JPH02150684A - Cold and hot storage device - Google Patents

Cold and hot storage device

Info

Publication number
JPH02150684A
JPH02150684A JP30347888A JP30347888A JPH02150684A JP H02150684 A JPH02150684 A JP H02150684A JP 30347888 A JP30347888 A JP 30347888A JP 30347888 A JP30347888 A JP 30347888A JP H02150684 A JPH02150684 A JP H02150684A
Authority
JP
Japan
Prior art keywords
refrigerant
heating
heat exchanger
indoor heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30347888A
Other languages
Japanese (ja)
Inventor
Shigenori Hirao
平尾 繁典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30347888A priority Critical patent/JPH02150684A/en
Publication of JPH02150684A publication Critical patent/JPH02150684A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/16Convertible refrigerators

Abstract

PURPOSE:To keep two heat insulating rooms at different temperature bands by one refrigerating cycle and permit the switching of a temperature in the heat insulating room into different temperature bands by switching a first, a second and a third refrigerant routes. CONSTITUTION:Solenoid valves 301-305 are opened and closed selectively to switch a first refrigerant route 210, a second refrigerant route 220 and a third refrigerant route 230. A refrigerating chamber 11 can be utilized as a refrigerating chamber and a cold storage and heating chamber 12 can be utilized as a cold storage chamber and a heating chamber. Accordingly, the refrigerating chamber 11 and the cold storage and heating chamber 12 can be kept in different temperature bands (refrigerating temperature, cold storage temperature or heating temperature) by one refrigerating cycle 20 while a temperature in the cold storage and heating chamber 12 can be switched into different temperature bands. Accordingly, when warm foods, obtained through heating cooking now, are stored by mistake into the cold storage and heating chamber 12, functioning as a cold storage chamber, for example, the cold storage and heating chamber 12 may be functioned as a heating chamber by switching the second refrigerant route 220 into the third refrigerant route 230 whereby shifting of the warm foods into a different heating chamber may become unnecessary.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、1つの冷凍サイクルで2つの断熱室内を異な
る温度帯に保つことが可能な冷温蔵装置に関し、とくに
2つの断熱室が各々区隔された2室式冷凍車に搭載され
る冷温蔵装置にかかわる。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a refrigerating and heating device that can maintain two insulating chambers in different temperature zones in one refrigeration cycle, and in particular, the present invention relates to a cold storage device that can maintain two insulating chambers at different temperature zones in one refrigeration cycle. It is related to the refrigeration and heating equipment installed in the separated two-compartment freezer car.

[従来の技術] 1つの冷凍サイクルで2つの室内を異なる温度帯に保つ
方法としては、1つの冷凍サイクル内に2つの冷媒蒸発
器を並列に配し、車室内に冷房用冷媒蒸発器を配し、冷
凍室内に冷凍用冷媒蒸発器を配し、2つの冷媒蒸発器へ
の冷媒の供給を切換弁によって切換えることにより、車
掌および冷凍室をそれぞれ冷房および冷凍を行い得る車
両用冷房冷凍装置(特開昭60−226670号公報)
が存在する。
[Prior Art] A method of keeping two interior rooms in different temperature ranges in one refrigeration cycle is to arrange two refrigerant evaporators in parallel in one refrigeration cycle, and to arrange a cooling refrigerant evaporator inside the vehicle interior. A cooling and freezing system for a vehicle that can cool and freeze the conductor and the freezer compartment, respectively, by disposing a freezing refrigerant evaporator in the freezer compartment and switching the supply of refrigerant to the two refrigerant evaporators using a switching valve. JP-A No. 60-226670)
exists.

あるいは、1つの冷凍サイクル内に2つの冷媒凝縮器を
並列に配し、そのうちの1つの冷媒凝縮器を加温室に配
し、冷媒蒸発器を冷凍室内に配し、2つの冷媒凝縮器へ
の冷媒の供給を切換弁によって切換えることにより、加
温室および冷凍室をそれぞれ加温および冷凍を行い得る
車両用冷凍加温装置(特開昭62−46179号公報)
が存在する。
Alternatively, two refrigerant condensers are placed in parallel in one refrigeration cycle, one of which is placed in the heating chamber, a refrigerant evaporator is placed in the freezing chamber, and the refrigerant condensers are connected to the two refrigerant condensers. A vehicle freezing and heating device capable of heating and freezing a heating chamber and a freezing chamber, respectively, by switching the supply of refrigerant using a switching valve (Japanese Patent Laid-Open No. 62-46179)
exists.

[発明が解決しようとする課題] しかるに、上記構成の従来の車両用冷房冷凍装置および
冷凍加温装置は、2つの室内の温度制御が冷凍と冷房ま
たは加温とのうちいずれかの温度制御だけに固定されて
おり、冷凍室あるいは加温室において、積荷が限定され
てしまうという課題があった。
[Problems to be Solved by the Invention] However, in the conventional vehicle cooling/refrigerating system and freezing/warming system having the above configuration, the two indoor temperature controls are limited to freezing, cooling, or heating. The problem is that cargo is limited in the freezing room or heating room.

このため、上記従来の装置においては、例えは、誤って
近時加熱調理された暖かい食品類を冷凍室に入れた場合
に加温室に積み換える必要があったり、誤って冷凍食品
を加温室に入れた場合に冷凍室に積み換える必要があっ
たりするという課題があった。
For this reason, with the above-mentioned conventional equipment, for example, if warm food that has recently been heated and cooked is put into the freezer compartment, it may be necessary to transfer it to the heating compartment, or if frozen food is accidentally placed in the heating compartment. There was a problem in that if the product was loaded into a freezer, it would be necessary to transfer it to the freezer.

本発明は、1つの冷凍サイクルで2つの断熱室内を異な
る温度帯に保つことができるとともに、1つの断熱室内
を異なる温度帯に切換えることができる冷温蔵装置の提
供を目的とする。
An object of the present invention is to provide a refrigerator/hot storage device that can maintain two heat insulating chambers in different temperature zones in one refrigeration cycle and can switch the temperature in one heat insulating chamber to different temperature zones.

[課題を解決するための手段] 本発明の冷温蔵装置は、外部と断熱された第1断熱室と
、外部と断熱された第2断熱室と、前記第1断熱室内の
空気と冷媒とを熱交換する第1室内熱交換器と、前記第
2断熱室内の空気と冷媒とを熱交換する第2室内熱交換
器と、冷媒を吸入して、圧縮し吐出する冷媒圧縮機と、
冷媒を凝縮させる冷媒凝縮器と、冷媒を蒸発させる冷媒
蒸発器と、前記冷媒圧縮機から吐出された冷媒を前記冷
媒凝縮器に供給し、その後に前記第1室内熱交換器に供
給して前記冷媒圧縮機に吸入させる第1の冷媒経路と、
前記冷媒圧縮機から吐出された冷媒を前記冷媒凝縮器に
供給し、その後に前記第2室内熱交換器に供給して前記
冷媒圧縮機に吸入させる第2の冷媒経路と、前記冷媒圧
縮機から吐出された冷媒を前記第2室内熱交換器に供給
し、その後に前記冷媒蒸発器に供給して前記冷媒圧縮機
に吸入させる第3の冷媒経路と、前記第1の冷媒経路と
前記第2の冷媒経路と前記第3の冷媒経路とを切換える
切換手段とを備えた構成を採用した。
[Means for Solving the Problems] The refrigerator/heat storage device of the present invention includes a first heat insulating chamber insulated from the outside, a second heat insulating room insulated from the outside, and air and refrigerant in the first heat insulating room. a first indoor heat exchanger that exchanges heat, a second indoor heat exchanger that exchanges heat between the air in the second insulation chamber and the refrigerant, and a refrigerant compressor that sucks in, compresses, and discharges the refrigerant;
a refrigerant condenser that condenses a refrigerant; a refrigerant evaporator that evaporates the refrigerant; and a refrigerant discharged from the refrigerant compressor that supplies the refrigerant to the refrigerant condenser and then to the first indoor heat exchanger. a first refrigerant path to be sucked into the refrigerant compressor;
a second refrigerant path for supplying the refrigerant discharged from the refrigerant compressor to the refrigerant condenser, and then supplying the refrigerant to the second indoor heat exchanger and causing the refrigerant to be sucked into the refrigerant compressor; a third refrigerant path for supplying the discharged refrigerant to the second indoor heat exchanger, and then to the refrigerant evaporator and sucking it into the refrigerant compressor; the first refrigerant path and the second refrigerant path; A configuration including a switching means for switching between the refrigerant path and the third refrigerant path is adopted.

し作用] 本発明の冷温蔵装置は上記構成によりつぎの作用を有す
る。
Effects] The refrigerating and heating apparatus of the present invention has the following effects due to the above configuration.

切換手段を切換えることによって、第1の冷媒経路と第
2の冷媒経路と第3の冷媒経路とを切換えることができ
る。
By switching the switching means, it is possible to switch between the first refrigerant path, the second refrigerant path, and the third refrigerant path.

そして、切換手段により第1の冷媒経路に切換えられる
と、冷媒圧縮機から吐出された冷媒を冷媒凝縮器で凝縮
させて、その後に第1室内熱交換器で第1断熱室内の空
気と熱交換させて蒸発させる。このとき、第1室内熱交
換器により第1断熱室内の空気が冷却されるので、第1
断熱室内が冷蔵または冷凍されることとなる。
When the switching means switches to the first refrigerant path, the refrigerant discharged from the refrigerant compressor is condensed in the refrigerant condenser, and then heat exchanged with the air in the first insulation chamber in the first indoor heat exchanger. Let it evaporate. At this time, the air in the first heat insulation chamber is cooled by the first indoor heat exchanger.
The inside of the insulated room will be refrigerated or frozen.

また、切換手段により第2の冷媒経路に切換えられると
、冷媒圧縮機から吐出された冷媒を冷媒凝縮器で凝縮さ
せて、その後に第2室内熱交換器で第2断熱室内の空気
と熱交換させて蒸発させる。
Furthermore, when the switching means switches to the second refrigerant path, the refrigerant discharged from the refrigerant compressor is condensed in the refrigerant condenser, and then heat exchanged with the air in the second insulation chamber in the second indoor heat exchanger. Let it evaporate.

こめとき、第2室内熱交換器により第2断熱室内の空気
が冷却されるので、第2断熱室内が冷蔵または冷凍され
ることとなる。
At this time, the air inside the second heat insulation chamber is cooled by the second indoor heat exchanger, so that the inside of the second heat insulation chamber is refrigerated or frozen.

さらに、切換手段により第3の冷媒経路に切換えられる
と、冷媒圧縮機から吐出された冷媒を第2室内熱交換器
で第2断熱室内の空気と熱交換することにより凝縮させ
て、その後に冷媒蒸発器で蒸発させる。このとき、第2
室内熱交換器により第2断熱室内の空気が冷媒により暖
められるので第2断熱室内が加温されることとなる。
Further, when the switching means switches to the third refrigerant path, the refrigerant discharged from the refrigerant compressor is condensed by exchanging heat with the air in the second heat insulation chamber in the second indoor heat exchanger, and then the refrigerant is Evaporate in an evaporator. At this time, the second
Since the indoor heat exchanger warms the air within the second heat insulating chamber with the refrigerant, the inside of the second heat insulating chamber is heated.

[発明の効果] 本発明の冷温蔵装置は上記構成および作用によ一 りつぎの効果を奏する。[Effect of the invention] The refrigerating and heating device of the present invention has the above configuration and operation. It has a secondary effect.

1つの冷凍サイクルで2つの断熱室内を異なる温度帯に
保つことができるとともに、1つの断熱室内を異なる温
度帯に切換えることができる。よって、2つの断熱室内
の温度制御を、例えば冷凍、冷蔵または加温等のように
種々切換えることができ、少なくとも第2断熱室内にお
いて、積荷が限定されてしまうことがなくなる。
One refrigeration cycle can maintain two insulation chambers at different temperature zones, and can also switch one insulation chamber to different temperature zones. Therefore, the temperature control in the two heat insulating chambers can be variously switched, such as freezing, refrigeration, or heating, and the cargo is not limited at least in the second heat insulating chamber.

[実施例コ 本発明の冷温蔵装置の実施例を第1図ないし第3図に基
づき説明する。
[Embodiment] An embodiment of the refrigerating and heating apparatus of the present invention will be explained based on FIGS. 1 to 3.

第1図は本発明の一実施例を適用した冷温蔵装置の冷凍
サイクルを示し、第2図は冷温蔵装置を搭載した2室式
冷凍冷蔵加温車を示す。
FIG. 1 shows a refrigeration cycle of a refrigerator/heat storage device to which an embodiment of the present invention is applied, and FIG. 2 shows a two-compartment freezer/refrigerator/heater vehicle equipped with the refrigerator/heat storage device.

1は冷温蔵装置2を搭載した2室式冷凍冷蔵加温車を示
す。2室式冷凍冷蔵加温車1には、外部と断熱された第
1断熱室である冷凍室11と、外部と断熱された第2断
熱室である冷蔵加温室12とが各々別途設けられている
1 shows a two-compartment freezing/refrigerating/heating vehicle equipped with a refrigeration/heating storage device 2. The two-compartment freezing/refrigerating/heating vehicle 1 is separately provided with a freezing compartment 11 which is a first insulating room insulated from the outside, and a refrigerating/warming room 12 which is a second insulating room insulated from the outside. There is.

冷温蔵装置2は、前述した冷凍室11および冷蔵加温室
12、冷凍サイクル20、第1の冷媒経路210、第2
の冷媒経路220、第3の冷媒経路230、および切換
手段300を備える。
The cold storage device 2 includes the above-mentioned freezing chamber 11 and refrigerator heating chamber 12, a freezing cycle 20, a first refrigerant path 210, and a second refrigerant path 210.
refrigerant path 220, a third refrigerant path 230, and switching means 300.

冷凍サイクル20は、冷媒圧縮機3、第1室内熱交換器
4、第2室内熱交換器5、冷媒凝縮器6、冷媒蒸発器7
、レシーバ81、第1の膨脹弁82、第2の膨脹弁83
、第3の膨脹弁84およびこれらを連結する冷媒配管9
を備えている。
The refrigeration cycle 20 includes a refrigerant compressor 3, a first indoor heat exchanger 4, a second indoor heat exchanger 5, a refrigerant condenser 6, and a refrigerant evaporator 7.
, receiver 81, first expansion valve 82, second expansion valve 83
, the third expansion valve 84 and the refrigerant pipe 9 connecting these
It is equipped with

冷媒圧縮機3は、電磁クラッチ31を介してエンジン3
2に駆動され、冷媒を圧縮して高温高圧の気相冷媒を吐
出する。33はエンジン32のラジェータを示し、34
は温水経路を示す。
The refrigerant compressor 3 is connected to the engine 3 via an electromagnetic clutch 31.
2, compresses the refrigerant and discharges high-temperature, high-pressure gas-phase refrigerant. 33 indicates a radiator of the engine 32; 34
indicates the hot water route.

第1室内熱交換器4は、冷凍室11内を冷凍する時に、
第1の膨脹弁82からの低温低圧の霧状冷媒を電動モー
タ41によって駆動されるファン42により吹き付けら
れる冷凍室11内の空気と熱交換させて蒸発させる冷凍
用冷媒蒸発器として働く。
When the first indoor heat exchanger 4 freezes the inside of the freezer compartment 11,
It functions as a freezing refrigerant evaporator that evaporates the low-temperature, low-pressure atomized refrigerant from the first expansion valve 82 by exchanging heat with the air in the freezer compartment 11 blown by the fan 42 driven by the electric motor 41.

第2室内熱交換器5は、冷蔵加温室12内を冷蔵する時
に、第2の膨脹弁83からの低温低圧の霧状冷媒を電動
モータ51によって駆動されるファン52により吹き付
けられる冷蔵加温室12内の空気と熱交換させて蒸発さ
ぜる冷蔵用冷媒蒸発器として働く。また、第2室内熱交
換器5は、冷蔵加温室12内を加温する時に、冷媒圧縮
機3からの高温高圧の気相冷媒を冷蔵加温室12内の空
気と熱交換させて′ii、縮さぜる加温用冷媒凝縮器と
して働く。
The second indoor heat exchanger 5 is configured to spray a low-temperature, low-pressure atomized refrigerant from a second expansion valve 83 into the refrigerating/warming room 12 by a fan 52 driven by an electric motor 51 when refrigerating the inside of the refrigerating/warming room 12 . It works as a refrigerant evaporator for refrigeration, exchanging heat with the air inside and evaporating it. Further, when heating the inside of the refrigerated heating room 12, the second indoor heat exchanger 5 exchanges heat with the high temperature and high pressure gas phase refrigerant from the refrigerant compressor 3 with the air inside the refrigerated heating room 12; It works as a heating refrigerant condenser.

冷媒凝縮器6は、冷凍室11内を冷凍する時、あるいは
冷蔵加温室12内を冷蔵する時に、冷媒圧縮機3からの
高温高圧の気相冷媒を電動モータ61によって駆動され
るファン62により吹き付けられる外気と熱交換させて
凝縮させる冷凍、冷蔵用冷媒凝縮器として働く。
The refrigerant condenser 6 blows high-temperature, high-pressure gas-phase refrigerant from the refrigerant compressor 3 using a fan 62 driven by an electric motor 61 when freezing the inside of the freezer compartment 11 or refrigerating the inside of the refrigerating/warming room 12. It works as a refrigerant condenser for freezing and refrigeration by exchanging heat with outside air and condensing it.

冷媒蒸発器7は、冷蔵加温室12内を加温する時に、第
3の膨脹弁84からの低温低圧の霧状冷媒をエンジン3
2のエンジン冷却水と熱交換させて蒸発させる加温用冷
媒蒸発器として働く。
The refrigerant evaporator 7 supplies the low-temperature, low-pressure atomized refrigerant from the third expansion valve 84 to the engine 3 when heating the inside of the refrigerated heating room 12 .
It functions as a heating refrigerant evaporator that exchanges heat with the engine cooling water from Step 2 and evaporates it.

レシーバ81は、冷媒凝縮器6で液化した冷媒を冷凍負
荷または冷蔵負荷に応じて第1室内熱交換器4または第
2室内熱交換器5に供給できるように一時的に財溜する
ものである。
The receiver 81 temporarily stores the refrigerant liquefied in the refrigerant condenser 6 so that it can be supplied to the first indoor heat exchanger 4 or the second indoor heat exchanger 5 depending on the refrigeration load or the refrigeration load. .

第1の膨脹弁82は、第1室内熱交換器4が冷凍用冷媒
蒸発器として働く時に、レシーバ81から第1室内熱交
換器4に流入する液相冷媒を膨脹させる。
The first expansion valve 82 expands the liquid phase refrigerant flowing into the first indoor heat exchanger 4 from the receiver 81 when the first indoor heat exchanger 4 works as a refrigerant evaporator for freezing.

第2の膨脹弁83は、第2室内熱交換器5が冷蔵用冷媒
蒸発器として働く時に、レシーバ81から第2室内熱交
換器5に流入する液相冷媒を膨脹させる。この第2の膨
脹弁83は、第1の膨脹弁82より冷媒の減圧能力が小
さくなるように構成されているので、第2室内熱交換器
5に流入する冷媒の圧力が第1室内熱交換器4に流入す
る冷媒の圧力より大きくなる。
The second expansion valve 83 expands the liquid phase refrigerant flowing into the second indoor heat exchanger 5 from the receiver 81 when the second indoor heat exchanger 5 works as a refrigerant evaporator for refrigeration. Since the second expansion valve 83 is configured to have a lower refrigerant pressure reducing capacity than the first expansion valve 82, the pressure of the refrigerant flowing into the second indoor heat exchanger 5 is lower than that of the first indoor heat exchanger. The pressure becomes higher than the pressure of the refrigerant flowing into the vessel 4.

第3の1lijy&弁84は、冷媒蒸発器7が加温用冷
媒蒸発器として働く時に、第2室内熱交換器5からの液
相冷媒を膨脹させて、低温低圧の霧状冷媒とする。
The third lijy & valve 84 expands the liquid phase refrigerant from the second indoor heat exchanger 5 into a low temperature, low pressure mist refrigerant when the refrigerant evaporator 7 works as a heating refrigerant evaporator.

冷媒配管9は、冷媒を冷媒圧縮機3→冷媒凝縮器6→レ
シーバ81→第1の膨脹弁82→第1室内熱交換器4→
冷媒圧all 3の順に循環するように、これらの器具
を連結している。また、この冷媒配管9には、バイパス
配管91.92.93が取付けられている。
The refrigerant pipe 9 transports the refrigerant from the refrigerant compressor 3 to the refrigerant condenser 6 to the receiver 81 to the first expansion valve 82 to the first indoor heat exchanger 4.
These appliances are connected so that the refrigerant pressures all 3 are circulated in this order. Furthermore, bypass pipes 91, 92, and 93 are attached to this refrigerant pipe 9.

バイパス配管91は、冷媒配管9のレシーバ81の下流
から分岐して第1の膨張弁82および第1室内熱交換器
4を迂回し、冷媒圧縮機3の上流で冷媒配管9に合流す
る配管である。このバイパス配管91によって、第2の
膨張弁83および第2室内熱交換器5が冷媒配管9に連
結される。
The bypass pipe 91 is a pipe that branches from the refrigerant pipe 9 downstream of the receiver 81, bypasses the first expansion valve 82 and the first indoor heat exchanger 4, and joins the refrigerant pipe 9 upstream of the refrigerant compressor 3. be. This bypass pipe 91 connects the second expansion valve 83 and the second indoor heat exchanger 5 to the refrigerant pipe 9 .

バイパス配管92は、冷媒配管9の冷媒圧縮機3の下流
から分岐して冷媒凝縮器6、レシーバ81および第2の
膨張弁83を迂回し、第2室内熱交換器5の上流でバイ
パス配管91に合流する配管である。
The bypass pipe 92 branches from the refrigerant pipe 9 downstream of the refrigerant compressor 3, bypasses the refrigerant condenser 6, receiver 81, and second expansion valve 83, and connects to the bypass pipe 91 upstream of the second indoor heat exchanger 5. This is the pipe that joins the

このバイパス配管92によって、冷媒圧縮機3より吐出
された冷媒を直接加治、用冷媒#縮器として働く第2室
内熱交換器5に供給することができる。
This bypass piping 92 allows the refrigerant discharged from the refrigerant compressor 3 to be directly supplied to the second indoor heat exchanger 5 which functions as a refrigerant compressor.

バイパス配管93は、加温用冷媒蒸発器として働く冷媒
蒸発器7をバイパス配管92に連結する配管である。こ
のバイパス配管93によって、第2室内熱交換器5より
流出した冷媒を直接冷媒圧縮機3に吸入させずに、−旦
冷媒蒸発器7に供給した後に、冷媒圧縮機3に吸入する
ことができる。
Bypass piping 93 is piping that connects refrigerant evaporator 7, which functions as a heating refrigerant evaporator, to bypass piping 92. This bypass piping 93 allows the refrigerant flowing out from the second indoor heat exchanger 5 to be sucked into the refrigerant compressor 3 after first being supplied to the refrigerant evaporator 7 without being sucked into the refrigerant compressor 3 directly. .

第1.の冷媒経路210(図示実線矢印〉は、冷媒圧縮
機3から吐出された冷媒を冷媒凝縮器6−)レシーバ8
1→第1の膨張弁82→第1室内熱交換器4の順に供給
して冷媒圧縮機3に吸入させる循環路である。
1st. A refrigerant path 210 (solid line arrow in the figure) connects the refrigerant discharged from the refrigerant compressor 3 to the refrigerant condenser 6-) to the receiver 8.
This is a circulation path in which the refrigerant is supplied in the order of 1→first expansion valve 82→first indoor heat exchanger 4 and sucked into the refrigerant compressor 3.

第2の冷媒経路220(図示破線矢印)は、冷媒圧縮機
3から吐出された冷媒を冷媒凝縮器6−シレシーバ81
−)第2の膨張弁83−1第2室内熱交換器5の順に供
給して冷媒圧縮機3に吸入させる循環路である。
A second refrigerant path 220 (indicated by a broken line arrow in the figure) transports the refrigerant discharged from the refrigerant compressor 3 from the refrigerant condenser 6 to the receiver 81.
-) A circulation path that supplies the second expansion valve 83 - 1 to the second indoor heat exchanger 5 in this order and causes the refrigerant compressor 3 to suck it.

第3の冷媒経路230(図示−点鎖線矢印)は、冷媒圧
縮機3から吐出された冷媒を第2室内熱交換器5−>第
3の膨張弁84→冷媒蒸発器7の順に供給して冷媒圧縮
機3に吸入させる循環路である。
The third refrigerant path 230 (illustrated with a dotted chain arrow) supplies the refrigerant discharged from the refrigerant compressor 3 in the order of second indoor heat exchanger 5 -> third expansion valve 84 -> refrigerant evaporator 7. This is a circulation path through which the refrigerant is sucked into the refrigerant compressor 3.

切換手段300は、複数の電磁式切換弁(以下電磁弁と
呼ぶ)301.302.303.304.305、およ
び逆止弁306.307を具備し、これらによっ゛(第
1の冷媒経td8210と第2の冷媒経路220と第3
の冷媒経路230とを選択的に切換える。
The switching means 300 includes a plurality of electromagnetic switching valves (hereinafter referred to as electromagnetic valves) 301, 302, 303, 304, 305, and check valves 306, 307. and the second refrigerant path 220 and the third
The refrigerant path 230 is selectively switched.

電磁弁301は、冷媒配管9のバイパス配管91の分岐
点と第1の膨張弁82どの間に設けられている。
The solenoid valve 301 is provided between the branch point of the bypass pipe 91 of the refrigerant pipe 9 and the first expansion valve 82 .

電磁弁301の開弁時には、冷媒が第1の膨張弁82お
よび第1室内熱交換器4に供給される。電磁弁301の
閉弁時には、冷媒の第1の膨張弁82および第1室内熱
交換器4への供給が阻止される。
When the solenoid valve 301 is opened, refrigerant is supplied to the first expansion valve 82 and the first indoor heat exchanger 4. When the solenoid valve 301 is closed, the supply of refrigerant to the first expansion valve 82 and the first indoor heat exchanger 4 is blocked.

電磁弁302は、バイパス配管91の分岐点と第2の膨
張弁83との間に設けられている。電磁弁302の開弁
時には、冷媒が第2の膨張弁83および第2室内熱交換
器5に供給される。電磁弁302の閉弁時には、冷媒の
第2の膨張弁83および第2室内熱交換器5への供給が
阻止される。
The electromagnetic valve 302 is provided between the branch point of the bypass pipe 91 and the second expansion valve 83. When the solenoid valve 302 is opened, refrigerant is supplied to the second expansion valve 83 and the second indoor heat exchanger 5. When the solenoid valve 302 is closed, the supply of refrigerant to the second expansion valve 83 and the second indoor heat exchanger 5 is blocked.

電磁弁303は、冷媒配管9のバイパス配管93の分岐
点と合流点との間に設けられている。電磁弁305は、
バイパス配管91のバイパス配管93の合流点と冷媒配
管9への合流点との間に設けられている。電磁弁303
.305の開弁時には、第2室内熱交換器5より流出し
た冷媒が冷媒圧縮機3に吸入される。電磁弁303の閉
弁時で、電磁弁305の開弁時には、第2室内熱交換器
5より流出した冷媒が−旦冷媒蒸発器7に供給された後
に、冷媒圧縮機3に吸入される。電磁弁305は、第1
室内熱交換器4および第2室内熱交換器5内に冷媒を供
給する(冷凍冷蔵同時運転または冷凍加温同時運転)時
には、開弁および閉弁が断続的に繰り返される。
The solenoid valve 303 is provided between the branch point and the confluence point of the bypass pipe 93 of the refrigerant pipe 9 . The solenoid valve 305 is
It is provided between the junction of the bypass piping 91 and the bypass piping 93 and the junction of the bypass piping 91 and the refrigerant piping 9. Solenoid valve 303
.. When the valve 305 is opened, the refrigerant flowing out from the second indoor heat exchanger 5 is sucked into the refrigerant compressor 3. When the solenoid valve 303 is closed and the solenoid valve 305 is opened, the refrigerant flowing out from the second indoor heat exchanger 5 is first supplied to the refrigerant evaporator 7 and then sucked into the refrigerant compressor 3. The solenoid valve 305 is the first
When the refrigerant is supplied into the indoor heat exchanger 4 and the second indoor heat exchanger 5 (simultaneous freezing/refrigerating operation or simultaneous freezing/heating operation), opening and closing of the valves are intermittently repeated.

本実施例では、電磁弁94が5秒間の開弁と10秒間の
閉弁とを繰り返すように設定している。
In this embodiment, the solenoid valve 94 is set to repeatedly open for 5 seconds and close for 10 seconds.

電磁弁304は、バイパス配管92に設けられている。The solenoid valve 304 is provided in the bypass piping 92.

電磁弁304の開弁時には、冷媒圧縮機3より吐出され
た冷媒をバイパス配管92内に流入させて、第2室内熱
交換器5へ供給する。電磁弁304の閉弁時には、冷媒
圧縮機3より吐出された冷媒のバイパス配管92内への
流入を阻止する。
When the solenoid valve 304 is opened, the refrigerant discharged from the refrigerant compressor 3 flows into the bypass pipe 92 and is supplied to the second indoor heat exchanger 5. When the solenoid valve 304 is closed, the refrigerant discharged from the refrigerant compressor 3 is prevented from flowing into the bypass pipe 92 .

逆止弁306は、バイパス配管91がら第1室内熱交換
器4への冷媒の逆流を防止する。逆止弁307は、第1
室内熱交換器4からバイパス配管91への冷媒の逆流を
防止する。
The check valve 306 prevents the refrigerant from flowing back into the first indoor heat exchanger 4 through the bypass pipe 91 . The check valve 307 is the first
This prevents the refrigerant from flowing backward from the indoor heat exchanger 4 to the bypass pipe 91.

したがって、本実施例の冷凍サイクル20の場合には、
電磁弁301が開弁している際に、第1の冷媒経路21
0に切換えられる。また、電磁弁302、303.30
5が開弁し、電磁弁304が閉弁している際に、第2の
冷媒経路220に切換えられる。さらに、電磁弁304
.305が開弁し、電磁弁302.303が閉弁してい
る際に、第3の冷媒経路230に切換えられる。
Therefore, in the case of the refrigeration cycle 20 of this embodiment,
When the solenoid valve 301 is open, the first refrigerant path 21
Switched to 0. In addition, solenoid valves 302, 303.30
5 is opened and the solenoid valve 304 is closed, the refrigerant path is switched to the second refrigerant path 220. Furthermore, the solenoid valve 304
.. 305 is open and the solenoid valves 302 and 303 are closed, the refrigerant path is switched to the third refrigerant path 230.

第3図は冷温蔵装置2の電気回路を示す。FIG. 3 shows the electric circuit of the refrigerator/heat storage device 2. As shown in FIG.

2室式冷凍冷蔵加温車1に搭載されたバッテリ401に
は、制御回路400、冷凍スイッチ402、冷蔵加温切
換スイッチ403および常開リレー411〜415が接
続されている。
A control circuit 400, a refrigeration switch 402, a refrigeration/warming changeover switch 403, and normally open relays 411 to 415 are connected to a battery 401 mounted on the two-compartment refrigeration/warming vehicle 1.

冷凍スイッチ402は、閉成されると電磁弁301の電
磁コイル311を通電するとともに、制御回路400に
向かって冷凍室11を冷凍運転するように信号を送る。
When the refrigeration switch 402 is closed, it energizes the electromagnetic coil 311 of the electromagnetic valve 301 and sends a signal to the control circuit 400 to cause the freezer compartment 11 to perform a freezing operation.

冷蔵加温切換スイッチ403は、冷蔵運転側に設定され
ると電磁弁302の電磁コイル312を通電するととも
に、制御回路400に向かって冷蔵加温室12を冷蔵運
転するように信号を送る。また、冷蔵加温切換スイッチ
403は、加温運転側に設定されると電磁弁304の電
磁コイル314および常閉リレー416を通電するとと
もに、制御回路400に向かって冷蔵加温室12を加温
運転するように信号を送る。
When set to the refrigeration operation side, the refrigeration/warming changeover switch 403 energizes the electromagnetic coil 312 of the solenoid valve 302 and sends a signal to the control circuit 400 to cause the refrigeration/heating room 12 to operate in the refrigeration mode. Furthermore, when the refrigerating heating changeover switch 403 is set to the heating operation side, it energizes the electromagnetic coil 314 of the solenoid valve 304 and the normally closed relay 416, and also operates the refrigerating heating room 12 toward the control circuit 400 to perform the heating operation. send a signal to do so.

常開リレー411〜415および常開リレー416には
、各モータ41.51.61、電磁弁305の電磁コイ
ル315、冷媒圧縮機3の電磁クラッチ31および電磁
弁303の電磁コイル313が接続されている。
Each motor 41, 51, 61, the electromagnetic coil 315 of the electromagnetic valve 305, the electromagnetic clutch 31 of the refrigerant compressor 3, and the electromagnetic coil 313 of the electromagnetic valve 303 are connected to the normally open relays 411 to 415 and the normally open relay 416. There is.

常開リレー411には、第1室内熱交換器4のファン4
2の電動モータ41が接続され、常開リレー412には
、第2室内熱交換器5のファン52の電動モータ51が
接続され、常開リレー413には、冷媒凝縮器6のファ
ン62の電動モータ61が接続されている。
The normally open relay 411 is connected to the fan 4 of the first indoor heat exchanger 4.
The normally open relay 412 is connected to the electric motor 51 of the fan 52 of the second indoor heat exchanger 5, and the normally open relay 413 is connected to the electric motor 51 of the fan 62 of the refrigerant condenser 6. A motor 61 is connected.

常開リレー414には、電磁弁305の電磁コイル31
5が接続され、常開リレー415には、電磁クラッチ3
1が接続され、常閉リレー416には、電磁弁303の
電磁コイル313が接続されている。
The normally open relay 414 is connected to the electromagnetic coil 31 of the electromagnetic valve 305.
5 is connected to the normally open relay 415, and the electromagnetic clutch 3 is connected to the normally open relay 415.
1 is connected to the normally closed relay 416, and the electromagnetic coil 313 of the electromagnetic valve 303 is connected to the normally closed relay 416.

制御回路400は、冷凍冷蔵同時運転および冷凍加温同
時運転時の電磁弁305の電磁コイル315のON、O
FF時間を設定するタイマー回路を内蔵しており、冷凍
スイッチ402および冷蔵加温切換スイッチ403の入
力信号に応じて、各常開リレー411〜415のON、
OFFを行う。
The control circuit 400 turns on and off the electromagnetic coil 315 of the electromagnetic valve 305 during simultaneous freezing/refrigeration operation and simultaneous freezing/heating operation.
It has a built-in timer circuit that sets the FF time, and each normally open relay 411 to 415 is turned ON or
Turn OFF.

本実施例の冷温蔵装置1の冷凍運転、冷蔵運転または加
温運転を図に基づき説明する。
Freezing operation, refrigeration operation, or heating operation of the cold storage device 1 of this embodiment will be explained based on the drawings.

冷凍スイッチ402を開閉したり、冷蔵加温切換スイッ
チ403を切換えたりすると、それに応じて各電磁コイ
ル311〜315、各リレー411〜416、電磁クラ
ッチ31および各モータ41.51.61がそれぞれO
N、OFFされ、冷凍運転と冷蔵運転または加温運転と
が行われる。この各作動状態を表1に示す。
When the refrigeration switch 402 is opened or closed or the refrigerating/warming changeover switch 403 is switched, each electromagnetic coil 311 to 315, each relay 411 to 416, each electromagnetic clutch 31, and each motor 41, 51, and 61 are turned to O.
N, OFF, and freezing operation, refrigeration operation, or heating operation is performed. Table 1 shows each operating state.

以下余白 表  1 表1において、■は冷凍単独運転を示し、■は冷蔵単独
運転を示し、■は冷凍冷蔵同時運転を示し、■は加温単
独運転を示し、■は冷凍加温同時運転を示す。また、冷
凍スイッチ402において、冷凍はONされている状態
を示し、OFFは叶Fされている状態を示す。さらに、
冷蔵加温切換スイッチ403において、冷蔵は冷蔵運転
側に設定された状態を示し、加温は加温運転側に設定さ
れた状態を示し、OFFは叶Fされている状態を示す。
Margin table below 1 In Table 1, ■ indicates independent freezing operation, ■ indicates independent cooling operation, ■ indicates simultaneous freezing/refrigeration operation, ■ indicates independent heating operation, and ■ indicates simultaneous freezing/heating operation. show. Further, in the refrigeration switch 402, refrigeration indicates a state where it is turned on, and OFF indicates a state where it is turned off. moreover,
In the refrigeration/warming changeover switch 403, refrigeration indicates a state set to the refrigeration operation side, heating indicates a state set to the heating operation side, and OFF indicates a state set to the turned-on side.

17・− そして、○は開弁状態または作動状態を示し、×は閉弁
状態または停止状態を示し、※は開弁と閉弁との断続運
転を示す。
17.- And, ◯ indicates a valve open state or operating state, × indicates a valve closed state or stopped state, and * indicates intermittent operation between valve opening and closing.

■、冷凍単独運転時 冷凍スイッチ402がONされ、冷蔵加温切換スイッチ
403が叶「されると、表1に示すように、電磁弁30
1.303.305が開弁し、電磁弁302.304が
閉弁することによって、冷凍サイクル20は第1の冷媒
経路210に切換えられる。さらに、電磁クラッチ31
がONされ、電動モータ41.61がONされ、電動モ
ータ51が叶「されることによって、冷媒圧縮機3およ
びファン42.62が駆動される。
(2) When the refrigeration switch 402 is turned ON and the refrigeration heating changeover switch 403 is turned on during refrigeration independent operation, as shown in Table 1, the solenoid valve 30
The refrigeration cycle 20 is switched to the first refrigerant path 210 by opening the solenoid valves 1, 303, and 305 and closing the solenoid valves 302, 304. Furthermore, the electromagnetic clutch 31
is turned on, the electric motor 41.61 is turned on, and the electric motor 51 is turned on, thereby driving the refrigerant compressor 3 and the fan 42.62.

冷媒圧縮機3から吐出された高温高圧の冷媒は、電磁弁
304が閉弁しているので、バイパス配管92に流入せ
ず、冷媒凝縮器6に流入する。冷媒凝縮器6に流入した
冷媒は、電動モータ61によって駆動されるファン62
により吹き付Cつられる低温の外気と熱交換することに
より凝縮され、液化する。
Since the solenoid valve 304 is closed, the high-temperature, high-pressure refrigerant discharged from the refrigerant compressor 3 does not flow into the bypass pipe 92 but flows into the refrigerant condenser 6. The refrigerant flowing into the refrigerant condenser 6 is passed through a fan 62 driven by an electric motor 61.
It condenses and liquefies by exchanging heat with the low-temperature outside air that is blown by the air.

この液化された冷媒は、レシーバ81に流入し、旦貯溜
される。
This liquefied refrigerant flows into the receiver 81 and is temporarily stored.

そして、液相冷媒のみが、電磁弁302が閉弁し、電磁
弁301が開弁しているので、バイパス配管91に流入
せず、第1の膨張弁82によって断熱膨脹して低温低圧
の霧状冷媒となる。
Since the solenoid valve 302 is closed and the solenoid valve 301 is open, only the liquid phase refrigerant does not flow into the bypass pipe 91, but is adiabatically expanded by the first expansion valve 82 and becomes a low-temperature, low-pressure mist. It becomes a refrigerant.

この霧状冷媒は、冷凍用冷媒蒸発器として働く第1室内
熱交換器4に流入し、蒸発する。このとき電動モータ4
1によって駆動されるファン42により吹き付けられる
周囲の空気から熱を奪うので、冷凍室11内は、極低温
に冷却されることとなる。
This mist refrigerant flows into the first indoor heat exchanger 4, which functions as a refrigerant evaporator for freezing, and is evaporated. At this time, electric motor 4
Since heat is removed from the surrounding air blown by the fan 42 driven by the freezing chamber 11, the inside of the freezer compartment 11 is cooled to an extremely low temperature.

そして、蒸発した冷媒は、逆止弁306を通過し、逆止
弁307により第2室内熱交換器5への逆流を阻止され
、冷媒圧縮機3の吸引力によって、冷媒圧縮機3に吸入
される。
Then, the evaporated refrigerant passes through the check valve 306, is prevented from flowing back to the second indoor heat exchanger 5 by the check valve 307, and is sucked into the refrigerant compressor 3 by the suction force of the refrigerant compressor 3. Ru.

この冷凍単独運転を行うことによって、冷凍室11内が
極低温に冷却され、所定の冷凍温度に制御される。
By performing this independent freezing operation, the inside of the freezing chamber 11 is cooled to an extremely low temperature and controlled to a predetermined freezing temperature.

■、冷蔵単独運転時 冷凍スイッチ402が叶[され、冷蔵加温切換スイッチ
403が冷蔵運転側に設定されると、表1に示すように
、電磁弁302.303.305が開弁じ、電磁弁30
1.304が閉弁することによって、冷凍サイクル20
は第2の冷媒経路220に切換えられる。
(2) When the refrigeration switch 402 is turned on and the refrigeration heating changeover switch 403 is set to the refrigeration operation side, the solenoid valves 302, 303, and 305 open as shown in Table 1. 30
1.304 closes, the refrigeration cycle 20
is switched to the second refrigerant path 220.

さらに、電磁クラッチ31がONされ、電動モータ51
.61がONされ、電動モータ41が叶「されることに
よって、冷媒圧縮機3およびファン52.62が駆動さ
れる。
Further, the electromagnetic clutch 31 is turned on, and the electric motor 51
.. 61 is turned on and the electric motor 41 is turned on, thereby driving the refrigerant compressor 3 and the fans 52 and 62.

冷媒圧縮機3から吐出された高温高圧の冷媒は、電磁弁
304が閉弁しているので、バイパス配管92に流入せ
ず、冷媒凝縮器6に流入する。冷媒凝縮器6に流入した
冷媒は、電動モータ61によって駆動されるファン62
により吹き付けられる低温の外気と熱交換すぎことによ
り凝縮され、液化する。
Since the solenoid valve 304 is closed, the high-temperature, high-pressure refrigerant discharged from the refrigerant compressor 3 does not flow into the bypass pipe 92 but flows into the refrigerant condenser 6. The refrigerant flowing into the refrigerant condenser 6 is passed through a fan 62 driven by an electric motor 61.
Excessive heat exchange with the low-temperature outside air blown by the air causes condensation and liquefaction.

この液化された冷媒は、レシーバ81に流入し、旦貯溜
される。
This liquefied refrigerant flows into the receiver 81 and is temporarily stored.

そして、液相冷媒のみが、電磁弁301が閉弁し、電磁
弁302が開弁しているので、第1の膨張弁82に流入
せず、バイパス配管91に流入し、第2の膨張弁83に
よって断熱膨脹して低温低圧の霧状冷媒となる。
Since the solenoid valve 301 is closed and the solenoid valve 302 is open, only the liquid phase refrigerant does not flow into the first expansion valve 82, but flows into the bypass pipe 91, and flows into the second expansion valve. 83, the refrigerant expands adiabatically and becomes a low-temperature, low-pressure atomized refrigerant.

この霧状冷媒は、冷蔵用冷媒蒸発器として働く第2室内
熱交換器5に流入し、蒸発する。このとき電動モータ5
1によって駆動されるファン52により吹き付けられる
周囲の空気から熱を奪うので、冷蔵加温室12内は、低
温に冷却されることとなる。
This mist refrigerant flows into the second indoor heat exchanger 5, which functions as a refrigerant evaporator for refrigeration, and evaporates. At this time, the electric motor 5
Since heat is removed from the surrounding air blown by the fan 52 driven by the refrigerating/heating room 12, the inside of the refrigerating/heating room 12 is cooled to a low temperature.

そして、蒸発した冷媒は、逆止弁307を通過し、逆止
弁306により第1室内熱交換器4への逆流を阻止され
、冷媒圧縮機3の吸引力によって、冷媒圧縮機3に吸入
される。
Then, the evaporated refrigerant passes through the check valve 307, is prevented from flowing back to the first indoor heat exchanger 4 by the check valve 306, and is sucked into the refrigerant compressor 3 by the suction force of the refrigerant compressor 3. Ru.

この冷蔵単独運転を行うことによって、冷蔵加温室12
内が低温に冷却され、所定の冷蔵温度に制御される。
By performing this refrigeration independent operation, the refrigeration heating room 12
The inside is cooled to a low temperature and controlled to a predetermined refrigeration temperature.

■、冷凍冷蔵同時運転時 冷凍スイッチ402がONされ、冷蔵加温切換スイッチ
403が冷蔵運転側に設定されると、表1に示すように
、電磁弁301.302.303が開弁し、電磁弁30
4が閉弁し、電磁弁305が5秒間の開弁と10秒間の
閉弁とを繰り返すことによって、冷凍サイクル20は第
1の冷媒経路210および第2の冷媒経路220に切換
えられる。さらに、電磁クラッチ31がONされ、電動
モータ41.51.61がONされることによって、冷
媒圧縮8!3およびファン42.52.62が駆動され
る。
(2) During simultaneous freezing and refrigeration operation When the freezing switch 402 is turned on and the refrigeration/warming changeover switch 403 is set to the refrigeration operation side, the solenoid valves 301, 302, and 303 open as shown in Table 1. valve 30
4 closes, and the solenoid valve 305 repeats opening for 5 seconds and closing for 10 seconds, thereby switching the refrigeration cycle 20 to the first refrigerant path 210 and the second refrigerant path 220. Further, the electromagnetic clutch 31 is turned on and the electric motor 41.51.61 is turned on, thereby driving the refrigerant compression 8!3 and the fan 42.52.62.

冷媒圧縮機3から吐出された高温高圧の冷媒は、電磁弁
304が閉弁しているので、バイパス配管92に流入せ
ず、冷媒凝縮器6に流入する。冷媒凝縮器6に流入した
冷媒は、電動モータ61によって駆動されるファン62
により吹き付けられる低温の外気と熱交換することによ
り凝縮され、液化する。
Since the solenoid valve 304 is closed, the high-temperature, high-pressure refrigerant discharged from the refrigerant compressor 3 does not flow into the bypass pipe 92 but flows into the refrigerant condenser 6. The refrigerant flowing into the refrigerant condenser 6 is passed through a fan 62 driven by an electric motor 61.
It condenses and liquefies by exchanging heat with the low-temperature outside air blown onto it.

この液化された冷媒は、レシーバ81に流入し、旦貯溜
される。
This liquefied refrigerant flows into the receiver 81 and is temporarily stored.

そして、液相冷媒のみが、電磁弁301が閉弁し、電磁
弁302が開弁しているので、第1の115j脹弁82
および第2の膨張弁83に流入し、第1の膨張弁82お
よび第2のI)fi5脹弁83によって断熱膨張して低
温低圧の霧状冷媒となる。
Then, since the solenoid valve 301 is closed and the solenoid valve 302 is open, only the liquid phase refrigerant flows through the first 115j expansion valve 82.
The refrigerant then flows into the second expansion valve 83 and is adiabatically expanded by the first expansion valve 82 and the second I)fi5 expansion valve 83 to become a low-temperature, low-pressure atomized refrigerant.

ここで、液相冷媒は、電磁弁305が5秒間の開弁と1
0秒間の閉弁とを繰り返すので、第2の膨張弁83内に
間欠的に流入することとなる。これは、第1の膨張弁8
2より第2の膨張弁83のほうが絞られているので、バ
イパス配管92内の冷媒のほうが圧力が高くなり、第1
の膨張弁82内に冷媒が流入しなくなるのを防止するな
めである。
Here, the liquid phase refrigerant is discharged when the solenoid valve 305 is opened for 5 seconds and then
Since the valve is repeatedly closed for 0 seconds, it will intermittently flow into the second expansion valve 83. This is the first expansion valve 8
Since the second expansion valve 83 is more constricted than the second expansion valve 2, the pressure of the refrigerant in the bypass pipe 92 is higher than that of the first expansion valve 83.
This is a lattice that prevents refrigerant from flowing into the expansion valve 82.

以下Iおよび■と同様な作用を行う。但し、逆止弁30
6は、第2室内熱交換器5より流出した冷媒は、第1室
内熱交換器4への逆流を阻止するように働く。この冷凍
冷蔵同時運転を繰り返すことによって、冷凍室11内が
極低温に冷却され、冷蔵加温室12内が低温に冷却され
、それぞれ所定の冷凍温度および冷蔵温度に制御される
The following actions are similar to I and ■. However, check valve 30
6 serves to prevent the refrigerant flowing out from the second indoor heat exchanger 5 from flowing back into the first indoor heat exchanger 4. By repeating this simultaneous freezing and refrigeration operation, the inside of the freezing compartment 11 is cooled to an extremely low temperature, the inside of the refrigeration/warming room 12 is cooled to a low temperature, and the temperature is controlled to predetermined freezing and refrigeration temperatures, respectively.

■、加温単独運転時 冷凍スイッチ402が叶Fされ、冷蔵加温切換スイッチ
403が加温運転側に設定されると、表1に示すように
、電磁弁304.305が開弁し、電磁弁301.30
2.303が閉弁することによって、冷凍サイクル20
は第3の冷媒経路230に切換えられる。
■When the freezing switch 402 is turned on during heating operation alone and the refrigerating/warming changeover switch 403 is set to the heating operation side, the solenoid valves 304 and 305 open and the solenoid valves 304 and 305 open as shown in Table 1. Valve 301.30
2. By closing the valve 303, the refrigeration cycle 20
is switched to the third refrigerant path 230.

さらに、電磁クラッチ31がONされ、電動モータ51
がONされることによって、冷媒圧縮11!3およびフ
ァン52が駆動される。
Further, the electromagnetic clutch 31 is turned on, and the electric motor 51
By turning on the refrigerant compressor 11!3 and the fan 52 are driven.

冷媒圧縮機3から吐出された高温高圧の全部の気相冷媒
は、電磁弁301.302が閉弁し、電磁弁304が開
弁じているので、冷媒凝縮器6に流入せず、バイパス配
管92に流入する。
Since the solenoid valves 301 and 302 are closed and the solenoid valve 304 is open, all of the high temperature and high pressure gas phase refrigerant discharged from the refrigerant compressor 3 does not flow into the refrigerant condenser 6 and flows into the bypass pipe 92. flows into.

そして、気相冷媒は、加温用冷媒凝縮器として働く第2
室内熱交換器5に直接流入し、凝縮され、液化する。こ
のとき電動モータ51によって駆動されるファン52に
より吹き付けられる周囲の空気にエンジン冷却水の保有
熱を付与するので、冷蔵加温室12内は、加温されるこ
ととなる。
The gas phase refrigerant is then transferred to a second refrigerant condenser that serves as a heating refrigerant condenser.
It flows directly into the indoor heat exchanger 5, where it is condensed and liquefied. At this time, the heat retained in the engine cooling water is imparted to the surrounding air blown by the fan 52 driven by the electric motor 51, so that the inside of the refrigerating/heating room 12 is heated.

そして、液化した冷媒は、電磁弁303が閉弁している
ので、バイパス配管93に流入し、第3の膨張弁84に
よっ゛C断熱膨眼上て低温低圧の霧状冷媒となる。
Then, since the solenoid valve 303 is closed, the liquefied refrigerant flows into the bypass pipe 93, and is expanded by the third expansion valve 84 to become a low-temperature, low-pressure atomized refrigerant.

この霧状冷媒は、加温用としての冷媒蒸発器7に流入し
、蒸発する。このときエンジン32のエンジン排熱を保
有するエンジン冷却水から保有熱を奪う。そして、蒸発
した冷媒は、電磁弁305および逆止弁307を通過し
、逆止弁306により第1室内熱交換器4への逆流を阻
止され、冷媒圧縮機3の吸引力によって、冷媒圧縮機3
に吸入される。
This mist refrigerant flows into the refrigerant evaporator 7 for heating and evaporates. At this time, retained heat is taken away from the engine cooling water that retains the engine exhaust heat of the engine 32. Then, the evaporated refrigerant passes through the electromagnetic valve 305 and the check valve 307, is prevented from flowing back to the first indoor heat exchanger 4 by the check valve 306, and is compressed by the suction force of the refrigerant compressor 3. 3
is inhaled.

この加温単独運転を繰り返すことによって、冷裁割温室
12内が加温され、所定の加温温度に制御される。
By repeating this single heating operation, the inside of the cold cutting/splitting greenhouse 12 is heated and controlled to a predetermined heating temperature.

■、冷凍加温同時運転時 冷凍スイッチ402がONされ、冷蔵加温切換スイッチ
403が加温運転側に設定されると、表1に示すように
、電磁弁301.304が開弁し、電磁弁302.30
3が閉弁し、電磁弁305が5秒間の開弁と10秒間の
閉弁とを繰り返すことによって、冷凍サイクル20は第
1の冷媒経路210および第3の冷媒経路230に切換
えられる。さらに、電磁クラッチ31がONされ、電動
モータ41.51.61がONされることによって、冷
媒圧縮機3およびファン42.52.62が駆動される
(2) During simultaneous freezing and heating operation When the freezing switch 402 is turned on and the refrigerating and heating changeover switch 403 is set to the heating operation side, the solenoid valves 301 and 304 open and the solenoid valves 301 and 304 open as shown in Table 1. Valve 302.30
3 closes, and the solenoid valve 305 repeats opening for 5 seconds and closing for 10 seconds, thereby switching the refrigeration cycle 20 to the first refrigerant path 210 and the third refrigerant path 230. Further, the electromagnetic clutch 31 is turned on and the electric motor 41.51.61 is turned on, thereby driving the refrigerant compressor 3 and the fan 42.52.62.

冷媒圧縮機3から吐出された高温高圧の一部の気相冷媒
は、冷媒凝縮器6に流入し、以下工と同様な作用を行う
A portion of the high-temperature, high-pressure gas phase refrigerant discharged from the refrigerant compressor 3 flows into the refrigerant condenser 6, where it performs the same operations as described below.

冷媒圧縮機3からの残部の冷媒は、電磁弁304が開弁
じ、電磁弁305が5秒間の開弁と10秒間の閉弁とを
繰り返すので、バイパス配管92に間欠的に流入する。
The remaining refrigerant from the refrigerant compressor 3 intermittently flows into the bypass pipe 92 as the solenoid valve 304 opens and the solenoid valve 305 repeats opening for 5 seconds and closing for 10 seconds.

そして、残部の気相冷媒は、加温用冷媒凝縮器として働
く第2室内熱交換器5に直接流入する。以下■と同様な
作用を行う。
The remaining gaseous refrigerant then directly flows into the second indoor heat exchanger 5, which functions as a heating refrigerant condenser. It has the same effect as ■ below.

この冷凍加温同時運転を行うことによって、冷凍室11
内が極低温に冷却され、冷蔵加温室12内が加温され、
それぞれ所定の冷凍温度および加温温度に制御される。
By performing this simultaneous freezing and heating operation, the freezing compartment 11
The inside is cooled to an extremely low temperature, the inside of the refrigerated heating room 12 is heated,
Each is controlled to a predetermined freezing temperature and heating temperature.

以上のように本実施例では、電磁弁301〜305を選
択的に開閉することによって、第1の冷媒経路210と
第2の冷媒経路220と第3の冷媒経路230とを切換
えることができる。このため、冷凍室11は、冷凍室と
して利用でき、冷蔵加温室12は、冷蔵室および加温室
として利用できる。したがって、1つの冷凍サイクル2
0で冷凍室11および冷蔵加温室12内を異なる温度帯
(冷凍温度と冷蔵温度または加温温度)に保つことがで
きるとともに、冷蔵加温室2内を異なる温度帯に切換え
ることができる。
As described above, in this embodiment, the first refrigerant path 210, the second refrigerant path 220, and the third refrigerant path 230 can be switched by selectively opening and closing the solenoid valves 301 to 305. Therefore, the freezing room 11 can be used as a freezing room, and the refrigerating and heating room 12 can be used as a refrigerating room and a heating room. Therefore, one refrigeration cycle 2
0, it is possible to maintain the inside of the freezer compartment 11 and the refrigerated heating room 12 at different temperature zones (freezing temperature and refrigeration temperature or heating temperature), and it is also possible to switch the inside of the refrigerated heating room 2 to different temperature zones.

したがって、例えば、近時加熱調理された暖かい食品類
を誤って冷蔵室として機能している冷蔵加温室12に入
れた場合でも、電磁弁304.305を開弁じ、電磁弁
302.303を閉弁して、第2の冷媒経路220から
第3の冷媒経路230に切換えることにより、その冷蔵
加温室12を加温室として機能させることによって、暖
かい食品類をわざわざ別途の加温室に積替える必要がな
くなる。
Therefore, for example, even if hot food that has recently been heated and cooked is accidentally put into the refrigerated heating room 12 functioning as a refrigerator, the solenoid valves 304 and 305 will be opened and the solenoid valves 302 and 303 will be closed. By switching from the second refrigerant path 220 to the third refrigerant path 230, the refrigerated heating room 12 functions as a heating room, thereby eliminating the need to take the trouble to transfer warm foods to a separate heating room. .

あるいは、冷蔵食品を誤って加温室として機能している
冷蔵加温室12に入れた場合でも、電磁弁302.30
3.305を開弁し、電磁弁304を閉弁して、第3の
冷媒経路230から第2の冷媒経路220に切換えるこ
とにより、その冷蔵加温室12を冷蔵室として機能させ
ることによって、冷蔵食品をわざわざ別途の冷蔵室に積
替える必要がなくなる。
Alternatively, even if refrigerated food is accidentally put into the refrigerated heating chamber 12 functioning as a heating chamber, the solenoid valve 302.30
3. By opening the valve 305 and closing the solenoid valve 304 to switch from the third refrigerant path 230 to the second refrigerant path 220, the refrigerating and warming room 12 functions as a refrigerating room. There is no need to take the trouble to transfer food to a separate refrigerator.

よって、冷蔵加温室12内を冷蔵温度と加温温度とに切
換えることができ、積荷が限定されてしまうことがなく
なり、汎用性に富む冷温蔵装置2を搭載した2室式冷凍
冷蔵加温車を提供できる。
Therefore, the inside of the refrigerating and heating room 12 can be switched between the refrigerating temperature and the heating temperature, and the cargo is not limited, thereby providing a two-compartment refrigerating and heating vehicle equipped with the highly versatile refrigerating and heating device 2. can be provided.

[他の実施例] 本実施例では、本発明の冷温蔵装置を2室式冷凍冷蔵加
温車に搭載したが、定置式の冷凍庫または冷蔵加温庫に
適用しても良い。
[Other Examples] In this example, the refrigerating/heating storage device of the present invention is mounted on a two-compartment type freezer/refrigerating/heating vehicle, but it may also be applied to a stationary type freezer or refrigerating/heating cabinet.

本実施例では、第1断熱室を冷凍室として利用したが、
冷媒圧縮機3から直接第1室内熱交換器4内に冷媒を流
入させるバイパス配管と、冷媒蒸発器7に流入するバイ
パス配管とを設けることにより、第1断熱室を冷凍(ま
たは冷蔵)加温室として利用しても良い。また、第2断
熱室を冷凍加温室として利用しても良い。
In this example, the first insulation chamber was used as a freezing chamber, but
By providing a bypass pipe that allows the refrigerant to flow directly into the first indoor heat exchanger 4 from the refrigerant compressor 3 and a bypass pipe that flows into the refrigerant evaporator 7, the first insulation room can be converted into a freezing (or refrigerating) heating room. It may also be used as Moreover, you may use a 2nd heat insulation room as a freezing heating room.

本実施例では、冷媒蒸発器でエンジン冷却水と冷媒とを
熱交換したが、冷媒蒸発器でエンジン排気と冷媒とを熱
交換しても良く、冷媒蒸発器にファンを取付けて強制的
に外気と冷媒とを熱交換しても良い。
In this example, heat was exchanged between the engine cooling water and the refrigerant using the refrigerant evaporator, but it is also possible to exchange heat between the engine exhaust and the refrigerant using the refrigerant evaporator, or by attaching a fan to the refrigerant evaporator to force outside air Heat exchange may be performed between the refrigerant and the refrigerant.

全ての電磁弁は、遠隔操作による手動式の開閉弁に取り
替えることができる。全ての電動モータおよびファンは
、ベルトを介して2室式冷凍冷蔵加温車に搭載されたエ
ンジンにより駆動されるファンに取り替えることができ
る。また、逆止弁307は廃止できる。さらに、電磁弁
305の断続時間は、冷凍室において冷凍を行うことが
できれば自由に変更できる。
All solenoid valves can be replaced with remote-controlled manual on-off valves. All electric motors and fans can be replaced with fans driven by the engine mounted on the two-compartment freezer/refrigerator/heater vehicle via belts. Additionally, the check valve 307 can be eliminated. Furthermore, the intermittent time of the solenoid valve 305 can be freely changed as long as freezing can be performed in the freezer compartment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷温蔵装置に採用された冷温蔵装置の
冷凍サイクルを示す概略図、第2図は本発明の冷温蔵装
置に採用された2室式冷凍冷蔵加温車を示す斜視図、第
3図は本発明の冷温蔵装置に採用された冷温蔵装置の電
気回路図である。 図中 1・・・2室式冷凍冷蔵加温車 2・・・冷温蔵装置3
・・・冷媒圧縮機 4・・・第1室内熱交換器 5・・
・第2室内熱交換器 6・・・冷媒凝縮器 7・・・冷
媒蒸発器 11・・・冷凍室(第1断熱室)12・・・
冷蔵加温室(第2断熱室)20・・・冷凍サイクル 2
10・・・第1の冷媒経路 220・・・第2の冷媒経
路 230・・・第3の冷媒経路 300・・・切換手
Fig. 1 is a schematic diagram showing the refrigeration cycle of the refrigeration/heating storage device adopted in the refrigeration/heating storage device of the present invention, and Fig. 2 is a perspective view showing a two-compartment freezer/refrigeration heating car adopted in the refrigeration/heating storage device of the present invention. 3 are electrical circuit diagrams of the cold storage device employed in the cold storage device of the present invention. In the diagram: 1... Two-compartment freezer/refrigerator/heating car 2... Cold/heat storage device 3
...Refrigerant compressor 4...First indoor heat exchanger 5...
・Second indoor heat exchanger 6... Refrigerant condenser 7... Refrigerant evaporator 11... Freezer room (first insulation room) 12...
Refrigerated heating room (second insulation room) 20...Freezing cycle 2
10... First refrigerant path 220... Second refrigerant path 230... Third refrigerant path 300... Switching means

Claims (1)

【特許請求の範囲】 1) (a) 外部と断熱された第1断熱室と、 (b) 外部と断熱された第2断熱室と、 (c) 前記第1断熱室内の空気と冷媒とを熱交換する
第1室内熱交換器と、 (d) 前記第2断熱室内の空気と冷媒とを熱交換する
第2室内熱交換器と、 (e) 冷媒を吸入して、圧縮し吐出する冷媒圧縮機と
、 (f) 冷媒を凝縮させる冷媒凝縮器と、 (g) 冷媒を蒸発させる冷媒蒸発器と、 (h) 前記冷媒圧縮機から吐出された冷媒を前記冷媒
凝縮器に供給し、その後に前記第1室内熱交換器に供給
して前記冷媒圧縮機に吸入させる第1の冷媒経路と、 (i) 前記冷媒圧縮機から吐出された冷媒を前記冷媒
凝縮器に供給し、その後に前記第2室内熱交換器に供給
して前記冷媒圧縮機に吸入させる第2の冷媒経路と、 (j) 前記冷媒圧縮機から吐出された冷媒を前記第2
室内熱交換器に供給し、その後に前記冷媒蒸発器に供給
して前記冷媒圧縮機に吸入させる第3の冷媒経路と、 (k) 前記第1の冷媒経路と前記第2の冷媒経路と前
記第3の冷媒経路とを切換える切換手段とを備えた冷温
蔵装置。
[Claims] 1) (a) a first heat insulating chamber insulated from the outside; (b) a second heat insulating room insulated from the outside; and (c) air and refrigerant in the first heat insulating chamber. a first indoor heat exchanger that exchanges heat; (d) a second indoor heat exchanger that exchanges heat between the air in the second insulation chamber and the refrigerant; and (e) a refrigerant that sucks in, compresses, and discharges the refrigerant. (f) a refrigerant condenser for condensing refrigerant; (g) a refrigerant evaporator for evaporating refrigerant; (h) supplying refrigerant discharged from the refrigerant compressor to the refrigerant condenser; a first refrigerant path that supplies the refrigerant to the first indoor heat exchanger and causes it to be sucked into the refrigerant compressor; (i) supplies the refrigerant discharged from the refrigerant compressor to the refrigerant condenser; (j) a second refrigerant path that supplies the refrigerant to a second indoor heat exchanger and causes it to be sucked into the refrigerant compressor;
(k) a third refrigerant path that supplies the refrigerant to the indoor heat exchanger, and then the refrigerant evaporator and the refrigerant compressor; (k) the first refrigerant path, the second refrigerant path, and the refrigerant path; A refrigerating/heating storage device comprising a switching means for switching between a third refrigerant path and a third refrigerant path.
JP30347888A 1988-11-30 1988-11-30 Cold and hot storage device Pending JPH02150684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30347888A JPH02150684A (en) 1988-11-30 1988-11-30 Cold and hot storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30347888A JPH02150684A (en) 1988-11-30 1988-11-30 Cold and hot storage device

Publications (1)

Publication Number Publication Date
JPH02150684A true JPH02150684A (en) 1990-06-08

Family

ID=17921438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30347888A Pending JPH02150684A (en) 1988-11-30 1988-11-30 Cold and hot storage device

Country Status (1)

Country Link
JP (1) JPH02150684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011957A (en) * 2019-07-03 2021-02-04 三菱電機株式会社 Show case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011957A (en) * 2019-07-03 2021-02-04 三菱電機株式会社 Show case

Similar Documents

Publication Publication Date Title
JPH06174315A (en) Evaporating refrigerating device of plurality of temperature type having variable speed compressor
JPH0317484A (en) Controller for refrigerator having dual evaporator with indepently temperature-controlling device and dual fan
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
KR20000014024A (en) Freezing cycle device for refrigerator
JP4253957B2 (en) refrigerator
JP3995562B2 (en) refrigerator
JPH02128915A (en) Air conditioning refrigeration device for vehicle
JP2006098044A (en) Refrigeration device
JP3847499B2 (en) Two-stage compression refrigeration system
JP2002188873A (en) Refrigerating equipment of air conditioner
JP6615354B2 (en) Freezer refrigerator
JP2004271080A (en) Integrated equipment of cooling device and heating device
JPH02150684A (en) Cold and hot storage device
JP2000121232A (en) Refrigerator
JPH0510967U (en) Freezer refrigerator with thawing room
JPH09189460A (en) Refrigerating device
JPH0331673A (en) Refrigerating and freezing device for vehicle
JP2003004346A (en) Cooling equipment
JPH01147274A (en) Refrigerating humidifying device
JP3954835B2 (en) refrigerator
JP2002031459A (en) Refrigerator
JPH07234041A (en) Cascade refrigerating equipment
JPH1047794A (en) Freezer
JP2001183037A (en) Refrigerating device
JPH01234757A (en) Freezing-heating device