JPH02151335A - Plastic working method - Google Patents

Plastic working method

Info

Publication number
JPH02151335A
JPH02151335A JP30662788A JP30662788A JPH02151335A JP H02151335 A JPH02151335 A JP H02151335A JP 30662788 A JP30662788 A JP 30662788A JP 30662788 A JP30662788 A JP 30662788A JP H02151335 A JPH02151335 A JP H02151335A
Authority
JP
Japan
Prior art keywords
working
upper die
processing
turning
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30662788A
Other languages
Japanese (ja)
Inventor
Takeaki Sato
佐藤 剛明
Yoshihiro Ozaki
小崎 良博
Kunio Hirota
廣田 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP30662788A priority Critical patent/JPH02151335A/en
Publication of JPH02151335A publication Critical patent/JPH02151335A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expedite a plastic flow to a filling necessary part by setting plural working positions to which pressure is necessary concentrically on an object to be worked, turning or oscillating the upper die at a prescribed inclination angle by a prescribed number of times or for a prescribed time is this working position and executing plastic working. CONSTITUTION:Turning of an outside turning body 7 and an inside turning body 11 of a double eccentric turning mechanism 6 in a body driving part A is controlled by driving motors 51, 52 by a control signal of a CPU. By selecting a prescribed control mode, a working upper die holder 40 is turned at a prescribed inclination angle against the center axis. By varying the set eccentric quantum within a prescribed range and rotating in reverse the outside and the inside rotating bodies 7, 11 at the same speed by synchronizing them with each other, the working upper die holder 40 can be oscillated at a prescribed oscillation angle. Also, a double eccentric turning mechanism 22 for supporting a sliding body 38 for supporting the outside of a die installing part of the working upper die holder 40 can set arbitrarily the working position by moving the turning center of a working upper die 44. In such a way, the working upper die is turned and oscillated and plastic flow of the a material is expedited, and the filling property is enhanced and a product being free from underfill is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は塑性加工方法に関し、特に鍛造加工方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a plastic working method, and particularly to a forging method.

「従来の技術」 従来、例えζシ回転鍛造加工方法は、加工下型に支持さ
れる被加工物上の所定位置を中心として、その所定位置
を通る軸線に対して所定の傾斜角をもって加工上型を所
定回数若しくは所定時間旋回させ、加工上型又は加工下
型の成形部の形状に応じた塑性加工を被加工物に対して
行うものである。
``Prior Art'' Conventionally, the ζ-rotary forging processing method centers on a predetermined position on a workpiece supported by a lower die and forms a predetermined inclination angle with respect to an axis passing through the predetermined position. The mold is rotated a predetermined number of times or for a predetermined period of time, and plastic working is performed on the workpiece according to the shape of the forming part of the upper mold or the lower mold.

前記加工上型を旋回させる旋回中心は、被加工物上の所
定位置に設定されるものであるが、その位置は一定であ
り、加工上型の旋回範囲において被加工物を重点的に加
圧できるのみであった。
The center of rotation for rotating the upper mold is set at a predetermined position on the workpiece, but that position is constant, and the workpiece is pressurized intensively within the rotation range of the upper mold. It was only possible.

このため、被加工物全体を重点的に加圧するためには、
被加工物径よりも大きな径をもつ加工上型が必要となっ
たり、或いは加工上型を幾種類も用意して、被加工物の
大きさに応じて交換するという手間の掛かる作業を行っ
ていた。
Therefore, in order to intensively pressurize the entire workpiece,
A machining mold with a diameter larger than the workpiece diameter is required, or the laborious task of preparing several types of machining molds and replacing them depending on the size of the workpiece. Ta.

「発明が解決しようとする課題」 しかしながら、内、外周に突部や四部を有する歯車等の
製品を塑性加工するため、加工下型の該突部や凹部に対
する材料の充填性を高めたり、或いは被加工物の穴径を
拡大するために、大きな加工上型を用いたり、幾種類も
の加工上型とか工具等を用意し、必要に応じて交換作業
を行うことは、作業性の点で問題となるばかりでなく、
装置自体が大きくなって不経済である。
``Problem to be solved by the invention'' However, in order to plastically process products such as gears that have protrusions or four parts on the inner or outer periphery, it is necessary to increase the filling property of the material into the protrusions or recesses of the lower mold, or In order to enlarge the hole diameter of the workpiece, using a large machining mold or preparing several types of machining molds and tools, and replacing them as necessary, poses problems in terms of workability. Not only is it
The device itself becomes large and uneconomical.

さらに、前記の様に複雑な形状の製品を加工する場合に
は第8図に示すように一部に加工上型aを大きくしても
、加工下型すの上部において、被加工物Wの一部が型外
へ押し出されてしまい、該下型すの下部において材料の
未充填部Cを生じ易く、欠肉を有する製品となるなどの
加工上の問題点がある。
Furthermore, when processing a product with a complicated shape as described above, even if the upper mold a is partially enlarged as shown in FIG. A part of the material is pushed out of the mold, which tends to cause an unfilled part C of the material in the lower part of the lower mold, resulting in problems in processing, such as a product having insufficient thickness.

本発明は、前記問題点を解決するためになされたもので
、重点的に加圧を必要とする加工位置を複数設定し、所
定の塑性加工を施すことにより、該加工位置周辺の被加
工物材料の塑性流動を促進させるとともに型形状内への
充填性をも高めて、欠肉の生じない製品を加工すること
ができる経済性の高い塑性加工方法を提供することを目
的とするものである。
The present invention has been made to solve the above-mentioned problems, and by setting a plurality of machining positions that require intensive pressurization and performing predetermined plastic working, the workpiece around the machining position can be The purpose of the present invention is to provide a highly economical plastic working method that promotes the plastic flow of the material and also improves the filling properties within the mold shape, thereby making it possible to process products without underfilling. .

「課題を解決するための手段J 前記目的を達成するための具体的手段は、加工下型に支
持される被加工物上の所定位置を中心として、その所定
位置を通る軸線に対して所定の傾斜角をもって加工上型
を所定回数若しくは所定時間旋回または揺動させる塑性
加工を、前記被加工物上の所定範囲に設定された複数の
加工位置に対して逐次行い、当該加工上型若しくは加工
下型の成形部の形状に応じた塑性加工を施すことを特徴
とするものである。
``Means for Solving the Problem J'' The specific means for achieving the above object is based on a predetermined position centered on a predetermined position on the workpiece supported by the lower die and with respect to an axis passing through the predetermined position. Plastic working in which the upper die is rotated or oscillated at an inclination angle a predetermined number of times or for a predetermined time is performed sequentially on a plurality of processing positions set in a predetermined range on the workpiece, and the upper die or the lower die is This method is characterized by performing plastic working according to the shape of the molded part of the mold.

「作用」 前記具体的手段によれば、重点的に加圧を必要とする加
工位置を被加工物上に複数設定し、逐次該加工位置にお
いて所定回数又は所定時間、加工上型を所定の傾斜角で
もって旋回または揺動させる塑性加工が施され5加工位
置周辺の要充填部へ向かう被加工物材料の塑性流動が促
進される。
"Operation" According to the specific means, a plurality of machining positions that require intensive pressurization are set on the workpiece, and the machining upper mold is sequentially tilted at a predetermined angle at the machining positions for a predetermined number of times or for a predetermined time. Plastic processing is performed by turning or swinging the workpiece material at an angle to promote plastic flow of the workpiece material toward the required filling area around the 5 processing positions.

「実施例」 本発明方法の実施例を、添付図面に基づいて説明する。"Example" Embodiments of the method of the present invention will be described based on the accompanying drawings.

第1図は、本発明の塑性加工装置たる回転鍛造加工装置
の全体構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the overall configuration of a rotary forging device which is a plastic working device of the present invention.

回転鍛造加工装置1は、加工上型旋回駆動部Aと上下動
可能な加工下型支持部Bとから構成され、それぞれの中
心軸線CLを共通させて対向状に配置する。
The rotary forging processing apparatus 1 is composed of a working upper mold turning drive part A and a working lower mold support part B that can move up and down, and are arranged to face each other with the center axis CL of each part common.

加工上型旋回駆動部(以下本体駆動部という)Aの円筒
状ケーシング2には、その上端部において中心孔3を拡
径した嵌装孔4を形成する。嵌装孔4には2重偏心回動
機楕6を回動自由に嵌装する。
The cylindrical casing 2 of the machining die turning drive section (hereinafter referred to as the main body drive section) A has a fitting hole 4 formed by enlarging the diameter of the center hole 3 at its upper end. A double eccentric rotator ellipse 6 is fitted into the fitting hole 4 so as to be freely rotatable.

嵌装孔4に嵌装される2重偏心回動機楕6の外側回動体
7の外周には、歯車8を形成し前記嵌装孔4の拡径段部
5の環状溝5aに嵌めた球状連結鎖9により支持する。
A gear 8 is formed on the outer periphery of the outer rotating body 7 of the double eccentric rotator ellipse 6 that is fitted into the fitting hole 4, and a spherical gear 8 is formed to fit into the annular groove 5a of the enlarged diameter stepped portion 5 of the fitting hole 4. It is supported by a connecting chain 9.

外側回動体7の偏心孔10には、内側回動体11を回動
自由に嵌装する。内側回動体11の外周には歯車12を
形成するとともに、自己の回動中心に対する偏心量が前
記偏心孔10の偏心量と等しい偏心孔13を設ける。さ
らに、リング状歯車14を前記外側回動体7の上面に配
置し、リング状歯車14の内歯15と前記内側回動体1
1の歯車12とを噛み合わせる。リング状歯車14の外
周に形成した外歯16の歯数及幻田 び外径は、前記外側回動体7に形成した歯車8の歯数及
び外径と等しくする6円筒状ケーシング2の上端開口部
は、該ケーシング2に固定される上!117により塞ぎ
、該上蓋17とリング状歯車14との間にはそれぞれ同
心同径で対向状に形成した環状117a、14aに嵌ま
って挟持される球状連結鎖18を配置し、リング状歯車
14の回転を滑らかにするとともに、半径方向の移動を
阻止する。また上蓋17に形成した環状溝17bに嵌ま
る球状連結鎖19を内側回動体11の上面に当接する。
The inner rotating body 11 is fitted into the eccentric hole 10 of the outer rotating body 7 so as to be freely rotatable. A gear 12 is formed on the outer periphery of the inner rotating body 11, and an eccentric hole 13 whose eccentricity with respect to its rotation center is equal to the eccentricity of the eccentric hole 10 is provided. Furthermore, a ring-shaped gear 14 is disposed on the upper surface of the outer rotating body 7, and the internal teeth 15 of the ring-shaped gear 14 and the inner rotating body 1
1 gear 12 meshes with each other. The number of teeth and outer diameter of the external teeth 16 formed on the outer periphery of the ring-shaped gear 14 are made equal to the number of teeth and outer diameter of the gear 8 formed on the outer rotating body 7. The upper part is fixed to the casing 2! A spherical connecting chain 18 is disposed between the upper cover 17 and the ring-shaped gear 14 and is fitted and held between the rings 117a and 14a, which are concentrically and diametrically opposed to each other. smooth rotation and prevent radial movement. Further, a spherical connecting chain 19 that fits into an annular groove 17b formed in the upper lid 17 is brought into contact with the upper surface of the inner rotating body 11.

円筒状ケーシング2の下端部には、同じく中心孔3を拡
径した拡径孔21を形成して、2重偏心回動機横22を
配置する。
At the lower end of the cylindrical casing 2, an enlarged diameter hole 21 is similarly formed by enlarging the diameter of the center hole 3, and a horizontal double eccentric rotating machine 22 is disposed therein.

2重偏心回動機構22は、前記の2重偏心回動機構6と
同一構成であり、外側回動体23の外周には歯車24を
形成し、偏心孔25を設ける。該偏心孔25には内側回
動体26を回動自由に嵌装する。内側回動体26の外周
には歯車27を形成するとともに、自己の回動中心に対
する偏心量が前記偏心孔25の偏心量と等しい偏心量の
偏心孔28を設ける。リング状歯車29を外側回動体2
3の上面に配置し、リング状歯車29の内歯30と前記
内側回動体26の歯車27と噛み合わせる。リング状歯
車29の外歯31の歯数及び外径は前記外側回動体23
の歯車24の歯数及び外径と等しくする1円筒状ケーシ
ング2の下端開口部には下蓋32を嵌め、膝下!!32
に形成した嵌装孔33に前記2重偏心回動機楕22の外
側回動体23を下方から回動自由に嵌装し、膝下M32
の上面の環状m 32 aに嵌めた球状連結fi34に
より外側回動体23の歯車24の部分を支持する。
The double eccentric rotation mechanism 22 has the same configuration as the double eccentric rotation mechanism 6 described above, and a gear 24 is formed on the outer periphery of the outer rotation body 23 and an eccentric hole 25 is provided. An inner rotating body 26 is fitted into the eccentric hole 25 so as to be rotatable. A gear 27 is formed on the outer periphery of the inner rotating body 26, and an eccentric hole 28 whose eccentricity with respect to its rotation center is equal to the eccentricity of the eccentric hole 25 is provided. The ring gear 29 is connected to the outer rotating body 2
3, and meshes with the internal teeth 30 of the ring-shaped gear 29 and the gear 27 of the inner rotating body 26. The number of teeth and the outer diameter of the outer teeth 31 of the ring-shaped gear 29 are the same as those of the outer rotating body 23.
The lower cover 32 is fitted into the lower end opening of the cylindrical casing 2, which has the same number of teeth and outer diameter as the gear 24, and the lower cover 32 is below the knee! ! 32
The outer rotary body 23 of the double eccentric rotator ellipse 22 is freely rotatably fitted from below into the fitting hole 33 formed in the below-knee M32.
The gear 24 portion of the outer rotating body 23 is supported by a spherical connection fi34 fitted in the annular m32a on the upper surface of the outer rotary body 23.

前記拡径孔21の拡径段部21aとリング状歯車29と
には、それぞれ同心同径の環状溝21b。
The enlarged diameter step portion 21a of the enlarged diameter hole 21 and the ring gear 29 each have an annular groove 21b that is concentric and has the same diameter.

29aを対向状に形成し、該清に嵌まる球状連結鎖35
により回転を滑らかにするとともに、リング状歯車29
の半径方向の移動を阻止する。さらに前記拡径段部21
aに形成した環状溝21cに嵌まる球状連結鎖36を内
側回動体26の上面に当接する。
A spherical connecting chain 35 formed with 29a facing each other and fitted into the liquid.
The ring-shaped gear 29
prevents radial movement of Further, the enlarged diameter step portion 21
The spherical connecting chain 36, which fits into the annular groove 21c formed in a, is brought into contact with the upper surface of the inner rotating body 26.

円筒状ケーシング2に嵌装支持した2重偏心回動機構6
の内側凹動体11の偏心孔13には、軸受37を摺動自
由に装着しその内面の軸受部を球状凹面37aとする。
Double eccentric rotation mechanism 6 fitted and supported in the cylindrical casing 2
A bearing 37 is slidably attached to the eccentric hole 13 of the inner concave moving body 11, and the bearing portion on the inner surface thereof is a spherical concave surface 37a.

また下方の2重偏心回動機PR22の内側回動体26の
偏心孔28には、前記中心軸線CLに沿って上下に摺動
可能な摺動体38を嵌装し、その摺動体38に形成した
軸受39の内面の軸受部を球状凹面39aとする。
Further, a sliding body 38 that can slide up and down along the central axis CL is fitted into the eccentric hole 28 of the inner rotating body 26 of the lower double eccentric rotating machine PR22, and a bearing formed in the sliding body 38 is fitted. The bearing portion on the inner surface of 39 is a spherical concave surface 39a.

前記軸受37の球状凹面37aにより、加工上型ホルダ
40の上端の球状軸部41を回動及び傾動自在に支承し
、下端の型装着部42の外周に形成した球状軸部43を
前記軸受39の球状凹面39aにより回動及び傾動自在
に支承する。加工上型ホルダ40の型装着部42には、
所定形状の加工上型44を装着固定する。
The spherical concave surface 37a of the bearing 37 rotatably and tiltably supports the spherical shaft 41 at the upper end of the processing upper mold holder 40, and the spherical shaft 43 formed on the outer periphery of the mold mounting section 42 at the lower end is supported by the bearing 39. It is rotatably and tiltably supported by a spherical concave surface 39a. In the mold mounting part 42 of the processing upper mold holder 40,
A processing upper mold 44 having a predetermined shape is mounted and fixed.

加工上型ホルダ40は、上半部を筒状としその底部に球
状凹面45を形成する。また前記上蓋17の内側中央部
には同様に形状凹面46を形成し、その両法状凹面45
.46間で、加圧リンク体47の両端に形成した球状軸
部48.49を回動及び傾動自在に支承する。これによ
り、該加圧リンク体47と前記加工上型ホルダ40とは
、上端部をそれぞれ球状凹面37aと固定支承部である
上蓋17の球状凹面46により位置決めされ、加工上型
ホルダ40の下端部が摺動可能に支承されていることか
ら、加工上型ホルダ4oの傾斜角を小さくすることによ
り加工上型ホルダ40及び加圧リンク体47が垂直姿勢
となって下向きに大きな力を発生するトグル1fitl
l150を構成する。
The processing upper mold holder 40 has a cylindrical upper half and a spherical concave surface 45 at the bottom thereof. In addition, a concave surface 46 is formed in the inner central part of the upper lid 17, and both of the concave surfaces 45 have a concave shape.
.. 46, spherical shaft portions 48, 49 formed at both ends of the pressurizing link body 47 are rotatably and tiltably supported. As a result, the upper ends of the pressurizing link body 47 and the upper mold holder 40 are positioned by the spherical concave surface 37a and the spherical concave surface 46 of the upper lid 17, which is a fixed support, and the lower end of the upper mold holder 40 is positioned. Since the upper mold holder 4o is slidably supported, by reducing the inclination angle of the upper mold holder 4o, the upper mold holder 40 and the pressurizing link body 47 are placed in a vertical position, which generates a large downward force. 1 fitl
Configure l150.

また、前記二組の2重偏心回動機構6,22のリング状
歯車14.29及び外側回動体7,23の外周に形成し
た歯車8.24には、それぞれの駆動モータ51〜54
より各個に駆動される駆動歯車55〜58を噛み合わせ
る。
Further, the ring-shaped gears 14.29 of the two sets of double eccentric rotation mechanisms 6, 22 and the gears 8.24 formed on the outer peripheries of the outer rotation bodies 7, 23 are provided with respective drive motors 51-54.
The drive gears 55 to 58 that are driven individually are meshed with each other.

加工下型支持部Bは、前記本体装NAの下側でそれぞれ
の中心軸線CLを共通させて対向状に配置したもので、
該軸線CLにほぼ直交する加工下型支持台61の上面に
型装着部62を設けて加工下型63を装着する。加工下
型63内には被加工物Wを支持する。加工下型支持台6
1は、中心軸線CL方向に穿設した案内孔64に嵌装さ
れ、駆動モータ65に駆動されるレバークランクa!栴
66のレバー67に連結されるリンク68により上下動
する。加工下型63の加工上型44に対する位置制御は
、加工下型支持台61の上面に配設した位置検出センサ
69の検出信号により、671記駆動モータ65の駆動
を制御することにより行う。
The processing lower mold support parts B are arranged oppositely below the main body mounting NA with their respective central axes CL common to each other,
A mold mounting portion 62 is provided on the upper surface of the lower working mold support 61 that is substantially orthogonal to the axis CL, and a lower working mold 63 is mounted thereon. A workpiece W is supported within the lower mold 63 . Processing lower die support stand 6
1 is a lever crank a! that is fitted into a guide hole 64 drilled in the direction of the central axis CL and driven by a drive motor 65. It is moved up and down by a link 68 connected to a lever 67 of the shaft 66. The position control of the lower machining mold 63 with respect to the machining upper mold 44 is performed by controlling the drive of the drive motor 671 according to a detection signal from a position detection sensor 69 disposed on the upper surface of the lower machining mold support 61.

位置検出センサ69には各種近接センサを用いることが
できる。
Various proximity sensors can be used as the position detection sensor 69.

本実施例の回転鍛造装置1の概略の制御回路図を第2図
に示す。
FIG. 2 shows a schematic control circuit diagram of the rotary forging apparatus 1 of this embodiment.

中央処理装置(以下CPUという)71は、プログラム
メモリ(ROM)72及び作業用メモリ(RAM>73
を備える。プログラムメモリ(ROM )72には、上
下の加工型44.63の相対的な上下位置、2重偏心回
動機楕6,22の外側及び内側回動体7.11及び23
.26の偏心量の調整及び回動制御等を行って、所定の
塑性加工を行うための各種の制御モードが記憶されてい
る。またCPU71には、データ入力とか前記制御モー
ドを指定する操作パネル74及び位置検出センサ69が
接続される。さらにモータドライバ75を介して、前記
した2重偏心回動機横6,22の各歯車に噛み合う各駆
動歯車55〜58を駆動する駆動モータ51〜54及び
前記レバークランク機構66を駆動する駆動モータ65
が接続される。
A central processing unit (hereinafter referred to as CPU) 71 includes a program memory (ROM) 72 and a working memory (RAM>73).
Equipped with The program memory (ROM) 72 stores the relative vertical positions of the upper and lower processing dies 44.63, the outer and inner rotating bodies 7.11 and 23 of the double eccentric rotating machine ovals 6 and 22,
.. Various control modes are stored for performing predetermined plastic working by adjusting the amount of eccentricity and rotation control of 26. Also connected to the CPU 71 are an operation panel 74 for inputting data and specifying the control mode, and a position detection sensor 69. Further, via the motor driver 75, the drive motors 51 to 54 drive the drive gears 55 to 58 that mesh with the gears of the horizontal double eccentric rotating machine 6 and 22, and the drive motor 65 drives the lever crank mechanism 66.
is connected.

前記のように構成された回転鍛造加工装置1について、
その作動を以下に説明する。
Regarding the rotary forging processing device 1 configured as described above,
Its operation will be explained below.

本体駆動部Aにおける2重偏心回動機横6の外側回動体
7と内側凹動体11の回動は、CPU71の制御信号を
受けるモータドライバ75の指令によって駆動される駆
動モータ51,52により独立して制御される。従って
、所定の制御モードの選択により一定の偏心量に設定し
て、即ち旋回中心を通る垂a′IIl!Iaに対して一
定の傾斜角で力a1上型ホルダ40を旋回させること、
旋回駆動とともに設定した偏心量を連続的に所定範囲で
任意に変化させること、また外側及び内側回動体7゜1
1を互いに同期をとって同速で逆回動させれば、中心軸
線CLを通る平面内で加工上型ホルダ40を所定の揺動
角で揺動させること等が可能となる。
The rotations of the outer rotating body 7 and the inner concave moving body 11 of the horizontal double eccentric rotating machine 6 in the main body drive section A are independently driven by drive motors 51 and 52 driven by commands from a motor driver 75 that receives control signals from the CPU 71. controlled by Therefore, by selecting a predetermined control mode, a constant amount of eccentricity is set, that is, the vertical a'IIl! that passes through the turning center! Rotating the upper die holder 40 with force a1 at a constant inclination angle with respect to Ia;
It is possible to arbitrarily change the amount of eccentricity set in conjunction with the rotation drive continuously within a predetermined range, and the outer and inner rotating bodies 7゜1
1 in reverse rotation at the same speed in synchronization with each other, it becomes possible to swing the processing upper mold holder 40 at a predetermined swing angle within a plane passing through the center axis CL.

また、加工上型ホルダ40の型装着部の外側を回動及び
傾動自在に支承する摺動体38を、内側の偏心回動体2
6で支承する2重偏心回動機横22は、駆動モータ53
,54により外側及び内側回動体23,26の回動を個
々別々に制御することにより、偏心量を所定範囲で任意
にiPImし、被加工物Wに当接して旋回する加工上型
44の旋回中心を移動させて、加工位置を任意に設定す
ることができる。
In addition, the sliding body 38 that rotatably and tiltably supports the outside of the mold mounting part of the upper mold holder 40 is connected to the inner eccentric rotating body 2.
The horizontal double eccentric rotating machine 22 supported by the drive motor 53
, 54 to control the rotation of the outer and inner rotating bodies 23 and 26 individually, the eccentricity can be arbitrarily iPIm within a predetermined range, and the upper die 44 can be rotated while contacting the workpiece W. The processing position can be set arbitrarily by moving the center.

一方、加工下型支持部Bは、駆動モータ65によりレバ
ークランク機構66を駆動するとともに、位置検出セン
サ69の検出信号により、加工下型支持台61を案内孔
64内の所定位置で停止させ、加工下型63内に支持さ
れる被加工物Wを加工上型に一定圧力で当接する。或い
は、レバークランク機構66の連続駆動により、一定の
塑性加工時間、加工下型支持台61を上昇させ加工上型
44に対する加工下型63の圧接力を徐々に増加させる
こともできる。
On the other hand, the working lower die support part B drives the lever crank mechanism 66 by the drive motor 65, and stops the working lower die support 61 at a predetermined position in the guide hole 64 based on the detection signal from the position detection sensor 69. The workpiece W supported in the lower die 63 is brought into contact with the upper die 63 with a constant pressure. Alternatively, by continuously driving the lever crank mechanism 66, the lower working mold support 61 can be raised for a certain plastic working time to gradually increase the pressing force of the working lower mold 63 against the working upper mold 44.

本発明方法を実施する回転鍛造加工装置1の構成及び作
動は、前記の通りである。
The configuration and operation of the rotary forging processing apparatus 1 that implements the method of the present invention are as described above.

本発明方法は、重点的に加圧を必要とする加工位置を被
加工物上に複数設定し、逐次該加工位置において所定回
数又は所定時間、加工上型を所定の傾斜角でもって旋回
させる塑性加工を施すもので、その基本的加工モードを
第4図に示す。
The method of the present invention involves setting a plurality of machining positions on a workpiece that require intensive pressure, and sequentially rotating the upper die at a predetermined angle of inclination for a predetermined number of times or for a predetermined time at the machining positions. The basic processing mode is shown in Fig. 4.

第4図(a)は、被加工物W上に加工位置をOl。FIG. 4(a) shows the machining position Ol on the workpiece W.

0、.0.と3箇所設定した場合である。0,. 0. This is the case where three locations are set.

まず、加工位W o +を通る中心軸線CLに対して所
定の傾斜角θでもって、所定回数若しくは所定時間加工
上型を旋回する塑性加工を行った後、加工上型ホルダ4
0の旋回中心軸11を、中心軸線CLに平行に移動して
加工位置02 、 Osにおいて順次同様の塑性加工を
行う。
First, after performing plastic working in which the working upper mold is rotated at a predetermined inclination angle θ with respect to the central axis CL passing through the working position W o +, the working upper mold holder 4
The turning center axis 11 of 0 is moved parallel to the center axis CL, and similar plastic working is sequentially performed at processing positions 02 and Os.

前記加工位置の設定及び移動は、2重偏心回動機横6.
22の外側回動体7,11及び内側回動体23,26の
回動を個々に制御することにより、最大偏心量で規制さ
れる範囲内で任意に行うことができる。また旋回傾斜角
θも同様に任意に設定することができる。
The setting and movement of the processing position is performed using a horizontal double eccentric rotating machine.
By individually controlling the rotations of the outer rotating bodies 7, 11 and the inner rotating bodies 23, 26, it is possible to perform the rotation as desired within the range regulated by the maximum eccentricity. Further, the turning inclination angle θ can be similarly set arbitrarily.

第4図(b)は、2重偏心回動機横22により、加工位
1!01,02.Ozを設定し、該加工位置において2
重偏心回動機横6により一定偏心量を保持して、加工上
型44を旋回させる塑性加工を順次施す場合を示す。
Fig. 4(b) shows machining positions 1!01, 02. Oz and set 2 at the processing position.
A case is shown in which plastic working is sequentially performed by rotating the working upper die 44 while maintaining a constant amount of eccentricity by the horizontal heavy eccentric rotating machine 6.

その他、2重偏心回動v1構6により所定揺動角の揺動
運動を加工上型44に生じさせることもできる。
In addition, it is also possible to cause the processing upper die 44 to swing at a predetermined swing angle using the double eccentric rotation v1 mechanism 6.

以下、本発明方法を適用した具体的な製品加工の数例に
ついて説明する。
Hereinafter, several examples of specific product processing to which the method of the present invention is applied will be described.

第5図は5本発明方法による円筒歯車の加工を示したも
のである。
FIG. 5 shows the processing of a cylindrical gear by the method of the present invention.

所定の歯車形状を穿設した加工下型63内に被加工物W
を支持し、加工下型63を上昇させて加工上型44に所
定の圧力で当接させる。加工上型は中心軸ficLが通
る被加工物W上の点O6を旋回中心として、傾斜角θで
旋回して加工を開始する(同図(a))、加工が進んで
被加工物Wが加工下型63内で塑性流動し、歯車形状の
歯先部の下方に充填されるとともに、加工上型44の旋
回範囲外には未加圧部Waが環状に残る(同図(b )
)、その後−旦加工下型63を下降させるとともに、加
工位置を01からO3へ移した後、再び加工下型63を
上昇させて前記未加工部Waを加工上型に当接させ、加
工上型44を旋回させる塑性加工を施すと、未加圧部W
aが加圧されて塑性流動が促進され、加工下型の歯先部
に押し込まれる。従って、被加工物W上の0.02を半
径とし加工位置0、を中心とする円周上の複数個所に他
の加工位置を設定して、被加工物W上の全体に亘って前
記塑性加工を施せば、加工下型63に穿設した歯車形状
に応じた円筒歯車が加工される(同図(C))。
The workpiece W is placed in the lower die 63 in which a predetermined gear shape is bored.
is supported, and the lower working mold 63 is raised and brought into contact with the upper working mold 44 with a predetermined pressure. The machining upper mold starts machining by turning at an inclination angle θ with a point O6 on the workpiece W through which the central axis ficL passes as a turning center (Figure (a)), and as the machining progresses, the workpiece W becomes It plastically flows within the processing lower die 63 and fills the lower part of the tooth tips of the gear shape, and an annular unpressurized portion Wa remains outside the rotation range of the processing upper die 44 (FIG. 2(b)).
), After that, the lower machining mold 63 is lowered and the machining position is moved from 01 to O3, and then the lower machining mold 63 is raised again to bring the unprocessed part Wa into contact with the upper machining mold, and the machining When plastic working is performed by rotating the mold 44, the unpressurized part W
A is pressurized to promote plastic flow and is pushed into the tip of the tooth of the lower mold. Therefore, other machining positions are set at multiple locations on the circumference of the workpiece W with a radius of 0.02 and the machining position 0 as the center, and the plasticity is applied to the entire workpiece W. When the machining is performed, a cylindrical gear corresponding to the shape of the gear bored in the lower die 63 is machined (FIG. 6(C)).

この加工の間、加工下型63は一定の加工圧力を被加工
物Wに与えるため、加工の進行に応じて上昇する。この
上昇は、加工上型及び下型間の加工圧力を検出してフィ
ードバックすることにより制御してもよい。
During this machining, the lower machining mold 63 applies a constant machining pressure to the workpiece W, and thus rises as the machining progresses. This increase may be controlled by detecting and feeding back the processing pressure between the upper and lower molds.

第6図は、本発明方法による被加工物Wに形成された孔
径の拡大加工を示したものである。
FIG. 6 shows the process of enlarging the diameter of a hole formed in a workpiece W by the method of the present invention.

加工孔70に挿入される加工工具71を、孔壁に所定の
加圧力で当接させ、加工位置OIを中心として所定の傾
斜角θで所定回数若しくは所定時間旋回させる塑性加工
を行う(同図(a))、この加工により加工孔70が広
がると、その分加工工具71を加工位置0.から移動さ
せて、拡大した加工孔70の孔壁に所定の加圧力で当接
させ、前記塑性加工を繰り返し、加工位置を順次移動さ
せ、所定の寸法値まで孔径を拡大する(同図(b ))
The processing tool 71 inserted into the processing hole 70 is brought into contact with the hole wall with a predetermined pressing force, and plastic processing is performed by rotating the processing tool 71 at a predetermined inclination angle θ for a predetermined number of times or for a predetermined time around the processing position OI (the same figure). (a)) When the machining hole 70 widens due to this machining, the machining tool 71 is moved to the machining position 0. The hole diameter is expanded to a predetermined dimension value by moving the hole from the hole 70 and bringing it into contact with the hole wall of the enlarged processing hole 70 with a predetermined pressing force, repeating the plastic processing, moving the processing position sequentially, and enlarging the hole diameter to a predetermined dimension value (Fig. ))
.

第7図は、本発明方法によるトリミング加工を示したも
のである。
FIG. 7 shows the trimming process according to the method of the present invention.

同図(a)〜(b)は、前記した円筒歯車の加工(第5
図)と同様である。加工上型44の旋回範囲外に残る環
状の未加圧部Waを加圧し塑性流動を生じさせて押し込
み、歯先部に充分充填させ所定の歯車形状に加工した後
、なおかつ余分な未加圧部Waが残る場合がある(同図
(c ))、この場合には、さらに加工位置を0.から
03に移動させて、加工上型44を旋回させると、前記
余分な未加工材料が加工下型63外へ押し出されてトリ
ミングされる。該トリミング加工は、加工位置をOIO
sを半径とし、01を中心とする円周上に複数箇所設定
して被加工物W上の全体に亘って行う(同図(d ))
Figures (a) and (b) show the machining of the cylindrical gear described above (the fifth
Figure). After pressurizing the annular unpressurized portion Wa remaining outside the rotation range of the processing upper die 44 to generate plastic flow and pushing it in, filling the tooth tips sufficiently and processing into a predetermined gear shape, the excess unpressurized portion is removed. In some cases, a portion Wa remains (FIG. (c)). In this case, the processing position is further changed to 0. When the upper mold 44 is rotated from 03 to 03, the excess unprocessed material is pushed out of the lower mold 63 and trimmed. For the trimming process, the processing position is set to OIO.
With s as the radius, set multiple locations on the circumference centered at 01 and perform over the entire workpiece W ((d) in the same figure)
.

本発明方法は前記の他に、製品形状を所定寸法公差内に
整えるコイニング、サイジング等に適用でき製品加工精
度を向上させることもできる。
In addition to the above methods, the method of the present invention can also be applied to coining, sizing, etc. to adjust the product shape within predetermined dimensional tolerances, and can also improve product processing accuracy.

r発明の効果」 本発明は、前記具体的手段及び作用の説明で明らかにし
たように、重点的に加圧を必要とする加工位置を被加工
物上に複数設定し、逐次該加工位置において所定回数又
は所定時間、加工上型を所定の傾斜角でもって旋回また
は揺動させる塑性加工により、前記加工位置周辺の要充
填部へ向かう被加工物材料の塑性流動を促進させること
により型形状内への充填性を高めて、欠肉の生じない製
品を加工することができ、従来のように被加工物径より
大きな径の加工上型を用意する必要もなく、また被加工
物に応じて数種類の加工上型や加工工具を用意する必要
もないから、経済性の高い塑性加工方法を提供すること
ができる。
r Effects of the Invention As clarified in the explanation of the specific means and effects, the present invention provides a plurality of machining positions that require intensive pressurization on a workpiece, and sequentially applies pressure at the machining positions. Plastic processing in which the upper die is rotated or swung at a predetermined angle of inclination for a predetermined number of times or for a predetermined time, promotes the plastic flow of the workpiece material toward the required filling area around the processing position, thereby creating a shape within the mold shape. It is possible to improve the filling performance of the workpiece, and process products without missing parts, and there is no need to prepare a processing mold with a diameter larger than the workpiece diameter as in the past. Since there is no need to prepare several types of processing molds and processing tools, it is possible to provide a highly economical plastic processing method.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図は本発明装置
の全体構成を示す断面図、第2図は第1図Ii線断面図
、第3図は概略の制置回路図、第4図は本発明方法の基
本的な加工モードを例示した説明図、第5〜7図は具体
的な加工例を示した説明図、第8図は従来例の加工上の
問題点を示した説明図である。 1020回転鍛造加工装置、 44 、、、加工上型、
63、、、加工下型、 CL、、、中心軸線、 W、、
。 被加工物、 O+ 、 Oz 、 Os 、 、 、加
工位置。 第 図 第 図 (a) CL (a) CL 第 図
The accompanying drawings show embodiments of the present invention, and FIG. 1 is a cross-sectional view showing the overall configuration of the device of the present invention, FIG. 2 is a cross-sectional view taken along line Ii in FIG. 1, and FIG. 3 is a schematic installation circuit diagram. Figure 4 is an explanatory diagram illustrating the basic machining mode of the method of the present invention, Figures 5 to 7 are explanatory diagrams illustrating specific machining examples, and Figure 8 is an explanatory diagram illustrating problems in machining of the conventional method. It is an explanatory diagram. 1020 rotary forging processing device, 44, processing upper mold,
63, Lower die, CL, Center axis, W,
. Workpiece, O+, Oz, Os, , machining position. Figure (a) CL (a) CL Figure

Claims (1)

【特許請求の範囲】[Claims] 加工下型に支持される被加工物上の所定位置を中心とし
て、その所定位置を通る軸線に対して所定の傾斜角をも
って加工上型を所定回数若しくは所定時間旋回または揺
動させる塑性加工を、前記被加工物上の所定範囲に設定
された複数の加工位置に対して逐次行い、当該加工上型
若しくは加工下型の成形部の形状に応じた塑性加工を施
すことを特徴とする塑性加工方法。
Plastic processing in which the upper mold is rotated or oscillated a predetermined number of times or for a predetermined time at a predetermined angle of inclination with respect to an axis passing through the predetermined position, with the center being at a predetermined position on the workpiece supported by the lower mold, A plastic working method characterized by sequentially performing plastic working on a plurality of processing positions set in a predetermined range on the workpiece, and performing plastic working according to the shape of the forming part of the processing upper mold or the processing lower mold. .
JP30662788A 1988-12-02 1988-12-02 Plastic working method Pending JPH02151335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30662788A JPH02151335A (en) 1988-12-02 1988-12-02 Plastic working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30662788A JPH02151335A (en) 1988-12-02 1988-12-02 Plastic working method

Publications (1)

Publication Number Publication Date
JPH02151335A true JPH02151335A (en) 1990-06-11

Family

ID=17959364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30662788A Pending JPH02151335A (en) 1988-12-02 1988-12-02 Plastic working method

Country Status (1)

Country Link
JP (1) JPH02151335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166157A (en) * 2012-02-14 2013-08-29 Toyota Motor Corp Rocking die forging method, workpiece used therefor and method for determination of workpiece shape
JP2014133254A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Forging device and control method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166157A (en) * 2012-02-14 2013-08-29 Toyota Motor Corp Rocking die forging method, workpiece used therefor and method for determination of workpiece shape
JP2014133254A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Forging device and control method of the same

Similar Documents

Publication Publication Date Title
JPS6219255B2 (en)
US5695390A (en) Finishing machines for internal spline tooth surfaces
JPH02251330A (en) Forging method
US3613222A (en) Method for making a lightweight optical mirror
JPH10509660A (en) Precision drilling machine for forming non-circular holes
JPH02151335A (en) Plastic working method
US20050156363A1 (en) Method and system for shaping a body of material and shaped product made by the method and system
US4984443A (en) Plastic working method and apparatus
JP7030790B2 (en) Cutting device and method to cut off a part of the pipe from the pipe
JPH02217656A (en) Flanged gear and its forging method
JPH10235519A (en) Machining device for coriolis motion gear
JPH0847741A (en) Rocking die forging machine
KR100572021B1 (en) Apparatus and method for making product having oval shape
JPH10109223A (en) Gear shaver
JP2004154921A (en) Machine tool
JPH11179605A (en) Non-circular boring device
US5007281A (en) Plastic working method and apparatus
JPS58196902A (en) Machine for machining circumferential surface
JPH03110038A (en) Swiveling type plastic working machine
JP2670508B2 (en) Grinding wheel cutting device and honing machine
US4982532A (en) Method and apparatus for finishing gear tooth surfaces of a bevel gear
JP2900027B2 (en) Oscillation device for honing wheel and honing device
JP4250594B2 (en) Moving device and plane polishing machine using planetary gear mechanism
JP2000343327A (en) Reamer adjustable for expansion and contraction and bore finishing machine fitted with such reamer
JPH1158193A (en) Surface grinding method and surface grinding device