JP2000121232A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2000121232A
JP2000121232A JP10298262A JP29826298A JP2000121232A JP 2000121232 A JP2000121232 A JP 2000121232A JP 10298262 A JP10298262 A JP 10298262A JP 29826298 A JP29826298 A JP 29826298A JP 2000121232 A JP2000121232 A JP 2000121232A
Authority
JP
Japan
Prior art keywords
evaporator
control means
flow path
defrosting
path control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298262A
Other languages
Japanese (ja)
Inventor
Toyoshi Kamisako
豊志 上迫
Takeshi Shimizu
武 清水
Masaaki Tanaka
正昭 田中
Koichi Nishimura
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10298262A priority Critical patent/JP2000121232A/en
Publication of JP2000121232A publication Critical patent/JP2000121232A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator having a defrosting system in which a safety characteristic at the time of using ignitable refrigerant can be improved and a storing space of the refrigerator can be expanded. SOLUTION: This refrigerator is comprised of a cooling circuit 36 including a compressor 29, a condenser 31, a first flow passage control means 34 for use in feeding refrigerant to either one of a first pressure reducing means 32 or second pressure reducing means 33, a first evaporator 25 for evaporating and gasifying liquefied refrigerant fed from the pressure reducing means, a second evaporator 27 and a second flow passage control means 35 installed after the second evaporator 27; and a defrosting circuit 38 constructed by a third flow passage control means 37 for use in flowing high temperature gas to the second evaporator 27 during a defrosting operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可燃性冷媒を用い
て比較的高温度の第一の区画と比較的低温度の第二の区
画とを互いに独立もしくは同時に冷却を行う冷却システ
ムをもつ冷蔵庫の除霜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a cooling system for cooling a first compartment having a relatively high temperature and a second compartment having a relatively low temperature independently or simultaneously using a combustible refrigerant. It relates to defrosting.

【0002】[0002]

【従来の技術】以下、一般的な従来の冷蔵庫について、
図7〜図11にしたがって説明する。図7は従来の冷蔵
庫の蒸発器周辺構造を示す断面図であり、図8は従来の
冷蔵庫の冷凍サイクル説明図であり、図9は従来の冷蔵
庫の蒸発器の霜取制御のタイムチャートの説明図であ
る。
2. Description of the Related Art A general conventional refrigerator will be described below.
This will be described with reference to FIGS. 7 is a cross-sectional view showing the structure around the evaporator of the conventional refrigerator, FIG. 8 is an explanatory diagram of a refrigeration cycle of the conventional refrigerator, and FIG. 9 is a time chart of defrost control of the evaporator of the conventional refrigerator. FIG.

【0003】図7において、1は蒸発器,2は除霜ヒー
タ,3は霜取終了検知センサー,4は冷気循環用ファン
モータ,5は冷蔵室吐き出し冷気調整ダンパーである。
In FIG. 7, reference numeral 1 denotes an evaporator, 2 denotes a defrost heater, 3 denotes a defrosting end detecting sensor, 4 denotes a fan motor for circulating cool air, and 5 denotes a cold air adjusting damper discharged from a refrigerator compartment.

【0004】図8において、1は蒸発器,8は圧縮機,
9は凝縮器,10はドライヤ,11は絞り装置つまり減
圧装置であるキャピラリーチューブ,12は吸い込み管
のサクションパイプである。
In FIG. 8, 1 is an evaporator, 8 is a compressor,
9 is a condenser, 10 is a dryer, 11 is a capillary tube which is a throttle device, ie, a pressure reducing device, and 12 is a suction pipe of a suction pipe.

【0005】図9において、通常冷却運転中は、前記圧
縮機8と冷却循環用ファンモータ4とは同期運転するよ
う制御されている。
In FIG. 9, during normal cooling operation, the compressor 8 and the cooling circulation fan motor 4 are controlled to operate synchronously.

【0006】一般的には、前記圧縮機8の運転積算時間
が設定時間に達すると、霜取を開始する。霜取は、前記
圧縮機8の停止および前記冷却循環用ファンモータ4の
停止と同時に前記除霜ヒータ2を通電し、該除霜ヒータ
2により前記蒸発器1が加熱され、前記蒸発器1に付着
した霜が溶けると前記蒸発器1の温度が上昇する。前記
蒸発器1の温度が上昇し、前記蒸発器1近傍に取り付け
られた前記霜取終了検知センサー3が設定温度に達する
と前記除霜ヒータ2をOFFする。
Generally, when the accumulated operation time of the compressor 8 reaches a set time, defrosting is started. In the defrosting, the defrost heater 2 is energized at the same time as the stop of the compressor 8 and the stop of the cooling circulation fan motor 4, and the evaporator 1 is heated by the defrost heater 2. When the attached frost melts, the temperature of the evaporator 1 rises. When the temperature of the evaporator 1 rises and the defrosting end detection sensor 3 attached near the evaporator 1 reaches a set temperature, the defrost heater 2 is turned off.

【0007】霜取後の前記蒸発器1の温度は20℃前
後、蒸発圧力は4〜5kgf/cm2abs程度まで上
昇しており、このままでは前記圧縮機8の最始動時に過
負荷となり始動不能となる。
After the defrosting, the temperature of the evaporator 1 is about 20 ° C., and the evaporating pressure has risen to about 4 to 5 kgf / cm 2 abs. Becomes

【0008】一般的には、前記除霜ヒータ2のOFF
後、蒸発圧力低減のため数分のタイムセーフ時間を設け
ている。
Generally, the defrost heater 2 is turned off.
Thereafter, a time safe time of several minutes is provided to reduce the evaporation pressure.

【0009】また、従来の冷蔵庫の除霜方法としては特
開平10−160327号公報において、示されている
ものがある。
A conventional refrigerator defrosting method is disclosed in Japanese Patent Application Laid-Open No. H10-160327.

【0010】以下、図面を参照しながら上記従来例の除
霜方法について説明する。図10は従来例の形態にかか
る冷蔵庫の冷凍サイクル説明図であり、図11は従来例
の形態にかかる冷蔵庫の蒸発器霜取制御のタイムチャー
トの説明図である。
Hereinafter, the above-described conventional defrosting method will be described with reference to the drawings. FIG. 10 is an explanatory diagram of a refrigeration cycle of a refrigerator according to a conventional example, and FIG. 11 is an explanatory diagram of a time chart of evaporator defrosting control of the refrigerator according to the conventional example.

【0011】従来の形態にかかる冷蔵庫は、図10に示
すように、冷媒を圧縮する圧縮機8と、ガス冷媒を液化
させる凝縮器9と、減圧と冷媒循環量を制御を目的とし
た締り装置つまり減圧装置であるキャピラリーチューブ
11と、液冷媒を蒸発,ガス化させる蒸発器7と、それ
ぞれを配管パイプで接続して構成される冷凍サイクルを
有し、前記蒸発器7と庫内を強制熱交換させる冷気循環
用ファンモータ13と、前記蒸発器7の除霜ヒータ14
と、霜取終了を温度にて検知する霜取終了検知サーミス
タ15と、前記圧縮機8,前記冷気循環用ファンモータ
13,前記除霜ヒータ14の制御を行う制御装置16が
設けられてなる。
As shown in FIG. 10, a refrigerator according to a conventional form has a compressor 8 for compressing a refrigerant, a condenser 9 for liquefying a gas refrigerant, and a tightening device for controlling the pressure reduction and the amount of circulating refrigerant. That is, it has a capillary tube 11 which is a decompression device, an evaporator 7 for evaporating and gasifying the liquid refrigerant, and a refrigeration cycle configured by connecting each with a piping pipe. A cooling air circulation fan motor 13 to be replaced and a defrost heater 14 of the evaporator 7
And a defrosting end detecting thermistor 15 for detecting the end of defrosting by temperature, and a control device 16 for controlling the compressor 8, the cooling air circulation fan motor 13, and the defrosting heater 14.

【0012】前記制御装置16による前記蒸発器7の霜
取制御は、図2に示すように、前記圧縮機8の積算運転
が設定の時間に達すると、前記圧縮機8を停止する。こ
のとき、前記圧縮機8の運転中に前記凝縮器9に溜まっ
ていた高圧液冷媒は前記圧縮機8の停止後、ガス化し蒸
発器7に流れ込み該蒸発器7にて放熱し凝縮する。この
凝縮潜熱にて前記蒸発器7の霜取が行われる。この蒸発
器7での凝縮過程は数分で終了するためその後は前記除
霜ヒータ14を通電し通常の霜取りを行なう。これによ
って、前記蒸発器7の霜取を行うための大容量の前記除
霜ヒータ14の通電時間を短縮でき、低消費電力量化が
実現できる。
In the defrosting control of the evaporator 7 by the control device 16, as shown in FIG. 2, when the integrated operation of the compressor 8 reaches a set time, the compressor 8 is stopped. At this time, the high-pressure liquid refrigerant accumulated in the condenser 9 during the operation of the compressor 8 is turned into a gas after the compressor 8 is stopped, flows into the evaporator 7, and radiates heat in the evaporator 7 to condense. The evaporator 7 is defrosted by the latent heat of condensation. Since the condensation process in the evaporator 7 is completed in a few minutes, the defrost heater 14 is energized to perform normal defrosting thereafter. Thus, the energization time of the large-capacity defrost heater 14 for defrosting the evaporator 7 can be reduced, and low power consumption can be realized.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来構成では、少なくとも二区画に独立した蒸発器をもつ
冷蔵庫に対しての除霜方法は定義されておらず、また、
冷蔵庫の消費電力量を増大させる要因の一つとなってい
る除霜ヒータを用いている。さらに、可燃性冷媒例えば
R600aを用いた場合、可燃性冷媒が漏れた場合、除
霜用ヒータにより発火する危険性が考えられる。
However, in the above-mentioned conventional configuration, a method of defrosting a refrigerator having an independent evaporator in at least two sections is not defined.
A defrost heater, which is one of the factors that increase the power consumption of the refrigerator, is used. Further, when a flammable refrigerant such as R600a is used, if the flammable refrigerant leaks, there is a risk of ignition by the defrost heater.

【0014】本発明は、以上のような従来の課題を解決
するもので、第一の区画と第二の区画とを独立もしくは
同時冷却を行う冷却システムの除霜に関するシステムの
構築と除霜用ヒータを特別に用いないことにより可燃性
冷媒使用時の安全性を高め、また、収納スペースの拡大
を図ることが可能な冷蔵庫を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides a system for defrosting a cooling system that performs independent or simultaneous cooling of a first section and a second section, and a system for defrosting. An object of the present invention is to provide a refrigerator capable of improving safety when using a flammable refrigerant by not using a heater in particular and expanding a storage space.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
次の構成を有する。本発明の請求項1の冷蔵庫は、少な
くとも二つの異なる温度帯で温度調節を行う区画で構成
され、比較的高温度の第一の区画と比較的低温度の第二
の区画を有する冷蔵庫箱体であって、前記第一の区画に
第一の蒸発器と前記第二の区画に第二の蒸発器を配設
し、圧縮機,凝縮器,第一の流路制御手段と第一の減圧
手段を介した前記第一の蒸発器とを順次接続し、第二の
減圧手段を介した前記第二の蒸発器を前記第一の蒸発器
と並列に二の区画を独立に冷却する装置を備えた冷蔵庫
において、除霜時には前記圧縮機より吐出された高温ガ
ス冷媒を第二の蒸発器に流入させるため前記圧縮機と前
記凝縮器との間に設けられた除霜用流路および第三の流
路制御手段と除霜時には前記第二の蒸発器から第一の蒸
発器への流路を確保するため第一の流路制御手段には前
記第一の蒸発器の冷却回路、前記第二の蒸発器の冷却回
路、そして除霜用回路の三方向に切り替え可能な流路制
御手段とそれらを制御する制御手段を備えることにより
第二の蒸発器を除霜することを特徴とする可燃性冷媒を
用いた冷蔵庫である。
To achieve the above object, the present invention has the following arrangement. The refrigerator according to claim 1 of the present invention is configured by a compartment for performing temperature control in at least two different temperature zones, and has a first compartment having a relatively high temperature and a second compartment having a relatively low temperature. Wherein a first evaporator is provided in the first section and a second evaporator is provided in the second section, and a compressor, a condenser, a first flow path control means, and a first decompression device are provided. A device for sequentially connecting the first evaporator via a means and cooling the two sections independently of the second evaporator in parallel with the first evaporator through a second decompression means. A defrosting flow path provided between the compressor and the condenser to allow the high-temperature gas refrigerant discharged from the compressor to flow into the second evaporator at the time of defrosting. Flow path control means and a first flow path for securing a flow path from the second evaporator to the first evaporator at the time of defrosting. The control means includes a cooling circuit for the first evaporator, a cooling circuit for the second evaporator, and a flow control means which can be switched in three directions of a defrosting circuit, and a control means for controlling them. And a second evaporator is used to defrost the second evaporator.

【0016】本発明の請求項2記載の冷蔵庫は、少なく
とも二つの異なる温度帯で温度調節を行う区画で構成さ
れ、比較的高温度の第一の区画と比較的低温度の第二の
区画を有する冷蔵庫箱体と、前記第一の区画に第一の蒸
発器と前記第二の区画に第二の蒸発器とを配設し、圧縮
機、冷却回路と除霜回路を制御する第一の流路制御手段
と凝縮器と第一の減圧手段を介した前記第一の蒸発器と
を順次接続し、第二の減圧手段を介した前記第二の蒸発
器を前記第一の蒸発器と並列に接続し、前記第一の蒸発
器の出口側と第二の蒸発器の出口側にそれぞれの流路を
制御する第二の流路制御手段と第三の流路制御手段を配
設し、第一区画と第二区画を独立に冷却する装置を備え
た冷蔵庫において、除霜時には前記圧縮機より吐出され
た高温ガス冷媒を第二の蒸発器に流入させるため前記圧
縮機と前記凝縮器との間に設けられた第一の流路制御手
段と除霜用流路により除霜時には除霜用回路から第二の
蒸発器へ高温ガス冷媒が流れるようにする制御手段を備
えたことを特徴とする可燃性冷媒を用いた冷蔵庫であ
る。
A refrigerator according to a second aspect of the present invention comprises a compartment for controlling the temperature in at least two different temperature zones, and a first compartment having a relatively high temperature and a second compartment having a relatively low temperature. A refrigerator box having a first evaporator in the first compartment and a second evaporator in the second compartment, and a compressor for controlling a cooling circuit and a defrost circuit. The first evaporator via a flow path control unit, a condenser and a first decompression unit are sequentially connected, and the second evaporator via a second decompression unit is connected to the first evaporator. Connected in parallel, a second flow path control means and a third flow path control means for controlling respective flow paths on the outlet side of the first evaporator and the outlet side of the second evaporator are provided. In a refrigerator provided with a device for independently cooling the first compartment and the second compartment, the high-temperature gas refrigerant discharged from the compressor during defrosting In order to flow into the second evaporator, the first flow path control means and the defrosting flow path provided between the compressor and the condenser provide a defrosting circuit to the second evaporator during defrosting. A refrigerator using a flammable refrigerant, comprising a control means for causing a high-temperature gas refrigerant to flow.

【0017】さらに、本発明の請求項3記載の冷蔵庫
は、請求項1,2記載のいずれかの冷蔵庫において第二
の流路制御手段と第三の流路制御手段を1つにまとめた
流路制御手段を備えたことを特徴とする冷蔵庫である。
Further, according to a third aspect of the present invention, there is provided a refrigerator according to any one of the first and second aspects, wherein the second flow path control means and the third flow path control means are combined into one. A refrigerator comprising a road control means.

【0018】さらに、本発明の請求項4記載の冷蔵庫
は、請求項1〜3記載のいずれかの冷蔵庫において第一
の蒸発器の冷却回路、第二の蒸発器の冷却回路、そして
除霜用回路の三方向に切り替え可能な第一の流路制御手
段を3つの流路制御手段に置き換えたことを特徴とする
冷蔵庫である。
Furthermore, a refrigerator according to a fourth aspect of the present invention is the refrigerator according to any one of the first to third aspects, wherein the cooling circuit of the first evaporator, the cooling circuit of the second evaporator, and the defroster are provided. A refrigerator characterized in that the first flow path control means switchable in three directions of the circuit is replaced with three flow path control means.

【0019】さらに、本発明の請求項5記載の冷蔵庫
は、請求項1〜4記載のいずれかの冷蔵庫において除霜
時には第二の蒸発器から第一の蒸発器への流路を確保す
るのではなく、第二の蒸発器から凝縮器への流れを確保
する流路制御手段と圧縮機と凝縮器の間に第一の除霜用
回路とは異なる場所に新たな第二の除霜用回路と流路制
御手段を備えることを特徴とする冷蔵庫である。
Furthermore, in the refrigerator according to the fifth aspect of the present invention, in the refrigerator according to any one of the first to fourth aspects, a flow path from the second evaporator to the first evaporator is secured during defrosting. Rather, a new second defroster is installed in a location different from the first defrost circuit between the compressor and the condenser, between the flow path control means for securing the flow from the second evaporator to the condenser. A refrigerator comprising a circuit and a flow path control means.

【0020】加えて、本発明の請求項6記載の冷蔵庫
は、請求項1〜5記載のいずれかの冷蔵庫において圧縮
機と凝縮器の間にある第一の除霜回路の分流と第二の除
霜回路の流路制御手段を1つにまとめた新たな流路制御
手段で構成されたことを特徴とする冷蔵庫である。
[0020] In addition, the refrigerator according to claim 6 of the present invention is the refrigerator according to any one of claims 1 to 5, wherein the branch of the first defrost circuit between the compressor and the condenser is connected to the second branch. A refrigerator characterized by comprising new flow path control means that integrates flow path control means of a defrost circuit into one.

【0021】加えて、本発明の請求項7記載の冷蔵庫
は、請求項1〜6記載のいずれかの冷蔵庫において、第
一区画と第二区画の冷却を促進させるための蒸発器用フ
ァンおよび凝縮器用ファンの運転について、除霜中は蒸
発器用ファンおよび凝縮用ファンは停止する制御回路を
設けた冷蔵庫である。
In addition, the refrigerator according to claim 7 of the present invention is the refrigerator according to any one of claims 1 to 6, wherein a fan for an evaporator and a condenser for promoting cooling of the first section and the second section are provided. The operation of the fan is a refrigerator provided with a control circuit for stopping the evaporator fan and the condensing fan during defrosting.

【0022】加えて、本発明の請求項8記載の冷蔵庫
は、請求項1〜6記載のいずれかの冷蔵庫において第一
区画と第二区画の冷却を促進させるための蒸発器用ファ
ンおよび凝縮器用ファンの運転について、除霜中は第一
の蒸発器用ファンは庫内温度検知手段により決められた
モードで運転もしくは停止を行い、第二の蒸発器用ファ
ンおよび凝縮用ファンは停止する制御回路を設けた冷蔵
庫である。
In addition, the refrigerator according to claim 8 of the present invention is the refrigerator according to any one of claims 1 to 6, wherein the fan for the evaporator and the condenser for facilitating the cooling of the first section and the second section. During the defrosting, the first evaporator fan is operated or stopped in the mode determined by the internal temperature detection means during defrosting, and the second evaporator fan and the condensing fan are provided with a control circuit for stopping. It is a refrigerator.

【0023】上記構成によれば、本発明の請求項1記載
の冷蔵庫は、冷却運転時は第一区画、第二区画を独立に
冷却することが可能であり、また、第二の蒸発器の後の
流路制御手段により第一の蒸発器から圧縮機への流れに
対する逆流を防ぐことが可能である。また、除霜時にお
いて圧縮機から吐出された高温ガスを除霜回路中の流路
制御手段と第二の蒸発器の後にある流路制御手段、さら
に凝縮器の後の流路制御手段により第二の蒸発器に高温
ガスを流入させることにより、霜取り用ヒータを用いず
に第二の蒸発器の除霜を行える。さらに、第二の蒸発器
を通ったガスは、第二の減圧手段から第一の減圧手段、
第一の蒸発器と流れ、比較的高い温度の第一区画では第
二区画の除霜動作とは関係なく冷却運転できる。
According to the above configuration, in the refrigerator according to the first aspect of the present invention, the first section and the second section can be cooled independently during the cooling operation. It is possible to prevent backflow with respect to the flow from the first evaporator to the compressor by the later flow path control means. Further, the high-temperature gas discharged from the compressor at the time of defrost is passed through the flow path control means in the defrost circuit, the flow path control means after the second evaporator, and the flow path control means after the condenser. By flowing the high-temperature gas into the second evaporator, defrosting of the second evaporator can be performed without using a defrost heater. Further, the gas that has passed through the second evaporator is converted from the second pressure reducing means to the first pressure reducing means,
In the first section having a relatively high temperature, which flows with the first evaporator, the cooling operation can be performed regardless of the defrosting operation in the second section.

【0024】また、本発明の請求項2記載の冷蔵庫は、
冷却運転時は第一区画、第二区画を独立に冷却運転を行
うが、除霜時は、圧縮機から吐出された高温ガスを圧縮
機と凝縮器の間にある第一の流路制御手段と第一の蒸発
器の後と第二の蒸発器の後の流路制御手段により第二の
蒸発器に高温ガス冷媒を流入させることにより、冷凍サ
イクルの構成が簡易になり、安価にシステムが構成でき
る。
Further, the refrigerator according to claim 2 of the present invention comprises:
During the cooling operation, the first section and the second section are independently cooled, but at the time of defrosting, the high-temperature gas discharged from the compressor is supplied to the first flow path control means between the compressor and the condenser. By flowing the high-temperature gaseous refrigerant into the second evaporator by the flow path control means after the first evaporator and after the second evaporator, the configuration of the refrigeration cycle is simplified, and the system can be manufactured at low cost. Can be configured.

【0025】さらに、本発明の請求項3記載の冷蔵庫
は、請求項1,2記載のいずれかの冷蔵庫において冷却
運転時の逆流防止ため第二の蒸発器の後の流路制御手段
と除霜回路中の流路制御手段もしくは第一の蒸発器の流
路を制御する流路制御手段を1つにまとめることにより
部品点数の削減,収納スペースの削減ができ、冷蔵庫の
収納性の向上につながる。
Further, in the refrigerator according to the third aspect of the present invention, in the refrigerator according to any one of the first and second aspects, a flow control means provided after the second evaporator and a defroster for preventing backflow during a cooling operation. By integrating the flow path control means in the circuit or the flow path control means for controlling the flow path of the first evaporator into one unit, the number of parts can be reduced and the storage space can be reduced, which leads to an improvement in the storage capacity of the refrigerator. .

【0026】さらに、本発明の請求項4記載の冷蔵庫
は、請求項1〜3記載のいずれかの冷蔵庫において、3
方向可能な特殊な流路制御手段を用いることなく、技術
的に平易な流路制御手段で高効率な除霜システムを提供
できる。
The refrigerator according to claim 4 of the present invention is the refrigerator according to any one of claims 1 to 3, wherein
A highly efficient defrosting system can be provided by a flow path control means that is technically simple without using a special flow path control means that can be directed.

【0027】加えて、本発明の請求項5記載の冷蔵庫
は、請求項1〜4記載のいずれかの冷蔵庫において、圧
縮機と凝縮器の間に上記除霜回路とは別に流路制御手段
を設け、新たな除霜回路を設けることにより、第一の区
画の冷却を行わない回路を構成することにより、比較的
高温の第一区画の過冷を防ぐことができる。
In addition, the refrigerator according to the fifth aspect of the present invention is the refrigerator according to any one of the first to fourth aspects, wherein a flow path control means is provided separately from the defrost circuit between the compressor and the condenser. By providing a circuit that does not cool the first section by providing and providing a new defrosting circuit, it is possible to prevent overcooling of the first section at a relatively high temperature.

【0028】加えて、本発明の請求項6記載の冷蔵庫
は、請求項1〜5記載のいずれかの冷蔵庫において、圧
縮機と凝縮器の間に流路制御手段として四方弁を用いる
ことにより、冷却システムを簡素化でき、部品点数の削
減、冷蔵庫の収納性が向上する。
In addition, the refrigerator according to the sixth aspect of the present invention is the refrigerator according to any one of the first to fifth aspects, wherein a four-way valve is used as a flow path control means between the compressor and the condenser. The cooling system can be simplified, the number of parts can be reduced, and the refrigerator can be stored more easily.

【0029】加えて、本発明の請求項7記載の冷蔵庫
は、請求項1〜6記載のいずれかの冷蔵庫において、除
霜中は蒸発器,凝縮器のファンを停止させることにより
除霜効率の向上と消費電力量の削減が可能となる。
In addition, the refrigerator according to claim 7 of the present invention is the refrigerator according to any one of claims 1 to 6, wherein the defrosting efficiency is reduced by stopping the fans of the evaporator and the condenser during defrosting. It is possible to improve and reduce power consumption.

【0030】加えて、本発明の請求項8記載の冷蔵庫
は、請求項1〜6記載のいずれかの冷蔵庫において、第
一区画にある庫内温度の検知手段により、第一の蒸発器
用ファンの運転動作を規定することにより、第一区画の
温度を適正温度に保持することができる。
[0030] In addition, the refrigerator according to claim 8 of the present invention is the refrigerator according to any one of claims 1 to 6, wherein the means for detecting the temperature inside the refrigerator in the first compartment is used for the first fan for the evaporator. By defining the operation, the temperature of the first section can be maintained at an appropriate temperature.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1〜図6を用いて説明する。従来例と同一構成につ
いてはその詳細な説明を省略し、同一符号を付す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. Detailed descriptions of the same components as those of the conventional example are omitted, and the same reference numerals are given.

【0032】(実施の形態1)図1は、本発明の一実施
の形態による冷蔵庫の概略図、図2は同実施の形態によ
る冷凍サイクル構成図である。
(Embodiment 1) FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a refrigeration cycle according to the embodiment.

【0033】本実施形態に関わる冷蔵庫は図1に示すよ
うに、21は冷蔵庫箱体であり、上方部に比較的高温の
区画である第一の区画22を、下方部に比較的低温の第
二の区画23を配置してあり、例えばウレタンのような
断熱材で周囲と断熱して構成している。食品等の収納物
の出し入れは図示しない断熱ドアを介して行われる。
As shown in FIG. 1, the refrigerator according to the present embodiment is a refrigerator box 21 having a first compartment 22 which is a relatively high temperature compartment in an upper portion and a first compartment 22 having a relatively low temperature in a lower portion. Two sections 23 are arranged, and are insulated from the surroundings by a heat insulating material such as urethane. Storage of foods and the like is carried out through an insulated door (not shown).

【0034】第一の区画22は冷蔵保存のために通常3
〜5℃で設定されているが、保鮮性向上のため若干低め
の温度、例えば0〜−3℃で設定されることもあり、収
納物によって、使用者が自由に上記のような温度設定を
切り替えることを可能としている場合もある。また、ワ
インや根野菜等の保鮮のために、例えば10℃前後の若
干高めの温度設定とする場合もある。
[0034] The first compartment 22 usually contains three compartments for refrigerated storage.
The temperature is set at about 5 ° C., but may be set at a slightly lower temperature, for example, 0 to −3 ° C., for the purpose of improving freshness. In some cases, it is possible to switch. In some cases, the temperature may be set slightly higher, for example, around 10 ° C., for freshening wine and root vegetables.

【0035】第二の区画23は冷凍保存のために通常−
18〜−22℃で設定されているが、保鮮性向上のため
より低温の温度、例えば−25〜−30℃で設定される
こともある。
The second compartment 23 is usually used for cryopreservation.
The temperature is set at 18 to -22 ° C, but may be set at a lower temperature, for example, -25 to -30 ° C for improving freshness.

【0036】図2は、上記実施形態に対する冷蔵庫の冷
凍サイクル説明図である。圧縮機29とガス冷媒を液化
させる凝縮器31と第一の減圧手段32か第2の減圧手
段33の一方に液化した冷媒を送るための第一の流路制
御手段34とそれぞれの減圧手段から送られた液化冷媒
を蒸発、ガス化させる第一の蒸発器25,第二の蒸発器
27と、第一蒸発器25に冷媒が流れている時に第二の
蒸発器27に逆流させないために第二の蒸発器27の後
に設けられた第二の流路制御手段35で構成された冷却
回路36と、除霜時に第二の蒸発器27に圧縮機29か
ら吐出された高温ガスを第二の蒸発器27に流入させる
ための第3の流路制御手段37で構成された除霜用回路
38とおよびそれぞれを配管パイプで接続して構成され
ている冷凍サイクル図である。
FIG. 2 is an explanatory diagram of a refrigeration cycle of the refrigerator according to the above embodiment. The compressor 29, the condenser 31 for liquefying the gas refrigerant, the first flow path control means 34 for sending the liquefied refrigerant to one of the first decompression means 32 and the second decompression means 33, and the respective decompression means A first evaporator 25 and a second evaporator 27 for evaporating and gasifying the sent liquefied refrigerant, and a second evaporator 27 for preventing the refrigerant from flowing back to the second evaporator 27 when the refrigerant is flowing through the first evaporator 25. The cooling circuit 36 constituted by the second flow path control means 35 provided after the second evaporator 27 and the high-temperature gas discharged from the compressor 29 to the second evaporator 27 during defrost FIG. 9 is a refrigeration cycle diagram configured by connecting a defrosting circuit 38 configured by third flow path control means 37 for flowing into an evaporator 27 and each of the circuits by a piping pipe.

【0037】図2に示すように、冷却運転時は圧縮機2
9から吐出された高温ガスは、冷媒を液化させる凝縮器
31に送られ第一の流路制御手段34例えば三方向に流
路を制御できる電動三方弁により決められた減圧手段た
とえばキャピラリチューブや膨張弁に冷媒を供給する。
そして、減圧手段により冷却された液化した冷媒は例え
ば第一の蒸発器25に送られ、蒸発、ガス化により庫内
を冷却する。第二に区画23を冷却するときは、冷媒を
第二の蒸発器27に流し、蒸発,ガス化により庫内を冷
却する。ここで、第一の区画22は、第二の区画23に
比べ比較的高温・高圧のため、第一の区画22を冷却す
るとき第一の蒸発器25から圧縮機29に流れた冷媒が
第二の蒸発器27に流れる可能性があり、冷媒循環量の
減少による冷却効率の低下が心配される。そこで、第二
の蒸発器27の出口の後に第二の流路制御手段35例え
ば電磁弁を用いることにより冷媒の逆流を防ぎ、冷却効
率の低下を防ぐ。除霜時は、圧縮機から吐出された高温
ガスを圧縮機29と凝縮器31の間に設けられた除霜回
路38から除霜用の第三の流路制御手段37たとえば電
磁弁を通って第二の蒸発器27に高温ガス冷媒を流し込
みその熱により除霜を行う。なお、この時、第二の流路
制御手段27は閉とし冷媒を流さない。そして、第二の
蒸発器27で除霜に使われガス化した冷媒は、第二の減
圧手段33を通り第一の流路制御手段34に至る。第一
の流路制御手段34は3方向可能な流路制御手段であ
り、この時は、第二の減圧手段33から第一の減圧手段
32に冷媒が流れる流路を確保する。この工程により、
冷媒は低温で液化し第一の蒸発器25に流入し、第一の
区画22を冷却する。そして、再びガス化した低温冷媒
ガスは圧縮機29に戻る。なお、冷却時、除霜時の圧縮
機29,流路制御手段34,流路制御手段35,流路制
御手段37の動作を表1に示す。
As shown in FIG. 2, during the cooling operation, the compressor 2
The high-temperature gas discharged from 9 is sent to a condenser 31 for liquefying the refrigerant, and is supplied to a first flow path control means 34, for example, a pressure reducing means determined by an electric three-way valve capable of controlling a flow path in three directions, for example, a capillary tube or expansion. Supply refrigerant to the valve.
Then, the liquefied refrigerant cooled by the decompression means is sent to, for example, the first evaporator 25, and cools the inside of the refrigerator by evaporation and gasification. Secondly, when cooling the section 23, the refrigerant flows into the second evaporator 27, and the inside of the compartment is cooled by evaporation and gasification. Here, since the first section 22 has a relatively high temperature and high pressure compared to the second section 23, the refrigerant flowing from the first evaporator 25 to the compressor 29 when the first section 22 is cooled is cooled by the first section 22. There is a possibility that the refrigerant may flow into the second evaporator 27, and there is a concern that the cooling efficiency is reduced due to a decrease in the amount of circulating refrigerant. Therefore, by using the second flow path control means 35, for example, an electromagnetic valve after the outlet of the second evaporator 27, the backflow of the refrigerant is prevented and the cooling efficiency is prevented from lowering. At the time of defrosting, the high-temperature gas discharged from the compressor is passed from a defrosting circuit 38 provided between the compressor 29 and the condenser 31 through a third flow control means 37 for defrosting, for example, an electromagnetic valve. A high-temperature gas refrigerant is poured into the second evaporator 27 to perform defrosting by the heat. At this time, the second flow path control means 27 is closed and no refrigerant flows. The gasified refrigerant used for defrosting in the second evaporator 27 passes through the second pressure reducing means 33 and reaches the first flow path controlling means 34. The first flow path control means 34 is a flow control means capable of three directions, and at this time, a flow path through which the refrigerant flows from the second pressure reduction means 33 to the first pressure reduction means 32 is secured. By this process,
The refrigerant liquefies at a low temperature and flows into the first evaporator 25 to cool the first section 22. Then, the low-temperature refrigerant gas that has been gasified again returns to the compressor 29. Table 1 shows the operations of the compressor 29, the flow path control means 34, the flow path control means 35, and the flow path control means 37 during cooling and defrosting.

【0038】[0038]

【表1】 [Table 1]

【0039】以上のように本実施例の冷蔵庫は、冷却
時、2区画を独立に冷却することが可能であり、また、
除霜時に霜取りを行うための大容量の霜取り用ヒータを
用いることなく除霜でき、部品点数の削減,食品の収納
容積の増大につながる。
As described above, the refrigerator of this embodiment can cool two compartments independently when cooling.
Defrosting can be performed without using a large-capacity defrosting heater for defrosting during defrosting, which leads to a reduction in the number of parts and an increase in food storage volume.

【0040】また、大容量の霜取り用ヒータは抵抗線近
傍では通常600℃程度まで上昇するので可燃性冷媒た
とえばR600aを用いたときは、冷媒漏洩時、発火・
爆発の危険性がある。そこで、本実施例を用いることに
より、冷媒に可燃性冷媒を用いたとき霜取り用ヒータを
用いず、冷媒の高温ガスで安全な霜とりが可能である。
A large-capacity defrosting heater usually rises to about 600 ° C. in the vicinity of the resistance wire. Therefore, when a flammable refrigerant, for example, R600a is used, ignition and ignition
Risk of explosion. Therefore, by using the present embodiment, when using a combustible refrigerant as the refrigerant, it is possible to safely defrost with the high-temperature gas of the refrigerant without using a defrost heater.

【0041】さらに、除霜で利用した冷媒を減圧手段に
より低温化することができ、第二の蒸発器27が除霜中
でも第一の区画22・蒸発器25は冷却運転でき、除霜
による庫内昇温を防止できる。
Further, the temperature of the refrigerant used in the defrost can be reduced by the decompression means, and the first section 22 and the evaporator 25 can be cooled while the second evaporator 27 is being defrosted. The internal temperature rise can be prevented.

【0042】なお、本実施の形態において、第二の流路
制御手段35と第三の流路制御手段37を配置すること
により、冷却時の逆流防止と除霜中の高温ガス冷媒を制
御したが、1つにまとめたたとえば電動三方弁のような
流路制御手段を用いてもよい。
In this embodiment, the arrangement of the second flow path control means 35 and the third flow path control means 37 prevents backflow during cooling and controls high-temperature gas refrigerant during defrosting. However, a single flow path control means such as an electric three-way valve may be used.

【0043】また、本実施の形態において、第一の流路
制御手段34に3方向の流路を確保する電動三方弁を用
いているが、各個別に制御する電磁弁を分岐点前後に3
個配置してもよい。
Further, in this embodiment, an electric three-way valve which secures a three-way flow path is used for the first flow path control means 34.
It may be arranged individually.

【0044】(実施の形態2)図3は、本実施形態に対
する冷蔵庫の冷凍サイクル構成図である。なお、実施の
形態1と同一構成についてはその詳細な説明は省略し、
同一符号を付す。
(Embodiment 2) FIG. 3 is a configuration diagram of a refrigeration cycle of a refrigerator according to this embodiment. The detailed description of the same configuration as the first embodiment is omitted,
The same reference numerals are given.

【0045】圧縮機29と除霜用回路38か凝縮器31
の一方に高温ガス冷媒を送る判断をする流路制御手段3
9とガス冷媒を液化させる凝縮器31と第一の減圧手段
32と第2の減圧手段33と減圧手段から送られた液化
冷媒を蒸発、ガス化させる第一の蒸発器25と第二の蒸
発器27、第一の蒸発器25と第二の蒸発器27のそれ
ぞれ後にありそれぞれの流路を制御する第二の流路制御
手段40、第三の流路制御手段41で構成された冷凍サ
イクル図である。なお、冷却時、除霜時の圧縮機29,
流路制御手段39,流路制御手段40,流路制御手段4
1の動作を表2に示す。
The compressor 29 and the defrosting circuit 38 or the condenser 31
Flow control means 3 for determining whether to send a high-temperature gas refrigerant to one side
9, a condenser 31 for liquefying the gas refrigerant, a first decompression means 32, a second decompression means 33, and a first evaporator 25 for evaporating and gasifying the liquefied refrigerant sent from the decompression means, and a second evaporation Refrigeration cycle, which is constituted by a second flow path control means 40 and a third flow path control means 41 which are respectively provided after the first evaporator 25 and the second evaporator 27 and control the respective flow paths. FIG. In addition, the compressor 29 at the time of cooling and defrosting,
Flow path control means 39, flow path control means 40, flow path control means 4
Table 2 shows the operation of No. 1.

【0046】[0046]

【表2】 [Table 2]

【0047】図3と圧縮機29,流路制御手段39,流
路制御手段40,流路制御手段41の動作を示した表2
から冷却運転時は圧縮機29から吐出された高温ガス
は、第一の流路制御手段39例えば電動三方弁により冷
媒を液化させる凝縮器31に送られる。そして、それぞ
れの減圧手段により冷却された液化した冷媒は第一の蒸
発器25もしくは第二の蒸発器27に送られ、蒸発,ガ
ス化により庫内を冷却する。除霜時は、圧縮機29から
吐出された高温ガスを圧縮機29と凝縮器31の間に設
けられた第一の流路制御手段39により除霜回路38か
ら第二の蒸発器27に高温ガス冷媒を流し込みその熱に
より除霜を行う。この時、第二の流路制御手段40たと
えば電磁弁は開とし、第三の流路制御手段41たとえば
電磁弁は閉とする。すると第二の蒸発器27で除霜に使
われガス化した冷媒は、第二の減圧手段33を通り第一
の減圧手段32に冷媒が流れる。この工程により、冷媒
は低温で液化し第一の蒸発器に流入し、第一の区画22
を冷却する。そして、再びガス化した低温冷媒ガスは圧
縮機29に戻る。
FIG. 3 and Table 2 showing the operation of the compressor 29, the flow path control means 39, the flow path control means 40, and the flow path control means 41.
During the cooling operation, the high-temperature gas discharged from the compressor 29 is sent to the condenser 31 for liquefying the refrigerant by the first flow path control means 39, for example, the electric three-way valve. The liquefied refrigerant cooled by the respective decompression means is sent to the first evaporator 25 or the second evaporator 27, and cools the inside of the refrigerator by evaporation and gasification. At the time of defrosting, the high temperature gas discharged from the compressor 29 is transferred from the defrosting circuit 38 to the second evaporator 27 by the first flow path control means 39 provided between the compressor 29 and the condenser 31. A gas refrigerant is poured, and the heat is used to perform defrosting. At this time, the second flow path control means 40, for example, the electromagnetic valve is opened, and the third flow path control means 41, for example, the electromagnetic valve is closed. Then, the gasified refrigerant used for defrosting in the second evaporator 27 flows through the second pressure reducing means 33 to the first pressure reducing means 32. By this step, the refrigerant liquefies at a low temperature and flows into the first evaporator, where
To cool. Then, the low-temperature refrigerant gas that has been gasified again returns to the compressor 29.

【0048】以上のように本実施例の冷蔵庫は、第二の
蒸発器27を除霜する時に実施の形態1と同様に大容量
の霜取り用ヒータを用いることなく除霜でき、部品点数
の削減,食品収納容積の増大につながる。
As described above, in the refrigerator of this embodiment, when the second evaporator 27 is defrosted, the defrosting can be performed without using a large-capacity defrosting heater similarly to the first embodiment, and the number of parts can be reduced. , Leading to an increase in food storage capacity.

【0049】また、簡易な流路制御手段を用いることに
より、制御手段の簡素化ができ、省スペース,低コスト
での流路制御が提供できる。
Further, by using a simple flow path control means, it is possible to simplify the control means and to provide a space-saving and low-cost flow path control.

【0050】なお、本実施の形態において、蒸発器の後
にそれぞれ流路制御手段を配設したが、各蒸発器の出口
側の合流地点に1つにまとめた流路制御手段を配置して
もよい。
In the present embodiment, the flow path control means is provided after each evaporator. However, it is also possible to arrange the flow control means integrally at the merging point on the outlet side of each evaporator. Good.

【0051】(実施の形態3)図4は、本実施形態に対
する冷蔵庫の冷凍サイクル構成図である。なお、実施の
形態1,2と同一構成についてはその詳細な説明は省略
し、同一符号を付す。
(Embodiment 3) FIG. 4 is a configuration diagram of a refrigeration cycle of a refrigerator according to this embodiment. The detailed description of the same components as those of the first and second embodiments is omitted, and the same reference numerals are given.

【0052】除霜時に第二の蒸発器27に圧縮機29か
ら吐出された高温ガスを第二の蒸発器29に流入させる
ための第3の流路制御手段37で構成された第一の除霜
用回路43とは別に圧縮機と凝縮器の間に第四の流路制
御手段42が配置し、その流路制御手段42の分岐点か
ら直接圧縮機に戻る第二の除霜用回路44がある冷凍サ
イクル図である。なお、冷却時、除霜時の圧縮機29,
流路制御手段34,流路制御手段35,流路制御手段3
7,路制御手段42の動作を表3に示す。
The first degassing means, which is constituted by third flow path control means 37 for causing the high-temperature gas discharged from the compressor 29 to flow into the second evaporator 27 at the time of defrosting, flows into the second evaporator 29. A fourth flow path control means 42 is arranged between the compressor and the condenser separately from the frost circuit 43, and a second defrost circuit 44 directly returns to the compressor from a branch point of the flow path control means 42. It is a refrigeration cycle diagram. In addition, the compressor 29 at the time of cooling and defrosting,
Flow path control means 34, flow path control means 35, flow path control means 3
7. The operation of the road control means 42 is shown in Table 3.

【0053】[0053]

【表3】 [Table 3]

【0054】図4と表3より、除霜時は、圧縮機29か
ら吐出された高温ガスを圧縮機29と凝縮器31の間に
設けられた第一の除霜回路43から除霜用の第三の流路
制御手段37たとえば電磁弁を通って第二の蒸発器27
に高温ガス冷媒を流し込みその熱により除霜を行う。な
お、この時、第二の流路制御手段35は閉とし冷媒を流
さない。そして、第二の蒸発器27で除霜に使われガス
化した冷媒は、第二の減圧手段33を通り第一の流路制
御手段34に至る。この時、第一の流路制御手段34は
凝縮器31への流れを確保する。この工程により、冷媒
は低温で液化し凝縮器31に流入し、ついで第四の流路
制御手段42に至る。第四の流路制御手段42は第二に
除霜回路44を開として冷媒を流しガス化した低温冷媒
ガスは圧縮機29に戻る。
As shown in FIG. 4 and Table 3, at the time of defrosting, the high-temperature gas discharged from the compressor 29 is supplied to the first defrosting circuit 43 provided between the compressor 29 and the condenser 31 for defrosting. The third evaporator 27 is passed through a third flow path control means 37 such as an electromagnetic valve.
A high-temperature gaseous refrigerant is poured into the chiller to perform defrosting by the heat. At this time, the second flow path control means 35 is closed and the refrigerant does not flow. The gasified refrigerant used for defrosting in the second evaporator 27 passes through the second pressure reducing means 33 and reaches the first flow path controlling means 34. At this time, the first flow path control means 34 secures the flow to the condenser 31. By this step, the refrigerant is liquefied at a low temperature, flows into the condenser 31, and then reaches the fourth flow path control means 42. The fourth flow path control means 42 opens the defrost circuit 44 second, flows the refrigerant, and the gasified low-temperature refrigerant gas returns to the compressor 29.

【0055】以上のように本実施例の冷蔵庫は、除霜時
に第一の区画22を冷却することなく第二の区画23を
除霜できる。
As described above, the refrigerator of this embodiment can defrost the second section 23 without cooling the first section 22 during defrosting.

【0056】また、除霜終了時、凝縮器31に冷媒が集
まる傾向があるので再冷却運転時、蒸発器の冷却スピー
ドの向上につながる。
At the end of defrosting, the refrigerant tends to collect in the condenser 31, which leads to an improvement in the cooling speed of the evaporator during the recooling operation.

【0057】さらに、凝縮器31が低温になっているた
め冷蔵庫の機械室部分が低温になっており、再冷却運転
時には小さい入力で運転できる。
Furthermore, since the temperature of the condenser 31 is low, the temperature of the machine room of the refrigerator is low, and the operation can be performed with a small input during the recooling operation.

【0058】なお、本実施の形態において、第四の流路
制御手段42と圧縮機29と第四の流路制御手段42の
間にある除霜回路44の分岐は、四方弁を用いることに
より、配管構成の簡素化ができ、部品点数の削減,工数
減が期待できる。
In the present embodiment, the branch of the defrosting circuit 44 between the fourth flow path control means 42, the compressor 29 and the fourth flow path control means 42 is performed by using a four-way valve. In addition, the piping configuration can be simplified, and the number of parts and man-hours can be reduced.

【0059】(実施の形態4)図5は、本実施形態に対
する冷蔵庫の冷凍サイクル構成図である。なお、実施の
形態1〜3と同一構成についてはその詳細な説明は省略
し、同一符号を付す。
(Embodiment 4) FIG. 5 is a configuration diagram of a refrigeration cycle of a refrigerator according to this embodiment. The detailed description of the same configuration as the first to third embodiments is omitted, and the same reference numerals are given.

【0060】本実施形態の冷蔵庫の冷凍サイクルは、実
施の形態1〜3に付随して第一の区画の冷却を促進させ
るための第一の蒸発器用庫内ファンモータと第二の区画
の冷却を促進させるための第二の蒸発器用ファンモータ
と凝縮能力向上のための凝縮器用ファンモータで構成さ
れている。なお、冷却時、除霜時の各要素部品の動作を
表4に示す。
The refrigerating cycle of the refrigerator according to the present embodiment is similar to the first to third embodiments, and includes a first evaporator internal fan motor for facilitating the cooling of the first compartment and a cooling of the second compartment. And a condenser fan motor for improving the condensation capacity. Table 4 shows the operation of each component during cooling and defrosting.

【0061】[0061]

【表4】 [Table 4]

【0062】圧縮機29,流路制御手段34,流路制御
手段35,流路制御手段37,第一の蒸発器用ファンモ
ータ26,第二の蒸発器用ファンモータ26,凝縮器用
ファンモータ30の冷却運転、除霜運転での動作をあら
わした表4より冷却運転中は、それぞれのファンモータ
はあらかじめ決められた運転モードにより運転,停止を
繰り返すが、除霜中は第一の区画22の冷却を促進させ
るための第一の蒸発器用庫内ファンモータ26と第二の
区画の冷却を促進させるための第二の蒸発器用ファンモ
ータ28と凝縮能力向上のため設置された凝縮器用ファ
ンモータ30のすべてを停止する。
Cooling of the compressor 29, the flow path control means 34, the flow path control means 35, the flow path control means 37, the first evaporator fan motor 26, the second evaporator fan motor 26, and the condenser fan motor 30. Table 4 shows the operation in the operation and the defrosting operation. During the cooling operation, each fan motor repeats the operation and the stop in the predetermined operation mode. However, the cooling of the first section 22 is performed during the defrosting. All of the first evaporator internal fan motor 26 for promoting the cooling, the second evaporator fan motor 28 for promoting the cooling of the second section, and the condenser fan motor 30 installed for improving the condensation capacity. To stop.

【0063】以上の構成によって、除霜中の蒸発器を高
温度化でき、除霜効率を向上させることができる。
With the above configuration, the temperature of the evaporator during defrosting can be increased, and the defrosting efficiency can be improved.

【0064】また、ファンモータのすべてを停止させる
ことにより除霜中の消費電力量の低減にも効果がある。
Stopping all the fan motors is effective in reducing the power consumption during defrosting.

【0065】(実施の形態5)図6は、本実施形態に対
する冷蔵庫の冷凍サイクル構成図である。なお、実施の
形態1〜4と同一構成についてはその詳細な説明は省略
し、同一符号を付す。
(Embodiment 5) FIG. 6 is a configuration diagram of a refrigeration cycle of a refrigerator according to this embodiment. The detailed description of the same components as those of the first to fourth embodiments is omitted, and the same reference numerals are given.

【0066】本実施形態の冷蔵庫の冷凍サイクルは、実
施の形態1〜4に付随して庫内を適温に保存できている
か確認する第一の区画22に存在する温度検知手段45
で構成されている。なお、冷却時、除霜時の各要素部品
の動作を表5に示す。
The refrigeration cycle of the refrigerator according to the present embodiment is similar to the first to fourth embodiments, except that the temperature detecting means 45 in the first section 22 for checking whether the inside of the refrigerator can be stored at an appropriate temperature.
It is composed of Table 5 shows the operation of each component during cooling and defrosting.

【0067】[0067]

【表5】 [Table 5]

【0068】第二の蒸発器27が除霜中、比較的高温の
第一の区画22は、区画の温度検知手段45により、第
二の区画の冷却を促進させるための第二の蒸発器用ファ
ンモータ26の運転を制御手段により判断する。
During the defrosting of the second evaporator 27, the first section 22 having a relatively high temperature is subjected to the second evaporator fan for promoting cooling of the second section by the section temperature detecting means 45. The operation of the motor 26 is determined by the control means.

【0069】以上の構成によって、除霜中の第一区画の
温度を過冷、鈍冷なくあらかじめ決められた適性温度に
保存することができ、良好な食品保鮮を提供できる。
With the above configuration, the temperature of the first section during defrosting can be stored at a predetermined appropriate temperature without overcooling or cooling, and good food freshness can be provided.

【0070】[0070]

【発明の効果】以上説明したように、本発明の請求項1
の冷蔵庫によれば、冷却運転時は第一区画、第二区画を
独立に冷却することが可能であり、また、第二の蒸発器
の後の流路制御手段により蒸発器1から圧縮機への流れ
に対する逆流を防ぐことが可能である。また、除霜時に
おいて圧縮機から吐出された高温ガスを除霜回路中の流
路制御手段と第二の蒸発器の後にある流路制御手段、さ
らに凝縮器の後の流路制御手段により第二の蒸発器に高
温ガスを流入させることにより、霜取り用ヒータを用い
ずに第二の蒸発器の除霜を行える。さらに、第二の蒸発
器を通ったガスは、第二の減圧手段から第一の減圧手
段、第一の蒸発器と流れ、比較的高い温度の第一区画で
は第二区画の除霜動作とは関係なく冷却運転できる。
As described above, according to the first aspect of the present invention,
According to the refrigerator described above, the first section and the second section can be cooled independently during the cooling operation, and the flow path control means after the second evaporator allows the evaporator 1 to move from the evaporator 1 to the compressor. It is possible to prevent a backflow to the flow of water. Further, the high-temperature gas discharged from the compressor at the time of defrost is passed through the flow path control means in the defrost circuit, the flow path control means after the second evaporator, and the flow path control means after the condenser. By flowing the high-temperature gas into the second evaporator, defrosting of the second evaporator can be performed without using a defrost heater. Further, the gas that has passed through the second evaporator flows from the second decompression means to the first decompression means and the first evaporator, and in the first section having a relatively high temperature, the defrosting operation of the second section is performed. Can be operated regardless of cooling.

【0071】また、本発明の請求項2記載の冷蔵庫によ
れば、冷却運転時は第一区画,第二区画を独立に冷却運
転を行うが、除霜時は、圧縮機から吐出された高温ガス
を圧縮機と凝縮器の間にある流路制御手段とそれぞれの
蒸発器の後の流路制御手段により第二の蒸発器に流入さ
せることにより、請求項1と同様の効果と冷凍サイクル
の構成が簡易になり、安価にシステムが構成できる。
According to the refrigerator of the second aspect of the present invention, the cooling operation is performed independently on the first section and the second section during the cooling operation, but the high temperature discharged from the compressor during the defrosting operation. By causing the gas to flow into the second evaporator by the flow path control means between the compressor and the condenser and the flow path control means after each evaporator, the same effect as in claim 1 and the refrigeration cycle The configuration is simplified, and the system can be configured at low cost.

【0072】さらに、本発明の請求項3記載の冷蔵庫に
よれば、請求項1記載の冷蔵庫において冷却運転時の逆
流防止ための第二の蒸発器の後の流路制御手段と除霜回
路中の流路制御手段を1つにまとめることにより部品点
数の削減,収納スペースの削減ができ、冷蔵庫の収納性
の向上につながる。
Further, according to the refrigerator of the third aspect of the present invention, in the refrigerator of the first aspect, the flow path control means and the defrost circuit after the second evaporator for preventing backflow during the cooling operation. By integrating the flow control means into one, the number of parts and the storage space can be reduced, which leads to an improvement in the storage of the refrigerator.

【0073】さらに、本発明の請求項4記載の冷蔵庫に
よれば、請求項1,3記載のいずれかの冷蔵庫におい
て、3方向可能な特殊な流路制御手段を用いることな
く、技術的に平易な流路制御手段で高効率な除霜システ
ムを提供できる。
Further, according to the refrigerator described in claim 4 of the present invention, in the refrigerator described in any one of claims 1 and 3, it is technically easy to use without using special flow control means capable of three directions. A highly efficient defrosting system can be provided with a simple flow path control means.

【0074】加えて、本発明の請求項5記載の冷蔵庫に
よれば、請求項1〜4記載のいずれかの冷蔵庫におい
て、圧縮機と凝縮器の間に上記除霜回路とは別に流路制
御手段を設け、新たな除霜回路を設けることにより、第
一の区画の冷却を行わない回路を構成することにより、
比較的高温の第一区画の過度の冷却を防ぐことができ
る。
In addition, according to the refrigerator of the fifth aspect of the present invention, in the refrigerator of any one of the first to fourth aspects, a flow path control is provided between the compressor and the condenser separately from the defrost circuit. By providing means and providing a new defrost circuit, by configuring a circuit that does not cool the first compartment,
Excessive cooling of the relatively hot first compartment can be prevented.

【0075】加えて、本発明の請求項6記載の冷蔵庫に
よれば、請求項1〜5記載のいずれかの冷蔵庫におい
て、圧縮機と凝縮器の間に流路制御手段として四方弁を
用いることにより、冷却システムを簡素化でき、部品点
数の削減,冷蔵庫の収納性が向上する。
In addition, according to the refrigerator of the sixth aspect of the present invention, in the refrigerator of any one of the first to fifth aspects, a four-way valve is used as a flow path control means between the compressor and the condenser. As a result, the cooling system can be simplified, the number of parts can be reduced, and the refrigerator can be stored more easily.

【0076】加えて、本発明の請求項7記載の冷蔵庫に
よれば、請求項1〜6記載のいずれかの冷蔵庫におい
て、除霜中は蒸発器,凝縮器のファンを停止させること
により除霜効率の向上と消費電力量の削減が可能とな
る。
In addition, according to the refrigerator of the present invention, in the refrigerator of any one of claims 1 to 6, defrosting is performed by stopping a fan of an evaporator and a condenser during defrosting. It is possible to improve efficiency and reduce power consumption.

【0077】加えて、本発明の請求項8記載の冷蔵庫に
よれば、請求項1〜6記載のいずれかの冷蔵庫におい
て、第一区画にある庫内温度の検知手段により、第一の
蒸発器のファンの運転動作を規定することにより、第一
区画の温度を適正温度に保持することができる。
In addition, according to the refrigerator of the eighth aspect of the present invention, in the refrigerator of any one of the first to sixth aspects, the first evaporator is detected by the means for detecting the internal temperature in the first compartment. By defining the operation of the fan, the temperature of the first section can be maintained at an appropriate temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷蔵庫の正面図FIG. 1 is a front view of a refrigerator according to the present invention.

【図2】本発明の第一実施の形態にかかる冷蔵庫の冷凍
サイクル構成図
FIG. 2 is a configuration diagram of a refrigeration cycle of the refrigerator according to the first embodiment of the present invention.

【図3】本発明の第二実施の形態にかかる冷蔵庫の冷凍
サイクル構成図
FIG. 3 is a configuration diagram of a refrigeration cycle of a refrigerator according to a second embodiment of the present invention.

【図4】本発明の第三実施の形態にかかる冷蔵庫の冷凍
サイクル構成図
FIG. 4 is a configuration diagram of a refrigeration cycle of a refrigerator according to a third embodiment of the present invention.

【図5】本発明の第四実施の形態にかかる冷蔵庫の冷凍
サイクル構成図
FIG. 5 is a configuration diagram of a refrigeration cycle of a refrigerator according to a fourth embodiment of the present invention.

【図6】本発明の第五実施の形態にかかる冷蔵庫の冷凍
サイクル構成図
FIG. 6 is a configuration diagram of a refrigeration cycle of a refrigerator according to a fifth embodiment of the present invention.

【図7】従来の冷蔵庫の蒸発器周辺構造を示す断面図FIG. 7 is a sectional view showing the structure around the evaporator of a conventional refrigerator.

【図8】従来の冷蔵庫の冷凍サイクル構成図FIG. 8 is a configuration diagram of a refrigeration cycle of a conventional refrigerator.

【図9】従来の冷蔵庫における蒸発器の霜取り制御のタ
イムチャート
FIG. 9 is a time chart of defrosting control of an evaporator in a conventional refrigerator.

【図10】従来の冷蔵庫における一実施形態にかかる冷
凍サイクル構成図
FIG. 10 is a configuration diagram of a refrigeration cycle according to an embodiment of a conventional refrigerator.

【図11】従来の冷蔵庫における一実施形態にかかる蒸
発器の霜取り制御のタイムチャート
FIG. 11 is a time chart of a defrosting control of an evaporator according to an embodiment in a conventional refrigerator.

【符号の説明】[Explanation of symbols]

21 冷凍冷蔵庫箱体 22 第一区画 23 第二区画 24 区画の仕切り体 25 第一の蒸発器 26 第一の蒸発器用ファンモータ 27 第二の蒸発器 28 第二の蒸発器用ファンモータ 29 圧縮機 30 凝縮器用ファンモータ 31 凝縮器 32 第一の減圧手段 33 第二の減圧手段 34,39 第一の流路制御手段 35,40 第二の流路制御手段 36 冷却回路 37,41 第三の流路制御手段 38 除霜回路 42 冷却回路と第2の除霜回路を制御する流路制御手
段 43 第一の除霜回路 44 第二の除霜回路 45 温度検知手段
Reference Signs List 21 refrigerator-freezer box 22 first section 23 second section 24 partition section 25 first evaporator 26 first evaporator fan motor 27 second evaporator 28 second evaporator fan motor 29 compressor 30 Condenser fan motor 31 Condenser 32 First decompression means 33 Second decompression means 34, 39 First flow path control means 35, 40 Second flow path control means 36 Cooling circuits 37, 41 Third flow path Control means 38 Defrosting circuit 42 Flow path control means for controlling the cooling circuit and the second defrosting circuit 43 First defrosting circuit 44 Second defrosting circuit 45 Temperature detecting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 正昭 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 西村 晃一 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 Fターム(参考) 3L045 AA01 AA02 AA03 BA01 CA02 DA02 EA01 HA02 HA07 JA03 JA14 JA15 LA09 LA14 NA03 NA05 PA01 PA04 PA05 3L046 AA01 AA02 AA03 BA01 CA03 JA03 JA09 JA14 LA02 LA05 MA01 MA04 MA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaaki Tanaka 4-5-2-5 Takaida Hondori, Higashi-Osaka City, Osaka Inside Matsushita Refrigerating Machinery Co., Ltd. (72) Koichi Nishimura 4-chome Takaida Hondori, Higashi-Osaka City, Osaka Prefecture No.2 No.5 Matsushita Refrigeration Co., Ltd. F term (reference) 3L045 AA01 AA02 AA03 BA01 CA02 DA02 EA01 HA02 HA07 JA03 JA14 JA15 LA09 LA14 NA03 NA05 PA01 PA04 PA05 3L046 AA01 AA02 AA03 BA01 CA03 JA03 JA09 JA14 LA02 LA05 MA01 MA04 MA05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】少なくとも二つの異なる温度帯で温度調節
を行う区画で構成され、比較的高温度の第一の区画と比
較的低温度の第二の区画を有する冷蔵庫箱体と、前記第
一の区画に第一の蒸発器と前記第二の区画に第二の蒸発
器を配設し、圧縮機、凝縮器、第一の流路制御手段と第
一の減圧手段を介した前記第一の蒸発器を順次接続し、
第二の減圧手段を介した前記第二の蒸発器を前記第一の
蒸発器を並列に接続し、前記第二の蒸発器の出口側に第
二の流路制御手段を設け第一の区画と第二の区画を独立
に冷却する装置を備えた冷蔵庫において、除霜時には前
記圧縮機より吐出された高温ガス冷媒を第二の蒸発器に
流入させるため前記圧縮機と前記凝縮器との間に設けら
れた除霜用流路および第三の流路制御手段と除霜時には
前記第二の蒸発器から第一の蒸発器への流路を確保する
ため第一の流路制御手段には前記第一の蒸発器の冷却回
路、前記第二の蒸発器の冷却回路、そして除霜用回路の
三方向に切り替え可能な流路制御手段とそれらを制御す
る制御手段を備えることにより第二の蒸発器を除霜する
ことを特徴とする可燃性冷媒を用いた冷蔵庫。
1. A refrigerator box comprising at least two compartments for controlling temperature in different temperature zones, comprising a first compartment having a relatively high temperature and a second compartment having a relatively low temperature. A first evaporator in the section and a second evaporator in the second section, a compressor, a condenser, the first through a first flow path control means and a first decompression means Are connected in sequence,
The second evaporator is connected in parallel with the first evaporator via a second decompression means, and a second flow path control means is provided on an outlet side of the second evaporator to provide a first section. And a refrigerator provided with a device for independently cooling the second compartment, wherein the high-temperature gas refrigerant discharged from the compressor flows into the second evaporator at the time of defrosting. The defrosting flow path and the third flow path control means provided in the first flow path control means for securing a flow path from the second evaporator to the first evaporator at the time of defrosting The cooling circuit of the first evaporator, the cooling circuit of the second evaporator, and a defrosting circuit including a flow path control means that can be switched in three directions and a control means for controlling them, thereby providing a second circuit. A refrigerator using a flammable refrigerant, which defrosts an evaporator.
【請求項2】少なくとも二つの異なる温度帯で温度調節
を行う区画で構成され、比較的高温度の第一の区画と比
較的低温度の第二の区画を有する冷蔵庫箱体と、前記第
一の区画に第一の蒸発器と前記第二の区画に第二の蒸発
器を配設し、圧縮機、冷媒回路と除霜回路を制御する第
一の流路制御手段と凝縮器と第一の減圧手段を介した前
記第一の蒸発器を順次接続し、第二の減圧手段を介した
前記第二の蒸発器を前記第一の蒸発器と並列に接続し、
前記第一の蒸発器の出口側と第二の蒸発器の出口側にそ
れぞれの流路を制御する第二の流路制御手段と第三の流
路制御手段を配設し、第一区画と第二区画を独立に冷却
する装置を備えた冷蔵庫において、除霜時には前記圧縮
機より吐出された高温ガス冷媒を第二の蒸発器に流入さ
せるため前記圧縮機と前記凝縮器との間に設けられた第
一の流路制御手段と除霜用流路により除霜時には除霜用
回路から第二の蒸発器へ高温ガス冷媒が流れるようにす
る制御手段を備えたことを特徴とする可燃性冷媒を用い
た冷蔵庫。
2. A refrigerator box, comprising a compartment for controlling temperature in at least two different temperature zones, having a first compartment having a relatively high temperature and a second compartment having a relatively low temperature; A first evaporator in the section and a second evaporator in the second section, a compressor, a first flow path control means for controlling a refrigerant circuit and a defrost circuit, a condenser and a first The first evaporator is sequentially connected via a decompression means, and the second evaporator is connected in parallel with the first evaporator via a second decompression means,
A second flow path control means and a third flow path control means for controlling the respective flow paths on the outlet side of the first evaporator and the outlet side of the second evaporator are provided, and the first section and In a refrigerator provided with a device that independently cools the second section, at the time of defrosting, a high-temperature gas refrigerant discharged from the compressor is provided between the compressor and the condenser to flow into the second evaporator. Flammability characterized by comprising a first flow path control means and a control means for allowing a high-temperature gas refrigerant to flow from the defrost circuit to the second evaporator at the time of defrost by the defrost flow path. Refrigerator using refrigerant.
【請求項3】第二の流路制御手段と第三の流路制御手段
を1つにまとめた流路制御手段を備えたことを特徴とす
る請求項1,2記載のいずれか一項記載の冷蔵庫。
3. The apparatus according to claim 1, further comprising a flow path control means in which the second flow path control means and the third flow path control means are integrated into one. Refrigerator.
【請求項4】第一の蒸発器の冷却回路、第二の蒸発器の
冷却回路、そして除霜用回路の三方向に切り替え可能な
第一の流路制御手段を3つの流路制御手段に置き換えた
ことを特徴とする請求項1〜3記載のいずれか一項記載
の冷蔵庫。
4. The first flow path control means, which can be switched in three directions, a cooling circuit for the first evaporator, a cooling circuit for the second evaporator, and a defrosting circuit, is replaced with three flow path control means. The refrigerator according to any one of claims 1 to 3, wherein the refrigerator is replaced.
【請求項5】除霜時には第二の蒸発器から第一の蒸発器
への流路を確保するのではなく、第二の蒸発器から凝縮
器への流れを確保する流路制御手段と圧縮機と凝縮器の
間に第一の除霜用回路とは異なる場所に新たな第二の除
霜用回路と流路制御手段を備えることを特徴とする請求
項1〜4記載のいずれか一項記載の冷蔵庫。
5. A flow control means for securing a flow from the second evaporator to the condenser instead of securing a flow path from the second evaporator to the first evaporator during defrosting. A new second defrosting circuit and a flow path control means are provided between the machine and the condenser at a location different from the first defrosting circuit. Item.
【請求項6】圧縮機と凝縮器の間にある第一の除霜回路
の分流と第二の除霜回路の流路制御手段を1つにまとめ
た新たな流路制御手段で構成されたことを特徴とする請
求項1〜5記載のいずれか一項記載の冷蔵庫。
6. A new flow path control means which integrates the flow dividing means of the first defrost circuit and the flow control means of the second defrost circuit between the compressor and the condenser into one. The refrigerator according to any one of claims 1 to 5, characterized in that:
【請求項7】第一区画と第二区画の冷却を促進させるた
めの蒸発器用ファンおよび凝縮器用ファンの運転につい
て、除霜中は蒸発器用ファンおよび凝縮用ファンは停止
する制御回路を設けた請求項1〜6記載のいずれか一項
記載の冷蔵庫。
7. The operation of an evaporator fan and a condenser fan for promoting cooling of the first section and the second section, wherein a control circuit for stopping the evaporator fan and the condensing fan during defrosting is provided. Item 7. The refrigerator according to any one of Items 1 to 6.
【請求項8】第一区画と第二区画の冷却を促進させるた
めの蒸発器用ファンおよび凝縮器用ファンの運転につい
て、除霜中は第一の蒸発器用ファンは庫内温度検知手段
により決められたモードで運転もしくは停止を行い、第
二の蒸発器用ファンおよび凝縮用ファンは停止する制御
回路を設けた請求項1〜6記載のいずれか一項記載の冷
蔵庫。
8. The operation of the evaporator fan and the condenser fan for accelerating the cooling of the first section and the second section, during the defrosting, the first evaporator fan is determined by the internal temperature detecting means. The refrigerator according to any one of claims 1 to 6, further comprising a control circuit that operates or stops in a mode and stops the second evaporator fan and the condensing fan.
JP10298262A 1998-10-20 1998-10-20 Refrigerator Pending JP2000121232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298262A JP2000121232A (en) 1998-10-20 1998-10-20 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298262A JP2000121232A (en) 1998-10-20 1998-10-20 Refrigerator

Publications (1)

Publication Number Publication Date
JP2000121232A true JP2000121232A (en) 2000-04-28

Family

ID=17857361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298262A Pending JP2000121232A (en) 1998-10-20 1998-10-20 Refrigerator

Country Status (1)

Country Link
JP (1) JP2000121232A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
CN102967118A (en) * 2012-12-12 2013-03-13 合肥美菱股份有限公司 Refrigerator defrosting control method and refrigerator adopting method
EP2142865A4 (en) * 2007-03-29 2015-03-04 Lg Electronics Inc Control method of refrigerator
CN110345697A (en) * 2019-07-18 2019-10-18 广东海洋大学 A kind of refrigerator
KR20190122426A (en) * 2018-04-20 2019-10-30 엘지전자 주식회사 Cooling system for a low temperature storage
KR20190126553A (en) * 2018-05-02 2019-11-12 엘지전자 주식회사 Cooling system for a low temperature storage
KR20200017083A (en) * 2018-08-08 2020-02-18 엘지전자 주식회사 Cooling system for a low temperature storage
CN115406161A (en) * 2022-08-31 2022-11-29 珠海格力电器股份有限公司 Evaporator defrosting judgment method, control device and refrigerator
US11965683B2 (en) 2018-04-20 2024-04-23 Lg Electronics Inc. Cooling system for low temperature storage

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2142865A4 (en) * 2007-03-29 2015-03-04 Lg Electronics Inc Control method of refrigerator
US9086233B2 (en) 2007-03-29 2015-07-21 Lg Electronics Inc. Control method of refrigerator
JP2010133590A (en) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp Refrigerator-freezer
CN102967118A (en) * 2012-12-12 2013-03-13 合肥美菱股份有限公司 Refrigerator defrosting control method and refrigerator adopting method
KR102582578B1 (en) * 2018-04-20 2023-09-26 엘지전자 주식회사 Cooling system for a low temperature storage
US11965683B2 (en) 2018-04-20 2024-04-23 Lg Electronics Inc. Cooling system for low temperature storage
KR20190122426A (en) * 2018-04-20 2019-10-30 엘지전자 주식회사 Cooling system for a low temperature storage
KR20190126553A (en) * 2018-05-02 2019-11-12 엘지전자 주식회사 Cooling system for a low temperature storage
KR102491229B1 (en) * 2018-05-02 2023-01-25 엘지전자 주식회사 Cooling system for a low temperature storage
KR20200017083A (en) * 2018-08-08 2020-02-18 엘지전자 주식회사 Cooling system for a low temperature storage
KR102583881B1 (en) * 2018-08-08 2023-10-04 엘지전자 주식회사 Cooling system for a low temperature storage
CN110345697B (en) * 2019-07-18 2024-01-30 广东海洋大学 Refrigerator with a refrigerator body
CN110345697A (en) * 2019-07-18 2019-10-18 广东海洋大学 A kind of refrigerator
CN115406161A (en) * 2022-08-31 2022-11-29 珠海格力电器股份有限公司 Evaporator defrosting judgment method, control device and refrigerator

Similar Documents

Publication Publication Date Title
EP1087186B1 (en) Refrigerator with two evaporators
EP2225507B1 (en) Refrigerator and control method for the same
US8250875B2 (en) Dual evaporator defrost system for an appliance
EP1394481B1 (en) Refrigerator
US20120023975A1 (en) Refrigerator and control method thereof
JP2000121232A (en) Refrigerator
KR100348068B1 (en) Controlling method of refrigerator
JP4253957B2 (en) refrigerator
JP6447165B2 (en) Refrigeration equipment
JP4333586B2 (en) Refrigeration cycle apparatus and control method thereof
JP2000346526A (en) Cooling system
JP4021209B2 (en) refrigerator
JP2005180719A (en) Refrigerator
JPH11304333A (en) Control method for refrigerator
JP3600009B2 (en) Refrigerator control method
JP2002195724A (en) Refrigerator
JP2005098605A (en) Refrigerator
JP2004144364A (en) Refrigerator
JP2000230768A (en) Refrigerator
JP2005164198A (en) Refrigerator
JP2003161563A (en) Operation control method for freezing and refrigerating reach-in showcase
JP3013296B2 (en) Multiple showcase cooling system
JP2000258040A (en) Refrigerator and control method therefor
JP6705141B2 (en) vending machine
JP2004125214A (en) Refrigerator