JPH02150714A - Position detector - Google Patents

Position detector

Info

Publication number
JPH02150714A
JPH02150714A JP30453588A JP30453588A JPH02150714A JP H02150714 A JPH02150714 A JP H02150714A JP 30453588 A JP30453588 A JP 30453588A JP 30453588 A JP30453588 A JP 30453588A JP H02150714 A JPH02150714 A JP H02150714A
Authority
JP
Japan
Prior art keywords
elements
detected
magnetoresistive elements
rod
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30453588A
Other languages
Japanese (ja)
Inventor
Kozo Kyoizumi
宏三 京和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO BOEKI KK
Original Assignee
SANKYO BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO BOEKI KK filed Critical SANKYO BOEKI KK
Priority to JP30453588A priority Critical patent/JPH02150714A/en
Publication of JPH02150714A publication Critical patent/JPH02150714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To highly accurately detect the position of a body to be detected irrespective of the position of the body by providing two sets of magneto- resistive elements, with each set being composed of two pieces of elements, and inputting different AC signals, and then, performing addition or subtraction on output signals. CONSTITUTION:Sine-wave voltages and cosine-wave voltages, between which a phase lag of 90 deg. exists, are applied across both ends of magneto-resistive elements 6-9 and signals are respectively outputted from intermediate sections between the elements 6 and 7 and between the elements 8 and 9. Moreover, permanent magnets 10 and 11 are arranged above the elements 6-9 and magnetic fluxes of the magnets 10 and 11 act on a rod 1 to be detected in the normal direction through the elements 6-9. The output signals from the intermediate sections of the above-mentioned elements 6-9 are subjected to addition or subtrac tion at an amplifier 12 which is an arithmetic means and the final output volt age is obtained. The final output becomes the same AC signal as the input signal and the phase difference can be detected with infinitesimal resolution, and thus, highly accurate position detection is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非接触で被検出体の位置を高精度に検出できる
位置検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position detection device that can detect the position of a detected object with high precision in a non-contact manner.

〔従来技術とその問題点〕[Prior art and its problems]

従来、磁気抵抗素子を用いた位置検出装置として第7図
〜第1O図に示されるものがある。I2Uち、被検出体
であるロッド20は強磁性体で構成されており、その周
面には等ピッチ(P)で溝21が形成されている。した
がって、ロッド20の周面にはその移動方向に高透磁率
部22と低透磁率部21とが交互にかつ等ピッチで設け
られることになる。ロッド20の周面近傍には検出セン
サ23が配置されており、この検出センサ23には2個
の磁気抵抗素子24 、25がロッド20の移動方向に
並んだ杖態に配置されている0両磁気抵抗素子24 、
25は差動型に接続されており、その両端には一定電圧
士■、が印加され、中間部が出力端子として取り出され
ている。磁気抵抗素子24 、25の上部には永久磁石
26が配置されており、その磁束が磁気抵抗素子24 
、25を貫いてロッド20に対してほぼ直角方向に作用
するように磁極の向きが設定されている。
2. Description of the Related Art Conventionally, there are position detection devices using magnetoresistive elements as shown in FIGS. 7 to 1O. The rod 20, which is the object to be detected, is made of a ferromagnetic material, and grooves 21 are formed at a constant pitch (P) on its circumferential surface. Therefore, high magnetic permeability portions 22 and low magnetic permeability portions 21 are provided alternately and at equal pitches on the circumferential surface of the rod 20 in the direction of movement thereof. A detection sensor 23 is arranged near the circumferential surface of the rod 20, and this detection sensor 23 has two magnetic resistance elements 24 and 25 arranged in a rod shape in the direction of movement of the rod 20. Magnetoresistive element 24,
25 is connected in a differential manner, and a constant voltage (2) is applied to both ends thereof, and the intermediate portion is taken out as an output terminal. A permanent magnet 26 is arranged above the magnetoresistive elements 24 and 25, and the magnetic flux is directed to the magnetoresistive element 24.
, 25 and act approximately perpendicularly to the rod 20.

ここで、上記位置検出装置の動作を説明する。Here, the operation of the position detection device will be explained.

まず、第7図においては磁気抵抗素子24の真下に高透
磁率部22が位置し、磁気抵抗素子25の真下には低透
磁率部21が位置しているので、永久磁石26の磁束は
磁気抵抗素子24に多く流れ、磁気抵抗素子25には相
対的に少ない磁束しか流れない、磁気抵抗素子24 、
25は周知のとおり、それを通過する磁束の量が多くな
ると、それに比例して抵抗値が増大する特徴を持つので
、第7図の状態では出力電圧■。、tは一■、に近づき
、第11図のA点のようになる。
First, in FIG. 7, the high magnetic permeability section 22 is located directly below the magnetoresistive element 24, and the low magnetic permeability section 21 is located directly below the magnetoresistive element 25, so the magnetic flux of the permanent magnet 26 is A magnetoresistive element 24, in which a large amount of magnetic flux flows through the resistance element 24, and a relatively small amount of magnetic flux flows through the magnetoresistive element 25,
As is well known, 25 has a characteristic that as the amount of magnetic flux passing through it increases, its resistance value increases in proportion to the amount of magnetic flux passing through it, so in the state shown in FIG. 7, the output voltage is ■. , t approaches 1, and becomes like point A in FIG.

次に、ロッド20(または検出センサ23)が174ピ
ッチ移動して第8図の状態になると、磁気抵抗素子24
 、25に流れる磁束が平衡する。そのため、再磁気抵
抗素子24 、25の抵抗値が同じになるから、出力電
圧V、、、は士■、の中間点B、即ちQvとなる。
Next, when the rod 20 (or the detection sensor 23) moves 174 pitches to the state shown in FIG.
, 25 are balanced. Therefore, since the resistance values of the remagnetoresistive elements 24 and 25 are the same, the output voltage V, ..., becomes the midpoint B, ie, Qv.

このようにして第9図、第10回へと174ピッチずつ
移動すると、出力電圧v0工、はそれぞれ0点。
In this way, when moving 174 pitches to the 10th time in FIG. 9, the output voltage v0 and 0 points are respectively 0 points.

D点へと変化する。つまり、ロッド20の1ピッチ内で
出力電圧■。、は第11図のように正弦波状に変化する
ことになる。
Changes to point D. In other words, the output voltage ■ within one pitch of the rod 20. , will change in a sinusoidal manner as shown in FIG.

上記の位置検出装置の場合には、ロッド20の移動に伴
って変化する出力電圧V、、、の大きさを検出すること
によって、ロッド20の変位を測定しているため、磁気
抵抗素子24.25とロッド20との接近距離が変化す
ると、出力電圧V o a Lの大きさも変化し、正確
な位置検出が出来ないという欠点がある。また、出力電
圧■。ulLが正弦波状に変化するので、その電圧変化
だけをとると、移動距離に比例した信号が得られないと
いう欠点もある。
In the case of the above-mentioned position detection device, since the displacement of the rod 20 is measured by detecting the magnitude of the output voltage V, which changes with the movement of the rod 20, the magnetoresistive element 24. When the approach distance between the rod 25 and the rod 20 changes, the magnitude of the output voltage V o a L also changes, resulting in a drawback that accurate position detection cannot be performed. Also, the output voltage ■. Since ulL changes in a sinusoidal manner, there is also the drawback that if only the voltage change is taken, a signal proportional to the moving distance cannot be obtained.

上記欠点を解決するものとして、第12図に示されるも
のがある。この位置検出装置は、第7図と同様の検出セ
ンサを2個使用し、一方の検出センサ30を他方の検出
センサ31に対して1/4ピッチだけずらして配置しで
ある。それぞれの検出センサ30.31は第11図で示
したように、被検出体20の移動に伴い正弦波状に変化
する出力電圧を得るので、それぞれの出力電圧V+、V
*をOvを基準にして波形成形すると、第13図のよう
な矩形波を得ることができる。
As a solution to the above-mentioned drawbacks, there is a method shown in FIG. 12. This position detection device uses two detection sensors similar to those shown in FIG. 7, and one detection sensor 30 is arranged to be shifted from the other detection sensor 31 by 1/4 pitch. As shown in FIG. 11, each detection sensor 30, 31 obtains an output voltage that changes sinusoidally as the detected object 20 moves, so the respective output voltages V+, V
If the waveform of * is shaped based on Ov, a rectangular wave as shown in FIG. 13 can be obtained.

この方法によれば、それぞれの矩形波の立ち上がりおよ
び立ち下がりの信号を用いて1/4ピッチまでの移動距
離を検出することが可能であり、検出センサ30.31
 とロッド20との接近距離が変化しても検出精度は影
響を受けない、しかしながら、分解能が1/4ピッチで
しかなく、高精度の位置検出は不可能であった。
According to this method, it is possible to detect the moving distance up to 1/4 pitch using the rising and falling signals of each rectangular wave, and the detection sensor 30.31
Even if the approach distance between the rod 20 and the rod 20 changes, the detection accuracy is not affected. However, the resolution is only 1/4 pitch, making highly accurate position detection impossible.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は、磁気抵抗素子と被検出体との
接近距離が変化しても影響を受けず、しかも分解能を無
限小となし得る高精度の位置検出装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate position detection device that is not affected by changes in the proximity distance between a magnetoresistive element and an object to be detected, and can have infinitely small resolution.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、本発明は、透磁率の異なる部
分が交互にかつ等ピッチで設けられた被検出体と、被検
出体に対してピッチ方向に相対移動可能に近接配置され
た2個2&[lの磁気抵抗素子と、磁束が磁気抵抗素子
を貫いて被検出体に対してほぼ直角方向に作用するよう
に配置された永久磁石とを備え、上記磁気抵抗素子の両
組の相対移動方向距離は上記ピッチの整数倍に対して1
/4ピッチだけずれており、各組の磁気抵抗素子どうし
は互いに直列接続され、各組の磁気抵抗素子の両端に信
号を入力し、各組の磁気抵抗素子の中央より信号を出力
するようにした位置検出装置において、各組の磁気抵抗
素子の両端には時間位相が90度異なる交流信号がそれ
ぞれ入力され、かつ各組の磁気抵抗素子の中央より出力
される信号を互いに加算または減算する演算手段を備え
たことを特徴とするものである。
In order to achieve the above object, the present invention provides a body to be detected in which portions having different magnetic permeabilities are provided alternately and at equal pitches, and two portions in which portions having different magnetic permeabilities are arranged close to each other so as to be relatively movable in the pitch direction with respect to the body to be detected. 2&[l magnetoresistive elements and a permanent magnet arranged so that magnetic flux passes through the magnetoresistive elements and acts on the object to be detected in a substantially perpendicular direction, and the relative movement of both sets of the magnetoresistive elements is provided. The directional distance is 1 for an integral multiple of the above pitch.
The magnetoresistive elements in each set are connected in series with each other, so that a signal is input to both ends of each set of magnetoresistive elements, and a signal is output from the center of each set of magnetoresistive elements. In this position detection device, alternating current signals with time phases different by 90 degrees are input to both ends of each set of magnetoresistive elements, and the signals output from the center of each set of magnetoresistive elements are added or subtracted from each other. It is characterized by having means.

〔実施例〕〔Example〕

第1図は本発明にかかる位置検出装置をロッド1の変位
検出に適用した一例を示す。
FIG. 1 shows an example in which the position detecting device according to the present invention is applied to detecting the displacement of a rod 1. As shown in FIG.

ロッドlは従来と同様に強磁性体で構成されており、そ
の周面には移動方向に高透磁率部2と低透磁率部3とが
交互にかつ等ピッチ(P)で設けられている、ロッド1
の周面近傍には2個の検出センサ4.5が近接配置され
ており、これら検出センサ4,5の内部にはそれぞれ2
個の磁気抵抗素子6,7および8,9がロッド1の移動
方向に並んだ状態に配置されている。上記磁気抵抗素子
6゜7および8.9はそれぞれ直列接続されており、磁
気抵抗素子6.7問および8.9間の距離Pは1/2ピ
ッチに設定され、かつ検出センサ4.5間の距離mは上
記ピッチPの整数倍に対して1/4ピッチだけずれてい
る。即ち、 m=NP±1/4P   CN:正の整数)となってい
る。なお、第1図の例では次式のように設定されている
The rod l is made of a ferromagnetic material as in the past, and high magnetic permeability parts 2 and low magnetic permeability parts 3 are provided on its circumferential surface alternately and at equal pitches (P) in the direction of movement. , rod 1
Two detection sensors 4.5 are arranged close to each other near the circumferential surface of the sensor.
Magnetoresistive elements 6, 7 and 8, 9 are arranged in a line in the direction of movement of the rod 1. The magnetoresistive elements 6.7 and 8.9 are connected in series, and the distance P between the magnetoresistive elements 6.7 and 8.9 is set to 1/2 pitch, and the distance between the detection sensors 4.5 and 8.9 is set to 1/2 pitch. The distance m is shifted by 1/4 pitch from an integral multiple of the pitch P. That is, m=NP±1/4P (CN: positive integer). In the example shown in FIG. 1, the settings are as shown in the following equation.

m=2P−1/4P なお、磁気抵抗素子6〜9は感度係数αが同一のものを
使用している。
m=2P-1/4P Note that the magnetoresistive elements 6 to 9 have the same sensitivity coefficient α.

上記磁気抵抗素子6,7および8,9の両端にはそれぞ
れ正弦波状電圧(±a sinωL)と余弦波状電圧(
±acosωt)が印加され、中間部より出力電圧V、
、V4が取り出されている。磁気抵抗素子6〜9の上部
には永久磁石io、 ttが配置されており、その磁束
が磁気抵抗素子6〜9を貫いてロッド1に対してほぼ直
角方向に作用するように磁極の向きが設定されている。
A sine wave voltage (±a sinωL) and a cosine wave voltage (±a sin ωL) and a cosine wave voltage (
±acosωt) is applied, and the output voltage V,
, V4 has been taken out. Permanent magnets io and tt are arranged above the magnetoresistive elements 6 to 9, and the magnetic poles are oriented so that the magnetic flux passes through the magnetoresistive elements 6 to 9 and acts on the rod 1 in a direction substantially perpendicular to the magnetoresistive elements 6 to 9. It is set.

なお、磁気抵抗素子6,7および8,9の両端に入力さ
れる交流電圧信号(a sinωL+  a cosω
t)は・公知のクワドラチャ発振回路等にて容易に発生
させることができる。
Note that the AC voltage signal (a sinωL+a cosω
t) can be easily generated using a known quadrature oscillation circuit or the like.

上記出力電圧Vt、V4は演算手段の一例である差動増
幅器12 (ゲインK)の正入力と負入力とにそれぞれ
入力されており、この差動増幅器12にて出力電圧Vs
、Vaの差を演算し、最終的な出力電圧V 611 L
を得ている。
The output voltages Vt and V4 are respectively input to the positive and negative inputs of a differential amplifier 12 (gain K), which is an example of arithmetic means, and the differential amplifier 12 outputs a voltage Vs
, Va, and calculate the final output voltage V 611 L
I am getting .

ここで、上記構成からなる位置検出装置の動作を説明す
る。
Here, the operation of the position detection device having the above configuration will be explained.

ロッドlの高透磁率部2または低透磁率部3が磁気抵抗
素子6.7の中央にある場合には、再磁気抵抗素子6.
7の抵抗値が等しいため、磁気抵抗素子6.7の中央部
から取り出される出力電圧■、はOvであり、ロッド1
が移動して高透磁率部2または低透磁率部3が磁気抵抗
素子6.7の中央よりずれると、再磁気抵抗素子6.7
の抵抗値が不平衡となり、出力電圧■、は第7図〜第1
0図に説明したとおりロッド1の変位量Xに応じて正弦
波状に変化する。即ち、電圧■3は次式のようになる。
If the high permeability part 2 or the low permeability part 3 of the rod l is in the center of the magnetoresistive element 6.7, then the re-magnetoresistive element 6.
Since the resistance values of the rods 1 and 7 are equal, the output voltage , taken out from the center of the magnetoresistive element 6.7, is Ov, and the
When the high magnetic permeability part 2 or the low magnetic permeability part 3 shifts from the center of the magnetoresistive element 6.7, the re-magnetoresistive element 6.7
The resistance value becomes unbalanced, and the output voltage
As explained in FIG. 0, it changes sinusoidally in accordance with the displacement amount X of the rod 1. That is, the voltage (3) is expressed by the following equation.

V、 =a a sinωt  −cos(2πx/P
)また、磁気抵抗素子8.9についても同様に、高透磁
率部2または低i3磁率部3のずれ量に応した電圧■4
が得られるが、磁気抵抗素子8.9は磁気抵抗素子6.
7に対して1/4ピッチだけずれているので、電圧■4
は次式のようにV、に対して1/2πだけ変位位相がず
れることになる。
V, =a a sinωt - cos(2πx/P
) Similarly, for the magnetoresistive element 8.9, a voltage (4) corresponding to the amount of deviation of the high magnetic permeability portion 2 or the low i3 magnetic percent portion 3 is applied.
is obtained, but the magnetoresistive element 8.9 is the magnetoresistive element 6.9.
Since it is shifted by 1/4 pitch from 7, the voltage ■4
The displacement phase is shifted by 1/2π with respect to V as shown in the following equation.

V4 = a a cosωt  1sin(2πX/
P)これら電圧Vs、Vaが差動増幅器12に入力され
るので、その出力■。□は次式のように単純な三角函数
となる。
V4 = a a cosωt 1 sin (2πX/
P) These voltages Vs and Va are input to the differential amplifier 12, so its output ■. □ is a simple trigonometric function as shown in the following equation.

V。、、 −Ka α(sinωt  −cos(2π
X/P)cosωt  −5in(2πx/P)1=K
 a a  sin  ((L)t −2πx/P)第
2図は入力電圧a sinωtと出力電圧■。。
V. ,, -Ka α(sinωt -cos(2π
X/P)cosωt-5in(2πx/P)1=K
a a sin ((L)t -2πx/P) Figure 2 shows the input voltage a sin ωt and the output voltage ■. .

とを示しており、これら電圧の時間位相のずれT(=2
πx/P)を検出すれば、1ピッチの範囲内でのロッド
lの絶対的変位Xを検出できることになる。つまり、分
解能は無限小となる。なお、1ピッチを越えれば、ピッ
チ数をカウントすることによりロッド1の直線変位をイ
ンクリメンタルに測定可能であることは勿論である。
and the time phase shift T (=2
πx/P), it is possible to detect the absolute displacement X of the rod l within the range of one pitch. In other words, the resolution becomes infinitesimal. It goes without saying that if the number of pitches exceeds one, the linear displacement of the rod 1 can be measured incrementally by counting the number of pitches.

なお、上記実施例では差動増幅器12で電圧■3と■4
の差を求めたが、これら電圧の和を求めても同様であり
、2πIT/Pだけ位相が進むか遅れるかの違いに過ぎ
ない。また、磁気抵抗素子6.7の両端に±acosω
tを、磁気抵抗素子8,9の両端に±a sinωtを
それぞれ入力してもよく、この場合には差動増幅器12
の出力は余弦函数となる。
In addition, in the above embodiment, the voltages ■3 and ■4 are generated by the differential amplifier 12.
However, the same is true even if the sum of these voltages is calculated, and the only difference is whether the phase advances or lags by 2πIT/P. Moreover, ±acosω is applied to both ends of the magnetoresistive element 6.7.
t and ±a sinωt may be input to both ends of the magnetoresistive elements 8 and 9, respectively. In this case, the differential amplifier 12
The output of is the cosine function.

本発明で使用される被検出体としては、周面に溝を設け
たロッドに限らず、例えば第3図、第4図に示すように
高透磁率材料からなるロッド13の周面に溝14を設け
、この溝14に銅箔などの低透磁率材料15を埋設して
もよい、この場合にはロッド13の周面を平滑にできる
ので、空圧または液圧シリンダ用ロッドとして好適であ
り、しかも透磁率差を大きく取れるので、感度が向上す
るという利点がある。
The object to be detected used in the present invention is not limited to a rod having a groove on its circumferential surface. For example, as shown in FIG. 3 and FIG. A low magnetic permeability material 15 such as copper foil may be embedded in the groove 14. In this case, the circumferential surface of the rod 13 can be made smooth, making it suitable as a rod for pneumatic or hydraulic cylinders. Moreover, since a large difference in magnetic permeability can be obtained, there is an advantage that sensitivity is improved.

また、第5図、第6図は被検出体として円板16を使用
したものであり、高透磁率材料からなる円板16の外周
部上面に低透磁率材料からなる薄膜17を5定ピッチで
固着し、円板16の回転変位を検出するものである。こ
の場合には、第6図のように円板16の上部に磁気抵抗
素子18を配置するとともに、その上部に永久磁石19
を配置すればよい。
In addition, FIGS. 5 and 6 use a disk 16 as the object to be detected, and thin films 17 made of a low magnetic permeability material are coated at 5 regular pitches on the upper surface of the outer circumference of the disk 16 made of a high magnetic permeability material. The rotational displacement of the disk 16 is detected. In this case, as shown in FIG.
All you have to do is place the .

さらに、透磁率の異なる材料を用いて高透磁率部と低透
磁率部とを形成する場合に限らず、金属材料の表面をレ
ーザー等で局部的に処理することにより、同一材料上に
高透磁率部と低透磁率部とを形成してもよい。
Furthermore, in addition to forming high magnetic permeability parts and low magnetic permeability parts using materials with different magnetic permeability, it is also possible to form high permeability parts on the same material by locally treating the surface of the metal material with a laser or the like. A magnetic permeability portion and a low magnetic permeability portion may be formed.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、差動型
に接続された2個2組の磁気抵抗素子の両端に時間位相
が90度異なる交流信号を入力し、各組の磁気抵抗素子
の中央より出力される信号を演算手段で加算または減算
するようにしたので、演算手段で得られる出力は入力信
号である交流信号と同様な単純な交流信号となる。した
がって、これら人、出力信号の位相差を検出すれば、被
検出体の相対変位を無限小の分解能で検出でき、高精度
な位置検出装置を実現できる。
As is clear from the above description, according to the present invention, AC signals having a time phase different by 90 degrees are input to both ends of two sets of magnetoresistive elements connected in a differential type, and each set of magnetoresistive Since the signals output from the center of the element are added or subtracted by the calculation means, the output obtained by the calculation means is a simple AC signal similar to the AC signal that is the input signal. Therefore, by detecting the phase difference between these output signals, the relative displacement of the detected object can be detected with infinitesimal resolution, and a highly accurate position detection device can be realized.

また、磁気抵抗素子と被検出体゛との接近距離がバラつ
いても、両組の磁気抵抗素子でその誤差を相殺できるの
で、接近距離が変化しても検出精度に全く影響を受けな
い。
Furthermore, even if the approach distance between the magnetoresistive element and the object to be detected varies, the errors can be canceled out by both sets of magnetoresistive elements, so even if the approach distance changes, the detection accuracy is not affected at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる位置検出装置をロッドの変位検
出に使用した例の構成図、第2図は入力端子と出力電圧
の波形図、第3図は被検出体の他の例の斜視図、第4図
はその一部断面図、第5図は被検出体のさらに他の例の
斜視図、第6図は検出方法を示す断面図、第7図以下は
従来例を示し、第7図〜第10図は従来の位置検出装置
の動作を示す断面図、第11図はその出力信号波形図、
第12図は従来の他の例の断面図、第13図はその出力
信号波形図である。 1・・・ロッド(被検出体)、2・・・高透磁率部、3
・・・低透磁率部、4.5・・・検出センサ、6〜9・
・・磁気抵抗素子、10.11・・・永久磁石、12・
・・差動増幅器。 第1図 特許出願人  三京貿易株式会社 代 理 人  弁理士 筒井 秀隆 第3図 第7図 第4図 第6図 第8図
Fig. 1 is a configuration diagram of an example in which the position detection device according to the present invention is used to detect displacement of a rod, Fig. 2 is a waveform diagram of the input terminal and output voltage, and Fig. 3 is a perspective view of another example of the detected object. 4 is a partial sectional view thereof, FIG. 5 is a perspective view of still another example of the detected object, FIG. 6 is a sectional view showing the detection method, FIG. 7 to 10 are cross-sectional views showing the operation of a conventional position detection device, and FIG. 11 is an output signal waveform diagram thereof.
FIG. 12 is a sectional view of another conventional example, and FIG. 13 is an output signal waveform diagram thereof. 1... Rod (detected object), 2... High magnetic permeability part, 3
...Low permeability part, 4.5...Detection sensor, 6-9.
... Magnetoresistive element, 10.11 ... Permanent magnet, 12.
...Differential amplifier. Figure 1 Patent applicant Sankyo Boeki Co., Ltd. Agent Hidetaka Tsutsui Figure 3 Figure 7 Figure 4 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】  透磁率の異なる部分が交互にかつ等ピッチで設けられ
た被検出体と、被検出体に対してピッチ方向に相対移動
可能に近接配置された2個2組の磁気抵抗素子と、磁束
が磁気抵抗素子を貫いて被検出体に対してほぼ直角方向
に作用するように配置された永久磁石とを備え、上記磁
気抵抗素子の両組の相対移動方向距離は上記ピッチの整
数倍に対して1/4ピッチだけずれており、各組の磁気
抵抗素子どうしは互いに直列接続され、各組の磁気抵抗
素子の両端に信号を入力し、各組の磁気抵抗素子の中央
より信号を出力するようにした位置検出装置において、 各組の磁気抵抗素子の両端には時間位相が90度異なる
交流信号がそれぞれ入力され、かつ各組の磁気抵抗素子
の中央より出力される信号を互いに加算または減算する
演算手段を備えたことを特徴とする位置検出装置。
[Claims] A detected object in which portions with different magnetic permeabilities are provided alternately and at equal pitches, and two sets of magnetic resistors arranged close to each other so as to be movable relative to the detected object in the pitch direction. and a permanent magnet arranged so that a magnetic flux passes through the magnetoresistive element and acts on the object to be detected in a substantially perpendicular direction, and the distance in the relative movement direction of both sets of the magnetoresistive elements is equal to the pitch. The magnetoresistive elements in each set are connected in series with each other, and the signals are input to both ends of the magnetoresistive elements in each set. In a position detection device configured to output a signal, AC signals having a time phase different by 90 degrees are input to both ends of each set of magnetoresistive elements, and the signal output from the center of each set of magnetoresistive elements is input to both ends of each set of magnetoresistive elements. A position detection device characterized by comprising calculation means that add or subtract from each other.
JP30453588A 1988-11-30 1988-11-30 Position detector Pending JPH02150714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30453588A JPH02150714A (en) 1988-11-30 1988-11-30 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30453588A JPH02150714A (en) 1988-11-30 1988-11-30 Position detector

Publications (1)

Publication Number Publication Date
JPH02150714A true JPH02150714A (en) 1990-06-11

Family

ID=17934170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30453588A Pending JPH02150714A (en) 1988-11-30 1988-11-30 Position detector

Country Status (1)

Country Link
JP (1) JPH02150714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412317A (en) * 1992-07-07 1995-05-02 Santest Co., Ltd. Position detector utilizing absolute and incremental position sensors in combination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120801A (en) * 1981-01-20 1982-07-28 Sanyo Electric Co Ltd Measuring method
JPS60168017A (en) * 1984-02-10 1985-08-31 S G:Kk Linear position detecting device
JPS63177018A (en) * 1987-01-19 1988-07-21 Shicoh Eng Co Ltd Multi-multiple magnetic encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120801A (en) * 1981-01-20 1982-07-28 Sanyo Electric Co Ltd Measuring method
JPS60168017A (en) * 1984-02-10 1985-08-31 S G:Kk Linear position detecting device
JPS63177018A (en) * 1987-01-19 1988-07-21 Shicoh Eng Co Ltd Multi-multiple magnetic encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412317A (en) * 1992-07-07 1995-05-02 Santest Co., Ltd. Position detector utilizing absolute and incremental position sensors in combination

Similar Documents

Publication Publication Date Title
KR101547173B1 (en) Method and device for determining the absolute position of a movable body
KR101737765B1 (en) Apparatus and method for the redundant, absolute position determination of a movable body
US7049924B2 (en) Electromagnetic induction type position sensor
JPH0626884A (en) Position detection device
JP2010511166A (en) A rotational or linear position sensor having a magnet profile that preferably varies in a pseudo-sinusoidal manner
KR20120095950A (en) Bidirectional magnetic position sensor having field rotation
CN107036637B (en) Electronic absolute position encoder
US11313666B2 (en) Angle sensor and angle sensor system
WO2020005160A1 (en) A magnetic encoder
JP2019049528A (en) Sensor
JP2008544245A (en) Sensor system for measuring the position or rotational speed of an object
KR20220025699A (en) An electronic circuit that measures the angle and strength of an external magnetic field.
CN100504306C (en) AMR sensor element for angle measurement
JPH02150714A (en) Position detector
JP2018013391A (en) Displacement detector
US6307366B1 (en) Object position sensor using magnetic effect device
JPH0758231B2 (en) Torque detector
JP2015049046A (en) Angle detector
CN111693910B (en) System for determining at least one rotation parameter of a rotating component
JPS5979114A (en) Detector for absolute line position
JP3220278B2 (en) Position detection device
JPH03103716A (en) Position detector
JPH05196478A (en) Position detection apparatus
JPS61292014A (en) position detector
CN104567942B (en) The data detection method and detection means of detection means