JPH02150846A - Photosensitive composition and pattern forming method - Google Patents

Photosensitive composition and pattern forming method

Info

Publication number
JPH02150846A
JPH02150846A JP63304151A JP30415188A JPH02150846A JP H02150846 A JPH02150846 A JP H02150846A JP 63304151 A JP63304151 A JP 63304151A JP 30415188 A JP30415188 A JP 30415188A JP H02150846 A JPH02150846 A JP H02150846A
Authority
JP
Japan
Prior art keywords
compd
compound
epoxy
photosensitive composition
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63304151A
Other languages
Japanese (ja)
Inventor
Minoru Chokai
実 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63304151A priority Critical patent/JPH02150846A/en
Publication of JPH02150846A publication Critical patent/JPH02150846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To decrease the film thinning of a resist at the time of development and to obtain good patterns by forming the compsn. of an arom. azide compd., epoxy compd. and alkali soluble high-polymer compd. CONSTITUTION:This compsn. consists of the arom. azide compd., the epoxy compd. and the alkali soluble high-polymer compd. To be exact, the content of the azide compd. varies slightly with the sensitivity characteristics, optical characteristics, etc., of the compd. and is generally preferably in the range of about 1 to 40wt.% of the total weight. The concn. of the epoxy compd. may be in the entire range of 1 to 90wt.% of the total weight of the photosensitive compsn. with respect to the desired properties of the photosensitive compsn. The arom. azide compd. which is the photosensitive agent of the negative type photoresist is made into an amine compd. by exposing. The ring opening reaction of the epoxy compd. is induced by the amine compd. generated by this photochemical reaction, by which the epoxy compd. is sufficiently crosslinked in the resist. The film thinning of the resist at the time of the development is thus suppressed and the good exposing and developing characteristics are obtd.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、感光性組成物及びパタン形成方法に係り、特
に微細加工に適した感光性組成物及びパタン形成方法に
関する。 【従来の技術】 感光性組成物は、例えば半導体の製造工程など種々の用
途に用いられている。半導体素子、特にLSI、VSL
I等の半導体素子の性能を向上させるためには、その加
工の解像性(微細度)を向上させることが必要である。 現在、露光にはg線(436n m)の縮小露光装置が
広く用いられている。解像度の向上のために、縮小投影
レンズのNA (開口数)を大きくしたり、g線からi
線(365nm)への短波長化の努力がなされている。 露光領域を小さくせずに、前者のNAを大きくすること
は技術的に鑵しい。 高NAの露光光学系ができたとしても、焦点深度が浅く
なり、単層のレジスト塗膜を用いる簡単なプロセスが使
えなくなり、実用上の問題が生じる。 後者の露光波長の短波長化は実用上かなり有望である。 もちろん、短波長化されても、高解像度等のレジストへ
の要求は変わらない。 最近、短波長領域の中でもKrFエキシマレーザを用い
た露光プロセスが注目を集めている。それはKrFエキ
シマレーザの露光波長が248nmとかなり短く、また
出力の大きく、発振も安定であるためである。例えば、
第47回応用物理学会学術講演会講演予稿集p、323
,29.a−ZF−2(1986)にポジ型のホトレジ
ストとしてMP2400 (シプレージャパン社製)を
用い、KrFエキシマレーザ露光した結果が報告されて
いる。また、第34回応用物理学関係連合講演会講演予
稿集、第二分冊、p、432.30a−N−8(198
7)にポジ型のホトレジストとしてPMMAを用い、K
rFエキシマレーザ露光した結果が報告されている。 【発明が解決しようとする課題1 上記従来技術は、高感度でかつ高解像度という両特性を
同時に満たすことができないという点で問題があった。 すなわち、MP2400は1μmの厚さで露光波長の2
48nmにおける吸光度が1.2であり、ポジ型のホト
レジストとしてはかなり大きく、そのだめに入射光が十
分にホトレジストの下部にまで到達せず、MP2400
の露光・現像後のパタンの断面形状はかなり悪化して逆
台形になるという問題点があった。また、PMMAの場
合には、吸収か弱すぎるため、その感度は32J/cm
”とかなり低く、実用上の問題があった。さらにPMM
Aをシリコンウェハ上で用いた場合には、80%以上の
入射光がシリコンウェハ基板にまで届くために、レンズ
1−内に大きな定在波が生じてしまい、微細パタンを解
像することができないという問題点もあった。 したがって、ネガ型レジストで248nmの吸収を下げ
たレジストを開発すれば良い。しかし、従来のネガ型レ
ジストは感光剤の光吸収により生じる架橋反応が十分に
起こるように、多量の感光剤が加えられている。そのた
めに、レジストの248nmにおける吸収が強すぎて、
露光、現像後に逆台形のパタン形状になってしまう。2
48nmの吸収を下げるためにレジストに用いる感光剤
の濃度を少なくすると、露光による光架橋が不十分で、
現像時にレンズ1への膜減りが大きく、良好なパタン得
られないという問題を生じる。 本発明の目的は、KrFエキシマレーザの露光波長の2
48nmに対して高感度で高解像性を有する感光性材料
及びそれを用いたパタン形成方法を捉供することにある
。 [課題を解決するための手段1 本発明の感光性組成物は、芳香族アジド化合物とエポキ
シ化合物とアルカリ可溶性高分子化合物とからなること
を特徴とする。 ネガ型のホトレンズ1−の248nmの吸収が強すぎる
と塗膜表面での光の吸収が強すぎて現像後のパタンか逆
台形になってしまい、垂直な形状を作ったり、線幅の制
御をするのが難しいという欠点がある。吸収を減らすた
めに感光剤の濃度を下げると、露光による光架橋が不十
分で、現像時にレジストの膜減りが大きく、良好なパタ
ン得られないという問題を生じる。そこで少量の感光剤
を用いても、現像時に膜減りを生じないレジスト材料及
びプロセスを検討した。 ネガ型ホトレジストの感光剤である芳香族アジド化合物
は露光により、アミン化合物になる。この光化学反応で
生じたアミン化合物によりエポキシ化合物の開環反応を
起こさせ、レジスト内に十分な架橋させることにより、
レジストの現像時の膜減りが抑えられ、良好な露光・現
像特性が得られる。 本発明に用いられるアジド化合物としては、短波長の露
光領域に吸収帯を持つものである。もちろん、最大吸収
波長が露光波長よりも長波長側にある化合物であっても
よい。 このようなアジド化合物としては、公知の感光性化合物
でよい。例えば、特開昭56−162744、特開昭5
9−222833明細書に記載したアジド類がある。 アジド化合物の量は、その化合物の感度特性や光学特性
等により正確には多少差があるが、−数的に全体の量(
アジド化合物とエポキシ化合物と高分子化合物)に対し
て1〜40重量%程度の範囲であることが好ましく、2
〜30重量%程度の範囲であることがより好ましい。 本発明において使用することのできるエポキシ化合物は
グリシジル型エポキシド、脂肪族エポキシド、エポキシ
クレゾールノボラック樹脂、エポキシフェノール樹脂、
多核フェノール−グリシジルエーテル誘導体など、なら
びにこれらを混合して用いることもできる。さらに24
8nmで光吸収が小さいものがより好ましい。 本発明のエポキシ化合物の濃度は、感光性組成物の所望
の性質に関係して、感光性組成物の全体の量に対して1
〜90重量%、好ましくは10〜50重量%の範囲にわ
たることができる。 本発明のエポキシ化合物による硬化又は光重合はトリガ
ー反応である。放射線に露光することにより、光重合開
始剤のアミン系触媒が形成され、硬化反応または、光重
合反応が進行し、露光後も継続する。露光中又はその後
における熱エネルギの使用、すなわち熱的なボストキュ
アは一般的に硬化反応を促進し、温和な温度上昇のよっ
てさえも硬化反応が多いに促進される場合がある。 本発明の高分子化合物としては、一般のネガ型のホトレ
ジストに用いられている高分子化合物が用いられるが、
特にアルカリ可溶性のものが好ましく、さらに、ドライ
エツチング耐性を有するものが好ましい。このような高
分子化合物は多くはベンゼン環を有するものである。例
えば、クレゾールノボラック樹脂等のフェノール類とホ
ルムアルデヒドとの縮合反応生成物、フェノール類を含
む共重合体、ヒドロキシスチレン重合体、ヒドロキシス
チレンを含む共重合体等がある。 【作用] 本発明において、露光する光の波長を一般に用いられて
いる436nmより短波長にするので解像度が向上する
0例えばその波長を248 nmとすれば、346nm
で露光した場合より解像され得る最小線幅は57%も小
さくなる。 本発明の1μm厚の塗膜の248nmにおける吸光度を
容易に1以下にすることができる。これは、感光剤の濃
度を下げて用いることができ、かつ、エポキシ化合物の
吸収も小さいためである。 例えば、エポキシ化合物を用いないで、上記吸光度が1
の感光性組成物を作ると、感光剤の量が少なすぎて、露
光しても十分な架橋が起こらない。 したがって、現像時に膜減りが大きくなり、実用性がな
い。本発明の感光性組成物は膜減りの問題がなく、24
8nmでの光の吸収が容易に制御されうる。膜厚が1μ
mの塗膜で上記吸光度が0゜5〜1.5の時、露光、現
像後の塗膜の断面形状はその端部が表面に対して実質的
に垂直である。 もしも吸光度が0.5未満の値、例えば0.4にすると
、露光、現像後の塗膜の断面形状はなだらかなテーバを
持つ。一方、1.5を越える値、例えば1.6にすると
、上記塗膜の断面形状は逆台形になり、いずれも好まし
くない。 【実施例1 以下、実施例を用いて、本発明の詳細な説明する。なお
、下記の実施例は本発明を例証するものであり1本発明
の範囲を限定するものではない。 実施例1 次の組成のホトレジスト溶液を調製した。ポリ(4−ヒ
ドロキシスチレン)と3− (4’ −アジドスチリル
)−5,5−ジメチル−2−シクロヘキセン−1−オン
とヘキサンジオールジグリシジルエーテルを64:6:
30の重量比でシクロヘキサンに溶解させて、ホトレジ
スト溶液を作った。 シリコンウェハ上にスピン塗布し、80℃で10分間ベ
ークして厚さ1μmの塗膜を形成した。この膜を、Kr
Fエキシマレーザ(ラムダフィジク=Lambda  
Physik社製)を用いて、照射量と照射位置を変え
て露光した。露光後の塗膜を水酸化テトラメチルアンモ
ニウム0.952%水溶液で60秒間現像した。この操
作により未露光部分の塗膜は除去され、露光により不溶
化した塗膜のみがウェハ上に残った。この現像後の膜厚
を触針式膜厚計(アルファーステップ200 ;テンカ
ー・インスツルメンツ;Ten、cor  Instr
uments社製)によって測定し、その値を露光量に
対してプロットして、ホトレジストの感光特性曲線を得
た。その結果、本発明の感光性組成物が、実用上十分に
高い感度(20mJ/c m”)とコントラスト特性(
2,0)を有することが判った。 また、上記と同様にして製造した塗膜にKrFエキシマ
レーザの光を0.5μmのパタン幅を有するハードマス
クを介して30mJ/cm”だけ露光した。露光後塗膜
を水酸化テトラメチルアンモニウム0.952%水溶液
で60秒間現像し、0.5μmの幅の良好なパタンを得
た。 実施例2 実施例1に記載の3−(4’ −アジドスチリル)−5
,5−ジメチル−2−シクロヘキセン−1−オンの代わ
りに3,3′−ジアジドジフェニルスルホンを63 :
 1 : 36の重量比で調合した点を除いて、実施例
1の方法を繰り返した。 その結果、感度は80mJ/cm”で、コントラストは
1.5で0.5μmの幅の良好なパタンを得た。 実施例3 実施例1に記載の3− (4’ −アジドスチリル)−
5,5−ジメチル−2−シクロヘキセン−1−オンの代
わりに3,3′−ジアジドジフェニルスルホンを用い、
更に、ヘキサンジオールジグリシジルエーテルの代わり
にブチルグリシジルエーテルを65:15:20の重量
比で調合した点を除いて、実施例1の方法を繰り返した
。 その結果、感度は52mJ/cm”で、コントラストは
1.7で0.5μmの幅の良好なパタンを得た。 実施例4 実施例1に記載の3− (4’ −アジドスチリル)−
5,5−ジメチル−2−シクロヘキセン−1−オンの代
わりに3,3′−ジアジドジフェニルスルホンを用い、
更に、ヘキサンジオールジグリシジルエーテルの代わり
にN、N’ −ジグリシジル−〇−トルイジンを73:
12:15の重量比で調合した点を除いて、実施例1の
方法を繰り返した。 その結果、感度は47mJ/ Cm”で、コントラスト
は2.0で0.5μmの幅の良好なパタンを得た。 実施例5 実施例1に記載の3− (4’ −アジドスチリル)−
5,5−ジメチル−2−シクロヘキセン−1−オンの代
わりに3,3′−ジアジドジフェニルスルホンを用い、
更に、ヘキサンジオールジグリシジルエーテルの代わり
にN、N’−ジグリシジルアニリンを73:12:15
の重量比で調合した点を除いて、実施例1の方法を繰り
返した。 その結果、感度は52 m J / c m ”で、コ
ントラストは1.8で0.5μmの幅の良好なパタンを
得た。 実施例6 実施例1に記載の3−(4’ −アジドスチリル)−5
,5−ジメチル−2−シクロヘキセン−1−オンの代わ
りに3,3′−ジアジドジフェニルスルホンを用い、更
に、ヘキサンジオールジグリシジルエーテルの代わりに
クレゾールノボラック樹脂のグリシジルエーテルを65
:24:11の重量比で調合した点を除いて、実施例1
の方法を繰り返した。 その結果、感度は80 m J / c m”で、コン
トラストは1.6で0.5μmの幅の良好なパタンを得
た。 実施例7 実施例1に記載の工程で露光後、ホットプレート上で1
20℃で11分間ポストベークする工程を加えた点を除
いて、実施例1の方法を繰り返した。 その結果、感度は18mJ/cm’で、コントラストは
1.9で0.5μmの幅の良好なパタンを得た。 (発明の効果1 本発明の芳香族アジド化合物とエポキシ化合物とアルカ
リ可溶性高分子化合物とからなることを特徴とする感光
性組成物を用いれば、露光、現像後の塗膜の膜減りを減
らすことができ、高解像度のパターンを形成することが
出来る。そして、形成したパターンの断面形状は実質的
に垂直である。 また、本発明の感光性組成物はネガ型のホトレジストで
あるので、露光の際の下地の基板にまで届く光量が少な
く、基板からの反射の影響が少ないという利点がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a photosensitive composition and a pattern forming method, and particularly to a photosensitive composition and pattern forming method suitable for microfabrication. BACKGROUND OF THE INVENTION Photosensitive compositions are used in various applications such as semiconductor manufacturing processes. Semiconductor devices, especially LSI, VSL
In order to improve the performance of semiconductor devices such as I, it is necessary to improve the resolution (fineness) of their processing. Currently, g-line (436 nm) reduction exposure equipment is widely used for exposure. In order to improve the resolution, the NA (numerical aperture) of the reduction projection lens can be increased, and the
Efforts are being made to shorten the wavelength to 365 nm. It is technically difficult to increase the former NA without reducing the exposure area. Even if an exposure optical system with a high NA were created, the depth of focus would be shallow, making it impossible to use a simple process using a single-layer resist coating, which would cause practical problems. The latter shortening of the exposure wavelength is quite promising in practice. Of course, even if the wavelength is shortened, the requirements for resists such as high resolution will not change. Recently, exposure processes using KrF excimer lasers have been attracting attention in the short wavelength region. This is because the exposure wavelength of the KrF excimer laser is quite short at 248 nm, the output is large, and the oscillation is stable. for example,
Proceedings of the 47th Japan Society of Applied Physics Academic Conference, p. 323
, 29. a-ZF-2 (1986) using MP2400 (manufactured by Shipley Japan) as a positive photoresist and the results of KrF excimer laser exposure have been reported. Also, Proceedings of the 34th Applied Physics Association Lectures, Volume 2, p. 432.30a-N-8 (198
In 7), PMMA was used as a positive photoresist, and K
The results of rF excimer laser exposure have been reported. Problem 1 to be Solved by the Invention The above-mentioned conventional technology has a problem in that it cannot simultaneously satisfy both characteristics of high sensitivity and high resolution. In other words, MP2400 has a thickness of 1 μm and a wavelength of 2
The absorbance at 48 nm is 1.2, which is quite large for a positive type photoresist, and the incident light does not reach the bottom of the photoresist sufficiently.
There was a problem in that the cross-sectional shape of the pattern after exposure and development deteriorated considerably and became an inverted trapezoid. In addition, in the case of PMMA, the absorption is too weak, so its sensitivity is 32 J/cm.
”, which was a practical problem.In addition, PMM
When A is used on a silicon wafer, more than 80% of the incident light reaches the silicon wafer substrate, creating a large standing wave inside the lens 1-, making it difficult to resolve fine patterns. There was also the problem that it was not possible. Therefore, it is sufficient to develop a negative resist with lower absorption at 248 nm. However, in conventional negative resists, a large amount of photosensitizer is added so that the crosslinking reaction caused by light absorption of the photosensitizer can occur sufficiently. For this reason, the absorption of the resist at 248 nm is too strong.
After exposure and development, the pattern becomes an inverted trapezoid. 2
If the concentration of the photosensitizer used in the resist is reduced in order to lower the absorption at 48 nm, photocrosslinking due to exposure to light will be insufficient.
A problem arises in that the film on the lens 1 is greatly reduced during development, making it impossible to obtain a good pattern. The purpose of the present invention is to
The object of the present invention is to provide a photosensitive material having high sensitivity and resolution at 48 nm and a pattern forming method using the same. [Means for Solving the Problems 1] The photosensitive composition of the present invention is characterized by comprising an aromatic azide compound, an epoxy compound, and an alkali-soluble polymer compound. If the 248 nm absorption of the negative photolens 1- is too strong, the absorption of light on the surface of the coating film will be too strong and the pattern after development will be an inverted trapezoid, making it difficult to create vertical shapes or control the line width. The disadvantage is that it is difficult to do. If the concentration of the photosensitizer is lowered in order to reduce absorption, the photocrosslinking caused by exposure to light is insufficient, resulting in a large loss of resist film during development, resulting in the problem that a good pattern cannot be obtained. Therefore, we investigated resist materials and processes that do not cause film loss during development even when using a small amount of photosensitive agent. An aromatic azide compound, which is a photosensitizer for negative photoresists, becomes an amine compound upon exposure. The amine compound generated by this photochemical reaction causes a ring-opening reaction of the epoxy compound, resulting in sufficient crosslinking within the resist.
Film loss during resist development is suppressed, and good exposure and development characteristics can be obtained. The azide compound used in the present invention has an absorption band in the short wavelength exposure region. Of course, it may be a compound whose maximum absorption wavelength is on the longer wavelength side than the exposure wavelength. As such an azide compound, any known photosensitive compound may be used. For example, JP-A-56-162744, JP-A-5
There are azides described in the specification of No. 9-222833. The exact amount of the azide compound varies depending on the compound's sensitivity characteristics, optical properties, etc., but - numerically, the total amount (
The amount is preferably in the range of about 1 to 40% by weight based on the azide compound, epoxy compound, and polymer compound), and
More preferably, the content is in the range of about 30% by weight. Epoxy compounds that can be used in the present invention include glycidyl epoxides, aliphatic epoxides, epoxy cresol novolac resins, epoxy phenolic resins,
Polynuclear phenol-glycidyl ether derivatives and mixtures of these can also be used. 24 more
It is more preferable to use a material with low light absorption at 8 nm. The concentration of the epoxy compound of the present invention depends on the desired properties of the photosensitive composition, and the concentration of the epoxy compound of the present invention is determined based on the total amount of the photosensitive composition.
It can range from ~90% by weight, preferably from 10 to 50% by weight. Curing or photopolymerization with the epoxy compounds of the present invention is a triggered reaction. By exposure to radiation, an amine catalyst as a photopolymerization initiator is formed, and a curing reaction or a photopolymerization reaction proceeds and continues even after exposure. The use of thermal energy during or after exposure, ie, thermal boss curing, generally accelerates the curing reaction, and even mild increases in temperature may greatly accelerate the curing reaction. As the polymer compound of the present invention, a polymer compound used in general negative photoresists is used.
Particularly preferred are those that are alkali-soluble, and more preferably those that have dry etching resistance. Many of these polymer compounds have a benzene ring. Examples include condensation reaction products of phenols and formaldehyde such as cresol novolak resin, copolymers containing phenols, hydroxystyrene polymers, copolymers containing hydroxystyrene, and the like. [Function] In the present invention, the wavelength of the exposing light is made shorter than the generally used 436 nm, so the resolution is improved. For example, if the wavelength is 248 nm, the wavelength is 346 nm.
The minimum line width that can be resolved is 57% smaller than in the case of exposure. The absorbance at 248 nm of the 1 μm thick coating film of the present invention can be easily reduced to 1 or less. This is because the concentration of the photosensitizer can be lowered and the absorption of the epoxy compound is also small. For example, if the absorbance is 1 without using an epoxy compound,
When a photosensitive composition is prepared, the amount of photosensitizer is too small and sufficient crosslinking does not occur even after exposure. Therefore, film loss during development becomes large, making this method impractical. The photosensitive composition of the present invention does not have the problem of film thinning and has 24
The absorption of light at 8 nm can be easily controlled. Film thickness is 1μ
When the above-mentioned absorbance is 0.5 to 1.5 for a coating film of m, the cross-sectional shape of the coating film after exposure and development has its edges substantially perpendicular to the surface. If the absorbance is set to a value less than 0.5, for example 0.4, the cross-sectional shape of the coating film after exposure and development will have a gentle taber. On the other hand, if the value exceeds 1.5, for example 1.6, the cross-sectional shape of the coating film becomes an inverted trapezoid, which is not preferable. [Example 1] Hereinafter, the present invention will be explained in detail using an example. It should be noted that the following examples are for illustrating the present invention and are not intended to limit the scope of the present invention. Example 1 A photoresist solution having the following composition was prepared. Poly(4-hydroxystyrene), 3-(4'-azidostyryl)-5,5-dimethyl-2-cyclohexen-1-one, and hexanediol diglycidyl ether in a ratio of 64:6:
A photoresist solution was prepared by dissolving in cyclohexane in a weight ratio of 30. It was spin-coated onto a silicon wafer and baked at 80° C. for 10 minutes to form a coating film with a thickness of 1 μm. This film was
F excimer laser (Lambda physic = Lambda
(manufactured by Physik), and exposure was performed by changing the irradiation amount and irradiation position. The exposed coating film was developed for 60 seconds with a 0.952% aqueous solution of tetramethylammonium hydroxide. By this operation, the coating film in the unexposed areas was removed, and only the coating film insolubilized by exposure remained on the wafer. The film thickness after development was measured using a stylus-type film thickness meter (Alpha Step 200; Tenker Instruments; Ten, cor Instr.
The photosensitive characteristic curve of the photoresist was obtained by plotting the value against the exposure amount. As a result, the photosensitive composition of the present invention has a sensitivity (20 mJ/cm") that is sufficiently high for practical use and a contrast property (
2,0). In addition, the coating film produced in the same manner as above was exposed to KrF excimer laser light at a dose of 30 mJ/cm'' through a hard mask having a pattern width of 0.5 μm. Developed with a .952% aqueous solution for 60 seconds to obtain a good pattern with a width of 0.5 μm.Example 2 3-(4′-azidostyryl)-5 described in Example 1
, 3,3'-diazide diphenyl sulfone instead of 5-dimethyl-2-cyclohexen-1-one 63:
The method of Example 1 was repeated except that the weight ratio was 1:36. As a result, a good pattern with a width of 0.5 μm and a sensitivity of 80 mJ/cm” and a contrast of 1.5 was obtained. Example 3 The 3-(4'-azidostyryl)- described in Example 1 was obtained.
Using 3,3′-diazide diphenyl sulfone instead of 5,5-dimethyl-2-cyclohexen-1-one,
Additionally, the method of Example 1 was repeated except that butyl glycidyl ether was formulated in a weight ratio of 65:15:20 instead of hexanediol diglycidyl ether. As a result, a good pattern with a width of 0.5 μm and a sensitivity of 52 mJ/cm” and a contrast of 1.7 was obtained. Example 4 3-(4′-azidostyryl)- described in Example 1
Using 3,3′-diazide diphenyl sulfone instead of 5,5-dimethyl-2-cyclohexen-1-one,
Furthermore, in place of hexanediol diglycidyl ether, N,N'-diglycidyl-〇-toluidine 73:
The method of Example 1 was repeated except that the weight ratio was 12:15. As a result, a good pattern with a width of 0.5 μm was obtained with a sensitivity of 47 mJ/Cm'' and a contrast of 2.0. Example 5 3-(4'-azidostyryl)- described in Example 1.
Using 3,3′-diazide diphenyl sulfone instead of 5,5-dimethyl-2-cyclohexen-1-one,
Furthermore, in place of hexanediol diglycidyl ether, N,N'-diglycidylaniline was added at 73:12:15.
The method of Example 1 was repeated except that the weight ratio of As a result, a good pattern with a width of 0.5 μm and a sensitivity of 52 mJ/cm” and a contrast of 1.8 was obtained. Example 6 3-(4′-azidostyryl) described in Example 1 -5
, 5-dimethyl-2-cyclohexen-1-one, 3,3'-diazidiphenyl sulfone was used, and glycidyl ether of cresol novolak resin was used instead of hexanediol diglycidyl ether.
Example 1 except that the weight ratio was 24:11.
The method was repeated. As a result, a good pattern with a width of 0.5 μm was obtained with a sensitivity of 80 mJ/cm” and a contrast of 1.6. Example 7 After exposure using the process described in Example 1, the pattern was placed on a hot plate. de1
The method of Example 1 was repeated with the addition of a post-bake step for 11 minutes at 20°C. As a result, a good pattern with a sensitivity of 18 mJ/cm', a contrast of 1.9, and a width of 0.5 μm was obtained. (Effect of the invention 1) By using the photosensitive composition characterized by comprising an aromatic azide compound, an epoxy compound, and an alkali-soluble polymer compound of the present invention, film thinning of the coating film after exposure and development can be reduced. The cross-sectional shape of the formed pattern is substantially vertical.Also, since the photosensitive composition of the present invention is a negative type photoresist, it is possible to form a high-resolution pattern. This has the advantage that the amount of light that reaches the underlying substrate is small, and the influence of reflection from the substrate is small.

Claims (1)

【特許請求の範囲】 1、芳香族アジド化合物とエポキシ化合物とアルカリ可
溶性高分子化合物とからなることを特徴とする感光性組
成物。 2、上記エポキシ化合物がヘキサンジオールジグリシジ
ルエーテル、ブチルグリシジルエーテル、N、N′−ジ
グリシジル−o−トルイジン、N、N−ジグリシジルア
ニリン、クレゾールノボラック樹脂のグリシジルエーテ
ルからなる群から選ばれた少なくとも一種類の化合物で
ある請求項第1項記載の感光性組成物。 3、上記高分子化合物が、フェノール類とホルムアルデ
ヒドとの縮合反応生成物及びヒドロキシスチレン重合体
からなる群から選ばれた少なくとも一種の高分子化合物
である請求項第1項、第2項のいずれかに記載の感光性
組成物。 4、芳香族アジド化合物とエポキシ化合物とアルカリ可
溶性高分子化合物とを含む感光性組成物を基板上に塗布
して塗膜とする工程、該塗膜に所定のパタンを形成する
工程よりなることを特徴とするパタン形成方法。 5、上記エポキシ化合物がヘキサンジオールジグリシジ
ルエーテル、ブチルグリシジルエーテル、N、N′−ジ
グリシジル−o−トルイジン、N、N−ジグリシジルア
ニリン、クレゾールノボラック樹脂のグリシジルエーテ
ルからなる群から選ばれた少なくとも一種類の化合物で
ある請求項第4項記載のパタン形成方法。 6、上記高分子化合物が、フェノール類とホルムアルデ
ヒドとの縮合反応生成物及びヒドロキシスチレン重合体
からなる群から選ばれた少なくとも一種の高分子化合物
である請求項第4項、第5項のいずれかに記載のパタン
形成方法。
[Scope of Claims] 1. A photosensitive composition comprising an aromatic azide compound, an epoxy compound, and an alkali-soluble polymer compound. 2. The epoxy compound is at least one selected from the group consisting of hexanediol diglycidyl ether, butyl glycidyl ether, N,N'-diglycidyl-o-toluidine, N,N-diglycidylaniline, and glycidyl ether of cresol novolak resin. 2. The photosensitive composition according to claim 1, which is a type of compound. 3. Either of claims 1 and 2, wherein the polymer compound is at least one type of polymer compound selected from the group consisting of a condensation reaction product of phenols and formaldehyde and a hydroxystyrene polymer. The photosensitive composition described in . 4. A step of applying a photosensitive composition containing an aromatic azide compound, an epoxy compound, and an alkali-soluble polymer compound onto a substrate to form a coating film, and a step of forming a predetermined pattern on the coating film. Characteristic pattern formation method. 5. The epoxy compound is at least one selected from the group consisting of hexanediol diglycidyl ether, butyl glycidyl ether, N,N'-diglycidyl-o-toluidine, N,N-diglycidylaniline, and glycidyl ether of cresol novolak resin. 5. The method for forming a pattern according to claim 4, wherein the compound is a type of compound. 6. Either of claims 4 and 5, wherein the polymer compound is at least one type of polymer compound selected from the group consisting of a condensation reaction product of phenols and formaldehyde and a hydroxystyrene polymer. The pattern forming method described in .
JP63304151A 1988-12-02 1988-12-02 Photosensitive composition and pattern forming method Pending JPH02150846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304151A JPH02150846A (en) 1988-12-02 1988-12-02 Photosensitive composition and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304151A JPH02150846A (en) 1988-12-02 1988-12-02 Photosensitive composition and pattern forming method

Publications (1)

Publication Number Publication Date
JPH02150846A true JPH02150846A (en) 1990-06-11

Family

ID=17929668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304151A Pending JPH02150846A (en) 1988-12-02 1988-12-02 Photosensitive composition and pattern forming method

Country Status (1)

Country Link
JP (1) JPH02150846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295247A1 (en) 2003-07-07 2011-03-16 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295247A1 (en) 2003-07-07 2011-03-16 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method

Similar Documents

Publication Publication Date Title
JP4467857B2 (en) Modification of 193nm photosensitive photoresist material by electron beam exposure
US6365322B1 (en) Photoresist composition for deep UV radiation
KR100333565B1 (en) Resist Composition and Formation Method
JPH0439665A (en) Radiation sensitive material and pattern forming method
US5252435A (en) Method for forming pattern
KR20000034146A (en) Monomer for photoresist, copolymer thereof and photoresist composition using the same
JPH06242606A (en) Positive type radiation sensitive mixture
JP2004266270A (en) Method for forming fine pattern
JPH0792678A (en) Resist composition
JPH0792680A (en) Resist composition
JPH0792681A (en) Resist composition
US4657844A (en) Plasma developable negative resist compositions for electron beam, X-ray and optical lithography
JPH02120366A (en) Radiation-sensitive composition and formation of pattern by using same
JPH02150846A (en) Photosensitive composition and pattern forming method
JPH0438346B2 (en)
EP0766141B1 (en) Pattern forming process
JPH09211871A (en) Formation of resist pattern
JP2000505913A (en) Positive photoresist composition containing 2,4-dinitro-1-naphthol
JPS58203438A (en) Formation of fine pattern
Thackeray et al. Evaluation of Deep UV ANR Photoresists for 248.4 nm. Excimer Laser Photolithography
JPH09211868A (en) Production of photoresist pattern having t-shape cross-section
KR100593662B1 (en) Photoresist for semiconductor device manufacturing including initiator and photolithography process using same
JPH01241543A (en) Negative type photosensitive composition and pattern forming method
JPH0263114A (en) Manufacture of semiconductor device
JPH02216153A (en) Photosensitive composition and pattern forming method