔Pxを、相互に半幅づつ同時に移動
し、同時に駆動源14と駆動源34とを同期して駆動さ
せ、可動台3とベース部材30とを切削方向に対して相
互に離隔する方向に同時に移動させることで、ブレード
5と被加工物50とが夫々切削ラインCLxおける長さ
の略1/2を超えて戻るので、戻りの移動は及び時間も
半減し切削工程における作業性が著しく向上するのであ
る。 つまり、切削寸法の割出しのための割出し方向の移動と
、切削のための切削方向の移動とをブレード側、即ち切
削手段と被加工物側、即ち保持手段とで相互に夫々略1
/2づつ同時に移動させることで、夫々の移動時間が半
減して作業性が向上するばかりでなく、割出し方向の累
積誤差が少なくなるのである。そして、第1の組の切削
ラインCLxの切削が終了した後に、チャックテーブル
32を90”回転させて、第2の組の切削ラインCLy
に沿って順次切削する場合も、前記したと同様の切削工
程が行われるのである。 【発明の効果】 以上説明したように本発明に係る切削方法は、被加工物
を保持する保持手段と、該保持手段に保持されている被
加工物を切削する切削手段とを備え、前記保持手段と前
記切削手段とを前記被加工物の切削割出し方向に関して
、同時に接近又は離隔する方向に移動させるようにした
ことによって、割出し時間が半減し、作業性が向上する
と共に、被加工物側は熱の影響を受は難い状態にあるた
め、その移動量を制御する検出手段が常に最゛適温度条
件下にあって、熱の影響による累積誤差がほとんど生じ
ないという種々の優れた効果を奏する。 又、前記保持手段と前記切削手段とを前記被加工物の切
削方向に関して、同時に接近又は離隔する方向に移動さ
せるようにしたことにより、切削方向における移動用及
び時間が相対的に半減し、それによっても作業性が著し
く向上するという優れた効果を奏する。 又、本発明に係る切削装置は、被加工物を保持する保持
手段と、該保持手段に保持されている被加工物を切削す
る切削手段とを備え、前記保持手段と前記切削手段とを
前記被加工物の切削割出し方向に関して、夫々被加工物
の最大割出し長さの1/2以上移動可能とした構成にす
ると共に、前記保持手段と前記切削手段とを前記被加工
物の切削方向に関して、夫々被加工物の最大切削良さの
1/2以上切削移動可能に構成にしたことによって、被
加工物と切削工具との位置決め作業及び切削作業が速や
かに且つ正確に行われると共に、割出し寸法の累積誤差
が著しく少なくなり、それによって精度及び生産効率が
高くなるという優れた効果を奏する。
[Method Description 1] To explain the present invention in detail together with an explanation of the operation of the apparatus having the above configuration, when cutting a workpiece 50 such as a semiconductor wafer, for example, the workpiece 50 has the following structure as shown in FIG. As shown, a plurality of cutting lines are provided in a grid pattern. That is, a first set of cutting lines CLX are formed in multiple rows with a constant interval px, and a second set of cutting lines CLy are formed in multiple rows with a constant interval Py in a direction perpendicular to the cutting lines CLx. ing. A large number of rectangular regions R are divided by each cutting line provided in a grid pattern.
A is provided with a required circuit pattern, which itself is a general pattern. The workpiece 50 is placed on the chuck table 32 and held by suction, and the cutting line and the blade 5 are aligned. This positioning may be performed using conventional optical detection means. After this positioning work is completed, the first set of cutting lines CLX is first set using the blade 5 to sequentially cut. In this case, we use the term "cutting" because the wafer is not completely cut away, but may be cut over at least half or more of its thickness. Then, in the sequential cutting of the first set of cutting lines CLx, cutting is performed from the cutting line located at the end thereof, and the blade 5 is sequentially moved to the next cutting line to perform a continuous cutting process. It is. In this cutting process, the blade 5 moves along the cutting line CLx.
When moving between the two, the arm member 4 is lifted to a predetermined height by the driving of the driving source 18, and
and the driving source 37 are driven in synchronization, and the movable base 3 and the moving table 31 simultaneously move a fixed interval px on the cutting line CLx by half width at a time, so that the blade 5 is accurately positioned on the next cutting line CLx. will be located in The movement of the movable table 3 and the movable table 31 is performed by the first signal detection mechanism a and the fifth signal detection mechanism C, respectively, and by sharing the movement duties between them, the movement work can be carried out quickly. , and the cumulative error is also reduced. Next, when cutting, drive the drive source 18 to cut the arm member 4.
The movable table 3 and the base member 30 are lowered to a predetermined position, and the drive sources 14 and 34 are driven synchronously.
and at the same time move in a direction approaching the cutting direction,
Approximately 1/2 of the length of each cutting line CL
By moving the blade 5 beyond the cutting line C
The LX length division workpiece 50 is contacted and cut to a predetermined length. After cutting is performed along this cutting line CLx, when the blade 5 moves to the next cutting line, the arm member 4 is lifted to a predetermined height by the drive of the drive source 18, and the drive source 10 and The drive source 37 is driven synchronously, and the movable base 3 and the moving table 31 are moved along the cutting line CLx.
A direction in which the movable table 3 and the base member 30 are separated from each other with respect to the cutting direction by simultaneously moving the fixed interval Px by a half width at a time, and simultaneously driving the drive source 14 and the drive source 34 in synchronization. By moving the blade 5 and the workpiece 50 at the same time, the blade 5 and the workpiece 50 each return more than approximately 1/2 of the length of the cutting line CLx, so the return movement and time are halved, significantly improving workability in the cutting process. It will improve. In other words, the movement in the indexing direction for indexing the cutting dimension and the movement in the cutting direction for cutting are performed by approximately 1 on the blade side, that is, the cutting means, and on the workpiece side, that is, the holding means.
By simultaneously moving the parts by /2, the time required for each movement is halved, which not only improves work efficiency, but also reduces the cumulative error in the indexing direction. After the cutting of the first set of cutting lines CLx is completed, the chuck table 32 is rotated 90" to cut the second set of cutting lines CLy.
In the case of sequential cutting along , the same cutting process as described above is performed. Effects of the Invention As explained above, the cutting method according to the present invention includes a holding means for holding a workpiece, and a cutting means for cutting the workpiece held by the holding means, By moving the cutting means and the cutting means simultaneously toward or away from each other with respect to the cutting index direction of the workpiece, the indexing time is halved, workability is improved, and the workpiece is Since the side is in a state where it is difficult to be affected by heat, the detection means that controls the amount of movement is always under the optimum temperature condition, and there are various excellent effects such as almost no cumulative error caused by the influence of heat. play. Further, by moving the holding means and the cutting means in the direction toward or away from each other at the same time with respect to the cutting direction of the workpiece, the movement time and time in the cutting direction can be relatively halved, and This also has the excellent effect of significantly improving workability. Further, the cutting device according to the present invention includes a holding means for holding a workpiece, and a cutting means for cutting the workpiece held by the holding means, and the holding means and the cutting means are connected to each other. With respect to the cutting index direction of the workpiece, the structure is such that each workpiece can be moved by 1/2 or more of the maximum index length of the workpiece, and the holding means and the cutting means are moved in the cutting direction of the workpiece. By making the cutting movement possible by more than 1/2 of the maximum cutting quality of each workpiece, the positioning work and cutting work between the workpiece and the cutting tool can be performed quickly and accurately, and the indexing This has the excellent effect of significantly reducing cumulative dimensional errors, thereby increasing precision and production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る切削装置の一部を破断して示した
略示的側面図、第2図は同装置によって切削される被加
工物の一例を示す平面図である。 A・・・・・・被加工物の切削手段 B・・・・・・被加工物の保持手段 1・・・・・・基台 2 、17.33.36・・・・・・レール3・・・・
・・可動台    4・・・・・・アーム部材5・・・
・・・ブレード   6・・・・・・水平部7・・・・
・・垂直部    8・・・・・・ガイド部材9・・・
・・・ガイドレール 10、14.18.34.37・・・・・・駆動源11
、15.19・・・・・・減速機構12、16.20.
35.38・・・・・・雄ネジロッド13、22.26
・・・軸受部材 23・・・・・・電動モータ24・・
・・・・回転軸     25・・・・・・フランジ部
30・・・・・・ベース部材   31・・・・・・移
動テーブル32・・・・・・チャックテーブル40・・
・・・・スケール41・・・・・・光電式検出器  5
0・・・・・・被加工物a・・・・・・第1の信号検出
機構 b・・・・・・第3の信号検出機構 C・・・・・・第5の信号検出機構
FIG. 1 is a partially cutaway schematic side view of a cutting device according to the present invention, and FIG. 2 is a plan view showing an example of a workpiece to be cut by the device. A: Cutting means for the workpiece B: Holding means for the workpiece 1: Base 2, 17, 33, 36: Rail 3・・・・・・
...Movable base 4...Arm member 5...
...Blade 6...Horizontal part 7...
...Vertical part 8...Guide member 9...
... Guide rail 10, 14.18.34.37 ... Drive source 11
, 15.19... deceleration mechanism 12, 16.20.
35.38... Male thread rod 13, 22.26
... Bearing member 23 ... Electric motor 24 ...
... Rotating shaft 25 ... Flange portion 30 ... Base member 31 ... Moving table 32 ... Chuck table 40 ...
...Scale 41...Photoelectric detector 5
0...Workpiece a...First signal detection mechanism b...Third signal detection mechanism C...Fifth signal detection mechanism

Claims (4)

【特許請求の範囲】[Claims] (1)被加工物を保持する保持手段と、該保持手段に保
持されている被加工物を切削する切削手段とを備え、前
記保持手段と前記切削手段とを前記被加工物の切削割出
し方向に関して、同時に接近又は離隔する方向に移動さ
せることを特徴とする切削方法。
(1) A holding means for holding a workpiece, and a cutting means for cutting the workpiece held by the holding means, and the holding means and the cutting means are used for indexing the cutting of the workpiece. A cutting method characterized by moving toward or away from each other at the same time.
(2)前記保持手段と前記切削手段とを前記被加工物の
切削方向に関して、同時に接近又は離隔する方向に移動
させることを特徴とする請求項(1)記載の切削方法。
(2) The cutting method according to claim (1), characterized in that the holding means and the cutting means are simultaneously moved toward or away from each other with respect to the cutting direction of the workpiece.
(3)被加工物を保持する保持手段と、該保持手段に保
持されている被加工物を切削する切削手段とを備え、前
記保持手段と前記切削手段とを前記被加工物の切削割出
し方向に関して、夫々被加工物の最大割出し長さの1/
2以上移動可能としたことを特徴とする切削装置。
(3) A holding means for holding a workpiece, and a cutting means for cutting the workpiece held by the holding means, and the holding means and the cutting means are used for indexing the cutting of the workpiece. Regarding the direction, 1/ of the maximum indexing length of the workpiece, respectively.
A cutting device characterized in that it is capable of moving two or more times.
(4)前記保持手段と前記切削手段とを前記被加工物の
切削方向に関して、夫々被加工物の最大切削長さの1/
2以上切削移動可能としたことを特徴とする請求項(3
)記載の切削装置。
(4) The holding means and the cutting means are each set to 1/1/2 of the maximum cutting length of the workpiece in the cutting direction of the workpiece.
Claim (3) characterized in that two or more cutting movements are possible.
) The cutting device described.
JP30519288A 1988-12-02 1988-12-02 Cutting method Expired - Lifetime JP2678487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30519288A JP2678487B2 (en) 1988-12-02 1988-12-02 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30519288A JP2678487B2 (en) 1988-12-02 1988-12-02 Cutting method

Publications (2)

Publication Number Publication Date
JPH02151405A true JPH02151405A (en) 1990-06-11
JP2678487B2 JP2678487B2 (en) 1997-11-17

Family

ID=17942158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30519288A Expired - Lifetime JP2678487B2 (en) 1988-12-02 1988-12-02 Cutting method

Country Status (1)

Country Link
JP (1) JP2678487B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043498A (en) * 1987-12-07 1991-08-27 Kuraray Company Ltd. Process for the hydrogenation of conjugated diene polymers having alcoholic hydroxyl groups
FR2794284A1 (en) * 1999-05-31 2000-12-01 St Microelectronics Sa Semiconductor product semiconductor slicing technique having frame held slab and different length cutter sections applied dependent semiconductor slab region.
JP2008135519A (en) * 2006-11-28 2008-06-12 Disco Abrasive Syst Ltd Cutting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043498A (en) * 1987-12-07 1991-08-27 Kuraray Company Ltd. Process for the hydrogenation of conjugated diene polymers having alcoholic hydroxyl groups
FR2794284A1 (en) * 1999-05-31 2000-12-01 St Microelectronics Sa Semiconductor product semiconductor slicing technique having frame held slab and different length cutter sections applied dependent semiconductor slab region.
JP2008135519A (en) * 2006-11-28 2008-06-12 Disco Abrasive Syst Ltd Cutting device

Also Published As

Publication number Publication date
JP2678487B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US7338345B2 (en) Cutting machine
US20020104422A1 (en) Dual-cutting method devoid of useless strokes
CN112059806A (en) Automobile glass positioning and processing device
CN107639487B (en) Stone polishing machine
US5888268A (en) Glass-plate working apparatus
GB1331546A (en) Machine for high speed high precision machining of small parts
JPH02151405A (en) Cutting method and device
CN112975577A (en) Machine vision on-site detection platform for cutting surface
CN218642633U (en) Cutting device for substrate
JPH0825209A (en) Cutting device
CN214135193U (en) Novel numerical control lathe
CN212823934U (en) Cutting mechanism with adjustable angle
JP4447299B2 (en) Plate cutting machine
CN217616240U (en) Multi-track motion carrier
CN210533910U (en) Online camshaft hardness detecting system
CN112536684A (en) Line rail grinding machine
CN109571046B (en) Machine tool seat of full-automatic arrangement fixture
CN208358561U (en) A kind of Dali stone structure high-precision crossbeam double lead driving shaft mechanism
JP2003094132A (en) Work carrying-out method and device in plate material processing machine
CN111231142A (en) Loop wire cutting machine
WO2020140192A1 (en) Pentahedron machining center machine tool with simple structure
CN220698555U (en) Double-cantilever laser cutting machine
CN211106188U (en) Double-rotary-disc screen printing machine
CN217616271U (en) Small hole glass system surface cleaning device
CN220782351U (en) Precise gate type high-speed milling device