JPH02150449A - Molding material - Google Patents

Molding material

Info

Publication number
JPH02150449A
JPH02150449A JP30407688A JP30407688A JPH02150449A JP H02150449 A JPH02150449 A JP H02150449A JP 30407688 A JP30407688 A JP 30407688A JP 30407688 A JP30407688 A JP 30407688A JP H02150449 A JPH02150449 A JP H02150449A
Authority
JP
Japan
Prior art keywords
weight
parts
polyamide resin
type glass
fiber type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30407688A
Other languages
Japanese (ja)
Inventor
Noriyoshi Watanabe
渡辺 宣義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP30407688A priority Critical patent/JPH02150449A/en
Publication of JPH02150449A publication Critical patent/JPH02150449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a molding material having excellent mechanical properties such as breakage torque and tensile strength and suitable for fine shapes such as gears by compounding a polyamide resin with a mixture of long fiber type glass fibers and short fiber type glass fibers. CONSTITUTION:100 pts.wt. of a polyamide is compounded with 50-250 pts.wt. of a mixture of long fiber type glass fibers having fiber lengths of >=2mm and short fiber type glass fibers having an average fiber length of 0.1-1mm to provide a molding material, the glass fiber mixture comprising the long fiber type glass fibers and the short fiber type glass fibers in a ratio of 100 pts.wt./(10-100) pts.wt. The polyamide resin is preferably mixed polyamides comprising 40-99 pts.wt. of a polyamide resin prepared from xylylenediamine and an alpha,omega-straight chain aliphatic dibasic acid and 60-1 pts.wt. of nylon 66. Adipic acid is especially suitable among the alpha,omega-straight chain aliphatic dibasic acids.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的性質に優れたガラス繊維強化ポリアミ
ド樹脂成形材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a glass fiber reinforced polyamide resin molding material having excellent mechanical properties.

更に詳しくは、本発明は、ボルトや歯車等のように細か
い形状を有する成形品においても、優れた機械的性質、
特に破壊トルク、引張強度等に優れた機械的性質を有す
るポリアミド樹脂成形材料に関するものである。
More specifically, the present invention provides excellent mechanical properties, even in molded products with fine shapes such as bolts and gears.
In particular, it relates to a polyamide resin molding material having excellent mechanical properties such as breaking torque and tensile strength.

[従来の技術] ポリアミド樹脂は、一般に機械的性質に優れ、かつ熱的
性質や化学的性質にも優れる為、電気、電子部品、機械
、精密部品或いは、自動車部品等の成形材料として広く
使用されている。
[Prior Art] Polyamide resin generally has excellent mechanical properties as well as excellent thermal and chemical properties, so it is widely used as a molding material for electrical, electronic parts, machinery, precision parts, automobile parts, etc. ing.

更に、ガラス繊維で強化したポリアミド樹脂は機械的性
質に優れているため、金属代替材料として応用分野が広
がっており、特に高強度、高剛性、高衝撃性が要求され
ている分野では長繊維タイプのガラス繊維が使用されて
いる。しかし、ボルトや歯車等のように細かい形状を有
する成形品では、その細部にまで長繊維タイプのガラス
繊維が十分充填されず、逆に成形品の機械的性質が低下
し、実用上問題となっている。
Furthermore, glass fiber-reinforced polyamide resin has excellent mechanical properties, so it is being used in a wide range of fields as a substitute for metals.In particular, long-fiber type resins are used in fields that require high strength, high rigidity, and high impact resistance. glass fiber is used. However, in molded products with fine shapes such as bolts and gears, the long fiber type glass fibers are not sufficiently filled into the details, which deteriorates the mechanical properties of the molded product and poses a practical problem. ing.

[発明が解決しようとする課題] 本発明の目的は、上述の如き従来技術の欠陥を克服し商
品価値の高い成形材料を提供する事にある。すなわち本
発明の目的は、機械的性質に優れた成形品の成形材料で
あって、かつボルトや歯車等の細かい形状を有する成形
品に成形しても優れた機械的性質を有するポリアミド樹
脂成形材料を提供する事にある。
[Problems to be Solved by the Invention] An object of the present invention is to overcome the deficiencies of the prior art as described above and to provide a molding material with high commercial value. In other words, an object of the present invention is to provide a polyamide resin molding material that has excellent mechanical properties even when molded into molded products with fine shapes such as bolts and gears. The goal is to provide the following.

[課題を解決するための手段] 本発明者らは鋭意、検討の結果、ポリアミド樹脂に繊維
長2mm以上の長繊維タイプガラス繊維および平均繊維
長0.1〜Irnmの短繊維タイプガラス繊維の混合物
を含む成形材料を使用すると細かい形状を有する成形品
においても、ガラス繊維が十分充填され、優れた機械的
強度や剛性が得られることを見出し、本発明に到達した
[Means for Solving the Problems] As a result of extensive studies, the present inventors have developed a polyamide resin containing a mixture of long fiber type glass fibers with a fiber length of 2 mm or more and short fiber type glass fibers with an average fiber length of 0.1 to Irnm. The present inventors have discovered that when a molding material containing .

すなわち本発明は、ポリアミド樹脂100重量部に対し
、繊維長2mm以上の長繊維タイプガラス繊維および平
均繊維長0. 1〜1mmの短繊維タイプガラス繊維か
らなるガラス繊維混合物を50〜250重量部含有する
ポリアミド樹脂成形材料であって、該ガラス繊維混合物
は該長繊維タイプガラス繊維100重量部に対し該短繊
維タイプガラス繊維が10〜100重量部配合されたも
のであることを特徴とするポリアミド樹脂成形材料に関
する発明である。
That is, the present invention uses long-fiber type glass fibers with a fiber length of 2 mm or more and an average fiber length of 0.5 mm based on 100 parts by weight of polyamide resin. A polyamide resin molding material containing 50 to 250 parts by weight of a glass fiber mixture consisting of short fiber type glass fibers of 1 to 1 mm, wherein the glass fiber mixture is composed of short fiber type glass fibers based on 100 parts by weight of the long fiber type glass fibers. This invention relates to a polyamide resin molding material characterized by containing 10 to 100 parts by weight of glass fiber.

本発明で使用されるポリアミド樹脂として、四員環以上
のラクタムもしくはω−アミノ酸の重縮合、または二塩
基酸とジアミンとの重縮合によって得られるポリアミド
樹脂が挙げられる。
Examples of the polyamide resin used in the present invention include polyamide resins obtained by polycondensation of lactams or ω-amino acids having four or more membered rings, or polycondensation of dibasic acids and diamines.

上記四員環以上のラクタムもしくはω−アミノ酸として
ε−カプロラクタム、ω−ラウロラクタム、ω−アミノ
カプリル酸、ω−アミノラウリン酸が例示できる。
Examples of the lactam or ω-amino acid having four or more membered rings include ε-caprolactam, ω-laurolactam, ω-aminocaprylic acid, and ω-aminolauric acid.

二塩基酸とジアミンから得られるポリアミドとして、ゲ
ルタール酸、アジピン酸、アゼライン酸、セバシン酸、
スペリン酸、ドデカンニ酸、エイコシオン酸、イソフタ
ール酸、テレフタール酸、等の二塩基酸とテトラメチレ
ンジアミン、ヘキサメチレンジアミン、オクタメチレン
ジアミン、メタキシリレンジアミン、パラキシリレンジ
アミン、パラフェニレンジアミン等のジアミンン類から
得られる重合体もしくは共重合体が例示できる。
Polyamides obtained from dibasic acids and diamines include geltaric acid, adipic acid, azelaic acid, sebacic acid,
Dibasic acids such as speric acid, dodecanniic acid, eicosionic acid, isophthalic acid, and terephthalic acid, and diamines such as tetramethylene diamine, hexamethylene diamine, octamethylene diamine, metaxylylene diamine, paraxylylene diamine, and paraphenylene diamine. Examples include polymers or copolymers obtained from

上記ポリアミドの具体例として、ナイロン4、ナイロン
6、ナイロン12、ナイロン66、ナイロン610、ナ
イロン612、ポリメタキシリレンアジパミド、ポリメ
タキシリレンアジパミド、ポリメタキシレンドデカミド
、ポリへキサメチレンテレフタラミド等およびこれらの
混合物あるいは共重合体が挙げられるが、特にこれらに
限定されるものではない。
Specific examples of the polyamides include nylon 4, nylon 6, nylon 12, nylon 66, nylon 610, nylon 612, polymethaxylylene adipamide, polymethaxylylene adipamide, polymethaxylene dodecamide, polyhexamethylene Examples include, but are not limited to, phthalamide and mixtures or copolymers thereof.

本発明において、上記に例示したポリアミドのなかでも
メタキシリレン基含有ポリアミド樹脂(以下、rMXナ
イロン」という)を使用すると特に機械的特性、耐水性
等の点で優れた性能を有する成形品が得られる。
In the present invention, among the polyamides exemplified above, when a metaxylylene group-containing polyamide resin (hereinafter referred to as rMX nylon) is used, a molded article having particularly excellent performance in terms of mechanical properties, water resistance, etc. can be obtained.

上記MXナイロンの中でも好適なものとして、メタキシ
リレンジアミン単独、あるいはメタキシリレンジアミン
60重量%以上、パラキシリレンジアミン40重量%以
下のジアミン混合物と炭素数6から20のα、ω−直鎖
脂肪族二塩基酸、例えば、アジピン酸、セバシン酸、ス
ペリン酸、ドデカンニ酸、エイコシオン酸等との重縮合
反応によって合成されるポリアミド樹脂が挙げられる。
Among the above-mentioned MX nylons, metaxylylene diamine alone or a diamine mixture containing 60% by weight or more of metaxylylene diamine and 40% by weight or less of para-xylylene diamine and an α, ω-linear chain having 6 to 20 carbon atoms are preferable. Examples include polyamide resins synthesized by polycondensation reaction with aliphatic dibasic acids such as adipic acid, sebacic acid, sperinic acid, dodecanoic acid, and eicosionic acid.

MXナイロンの中でも成形性、成形物性能等のバランス
を考慮すると上記α、ω−直鎖脂肪族二塩基酸の中では
、アジピン酸が特に好適である。
Among the MX nylons, adipic acid is particularly preferred among the α,ω-linear aliphatic dibasic acids, considering the balance of moldability, molded product performance, and the like.

更にポリアミド樹脂として、Mxナイロンを使用する場
合、MXナイロンにナイロン66を配合すると、MXナ
イロンの成形性すなわち成形時のサイクル時間を短縮で
きる効果がある。
Furthermore, when Mx nylon is used as the polyamide resin, blending nylon 66 with the MX nylon has the effect of shortening the moldability of the MX nylon, that is, the cycle time during molding.

この場合、MXナイロンに対するナイロン66の配合割
合は、成形時間の短縮の面からみれば広い範囲に渡って
効果があり、その配合割合は、MXナイロン40〜99
重量部に対しナイロン6660〜1重量部、好ましくは
MXナイロン60〜97重量部に対し、ナイロン664
0〜3重置部である。
In this case, the blending ratio of nylon 66 to MX nylon is effective over a wide range in terms of shortening molding time, and the blending ratio is 40 to 99% for MX nylon.
Nylon 6660 to 1 part by weight, preferably 60 to 97 parts by weight of MX nylon to nylon 664
There are 0 to 3 overlapping parts.

ナイロン66の配合割合がMXナイロン99重量部に対
して1重量部以下の場合には、MXナイロンの成形性改
良の効果が小さい。又、MXナイロンの配合割合がナイ
ロン6660重量部に対して40重量部以下の場合には
、機械的強度の低下や吸水による物性低下等の性能低下
を生じ好ましくない。
When the blending ratio of nylon 66 is less than 1 part by weight based on 99 parts by weight of MX nylon, the effect of improving the moldability of MX nylon is small. Furthermore, if the blending ratio of MX nylon is less than 40 parts by weight based on 6660 parts by weight of nylon, it is not preferable because performance such as a decrease in mechanical strength or a decrease in physical properties due to water absorption occurs.

本発明における短繊維タイプガラス繊維としてチョツプ
ドストランドまたはミルドファイバーが使用される。
Chopped strands or milled fibers are used as short fiber type glass fibers in the present invention.

後述するように、短繊維タイプガラスm維は、ポリアミ
ド樹脂およびガラスロービングとともに押出機を用いて
押出しすることにより成形材料(ベレット状)に成形さ
れる。
As will be described later, the short fiber type glass m-fiber is molded into a molding material (in the form of a pellet) by extruding it together with a polyamide resin and glass roving using an extruder.

このとき、成形材料中の短uJl維タイプガラス繊維の
平均繊維長は0.1〜l、Qmmである。
At this time, the average fiber length of the short uJl type glass fibers in the molding material is 0.1 to 1, Qmm.

成形材料中の短繊維タイプガラス繊維の平均繊維長が0
.1mm以下では成形品の機械的強度が不十分となり好
ましくなく、また、平均繊維長が1、Qmm以上では、
成形品の細かい形状部分へのガラス繊維の充填が不良と
なり、細かい形状の部分で機械的強度が不十分となり好
ましくない。
The average fiber length of short fiber type glass fibers in the molding material is 0.
.. If the average fiber length is 1 mm or less, the mechanical strength of the molded product will be insufficient, and if the average fiber length is 1.Q mm or more,
This is not preferable because the glass fibers are not properly filled into the finely shaped parts of the molded product, and the mechanical strength is insufficient in the finely shaped parts.

本発明の長繊維タイプガラス繊維として通常のガラスロ
ービングが使用できる。
Ordinary glass roving can be used as the long fiber type glass fiber of the present invention.

本発明の成形材料(ペレット状)における長繊維タイプ
ガラス繊維の繊維長は2mm以上、好ましくは2.5m
m以上、特に好ましくは3mm以上である。
The fiber length of the long fiber type glass fiber in the molding material (pellet form) of the present invention is 2 mm or more, preferably 2.5 m.
m or more, particularly preferably 3 mm or more.

本発明のポリアミド樹脂成形材料は、−船内には、押出
機を用いて、ポリアミドの融点または流動開始温度より
5〜50℃高い温度でポリアミドと短繊維タイプのガラ
ス繊維であるガラス繊維チョツプドストランドまたはミ
ルドファイバーを溶融混練し、さらにダイにて此の混合
物を長繊維タイプガラス繊維となるガラスロービングに
含浸させたのちペレタイザーで切断して得られる。こに
おいて、成形材料をペレタイザーで2mm以上の長さに
切断する。
The polyamide resin molding material of the present invention is produced using an extruder in which polyamide and chopped glass fibers, which are short fiber type glass fibers, are heated at a temperature 5 to 50°C higher than the melting point or flow start temperature of the polyamide. It is obtained by melt-kneading strands or milled fibers, impregnating the mixture into a glass roving to become long fiber type glass fibers using a die, and cutting the glass roving using a pelletizer. In this step, the molding material is cut into lengths of 2 mm or more using a pelletizer.

成形材料を2mm以下の長さに切断すると成形材料中の
長繊維タイプガラス繊維の繊維長も当然に2mm以下と
なり、この場合、成形品において補強効果が少なくなり
好ましくない。
If the molding material is cut into lengths of 2 mm or less, the fiber length of the long fiber type glass fibers in the molding material will naturally be 2 mm or less, and in this case, the reinforcing effect in the molded product will be reduced, which is not preferable.

本発明で用いられる短繊維タイプおよび長繊維タイプの
ガラス繊維は、平均繊維径が5〜15μmのものが好ま
しいが、本発明はこの繊維径に限定されるものではない
The short fiber type and long fiber type glass fibers used in the present invention preferably have an average fiber diameter of 5 to 15 μm, but the present invention is not limited to this fiber diameter.

本発明の成形材料における長繊維タイプガラス繊維と短
繊維タイプガラス繊維の混合物の配合割合は、上記のポ
リアミド樹脂100重量部に対し50〜250重量部、
好ましくは、70〜200重量部である。ポリアミド樹
脂100重量部に対し、上記のガラス繊維混合物が50
重世部以下の場合は成形品の機械的強度の改良効果が少
なく、一方上記のガラス繊維混合物が250重量部以上
では成形加工において流動性が悪く実用上問題を生ずる
The blending ratio of the mixture of long fiber type glass fiber and short fiber type glass fiber in the molding material of the present invention is 50 to 250 parts by weight per 100 parts by weight of the above polyamide resin,
Preferably it is 70 to 200 parts by weight. 50 parts by weight of the above glass fiber mixture per 100 parts by weight of polyamide resin.
If the amount is less than 250 parts by weight, the effect of improving the mechanical strength of the molded product will be small, while if the glass fiber mixture is more than 250 parts by weight, the fluidity will be poor during molding processing, causing practical problems.

また、本発明において、長繊維タイプガラス繊維と短繊
維タイプガラス繊維の配合割合は、長繊維タイプガラス
繊維100重量部に対して、短繊維タイプガラス繊維1
0〜100重量部である。
In addition, in the present invention, the blending ratio of long fiber type glass fiber and short fiber type glass fiber is 100 parts by weight of long fiber type glass fiber to 1 part by weight of short fiber type glass fiber.
It is 0 to 100 parts by weight.

長繊維タイプガラス繊維100重量部に対して短繊維タ
イプガラス繊維の配合量が、10重量部以下では、成形
品の細かい形状の部分へのガラス繊維の充填が不充分と
なり、機械的強度が低いものしか得られない、一方、短
繊維タイプガラス繊維の配合量が100重量部以上では
、成形品の機械的強度の改良効果が少ない。
If the blending amount of short fiber type glass fiber is less than 10 parts by weight per 100 parts by weight of long fiber type glass fiber, the filling of the glass fiber into the finely shaped parts of the molded product will be insufficient and the mechanical strength will be low. On the other hand, if the amount of short fiber type glass fiber added is 100 parts by weight or more, the effect of improving the mechanical strength of the molded article is small.

本発明で用いられるガラス繊維は、それが表面無処理の
ものであっても良く、また、シランカップリング剤やチ
タネート系カップリン剤等のカップリング剤で表面処理
したものであってもよいがカップリング剤で処理したも
のが好ましい。
The glass fiber used in the present invention may be surface-untreated or may be surface-treated with a coupling agent such as a silane coupling agent or a titanate coupling agent. Those treated with a coupling agent are preferred.

本発明のポリアミド樹脂成形材料には、更に添加剤、例
えば酸化、熱および紫外等による劣化に対する安定剤、
核剤、可ツ剤、離型剤、帯電防止剤、滑剤、顔料等を適
宜配合する事ができる。
The polyamide resin molding material of the present invention further contains additives, such as stabilizers against deterioration due to oxidation, heat, ultraviolet light, etc.
A nucleating agent, a lubricating agent, a mold release agent, an antistatic agent, a lubricant, a pigment, etc. can be blended as appropriate.

また本発明のポリアミド樹脂組成物に本発明の目的を損
なわない範囲に於て、炭酸カルシウム、タルク、ウオラ
ストナイト等の無機フィラー及びチタン酸カリウム、炭
化珪素のウィスカー、炭素繊維、セラミックファイバー
及びカーボンブラック等の顔料等を適宜配合する事もで
きる。
In addition, inorganic fillers such as calcium carbonate, talc, and wollastonite, potassium titanate, silicon carbide whiskers, carbon fibers, ceramic fibers, and carbon fibers may be added to the polyamide resin composition of the present invention within a range that does not impair the purpose of the present invention. Pigments such as black may also be appropriately blended.

[発明の効果] 本発明のポリアミド樹脂成形材料は、特に機械的性質に
優れた成形品を提供するものであり、従来の長繊維タイ
プガラス繊維のみで強化したポリアミド樹脂の欠点であ
る細かい形状を有する成形品での強度低下をなくしたこ
とにより金属代替材料としてきわめて有用なものである
[Effects of the Invention] The polyamide resin molding material of the present invention provides a molded product with particularly excellent mechanical properties, and eliminates the fine shape that is a drawback of conventional polyamide resins reinforced only with long fiber type glass fibers. It is extremely useful as a metal substitute material because it eliminates the decrease in strength of molded products.

[実施例] 次に実施例及び比較例を挙げて本発明について具体的に
説明する。本発明の細かい形状を有する成形品の細部へ
のガラス繊維充填および機械的性質の評価方法は、以下
に示すボルトの成形品の破壊トルクおよび引張強度の測
定によった。
[Example] Next, the present invention will be specifically described with reference to Examples and Comparative Examples. The method of filling glass fiber into the details of a molded article having a fine shape and evaluating the mechanical properties of the present invention was by measuring the breaking torque and tensile strength of the bolt molded article as described below.

ボルトは、M6並目六角ポル)(JISB1180に準
拠)を射出成形により成形した。
The bolt was molded using M6 coarse hexagonal bolt (based on JISB1180) by injection molding.

破壊トルクは、カラン空転式トルクドライバーを用いて
測定した。
The breaking torque was measured using a Karan idle-rotating torque screwdriver.

また、引張強度は、上記ボルトにM6用ナツトを取り付
け、軸方向に互いに対称をなす方向に引張り(引張速度
5mm/分)、このときバルトが破損するときの強度を
引張強度とした。
The tensile strength was measured by attaching an M6 nut to the bolt and pulling it in axially symmetrical directions (at a pulling speed of 5 mm/min), and taking the strength at which the bolt breaks at this time as the tensile strength.

実施例1 ポリ (メタキシリレンアジパミド)(三菱瓦斯化学■
製、重合体1gを98%硫酸100m1に溶解し、25
℃で測定した相対粘度(J I S−に6810 (1
977))に準拠して行なった。以下「相対粘度」とい
う):2.14のもの)90重量部およびナイロン66
(相対粘度:2.25)のペレット10重量部、長さ3
mmのガラス繊維チョツプドストランド14.3重量部
をタンブラ−で混合し、ベント式押出機を用いて、27
5℃で溶融混練した後に押出し、ポリアミド樹脂100
重量部に対してガラスロービングが28.6重量部とな
るように含浸させてた後、4mmの長さに切断してペレ
ット状成形材料を製造した。ガラスロービングを切断し
て得た長繊維タイプガラスIl!維の長さはペレット長
さに等しく4mmであった。また、長さ3mrnのガラ
ス繊維チョツプドストランドは、押出機の中で破砕され
て平均繊維長0.26mmであった。 この成形材料を
金型温度130℃で射出成形してM6ボルト成形物を得
た。成形物の性能試験結果を第1表に示した。
Example 1 Poly (methaxylylene adipamide) (Mitsubishi Gas Chemical ■
1 g of the polymer was dissolved in 100 ml of 98% sulfuric acid,
Relative viscosity measured at °C (JIS-6810 (1
977)). (hereinafter referred to as "relative viscosity"): 2.14) 90 parts by weight and nylon 66
(relative viscosity: 2.25) pellets 10 parts by weight, length 3
14.3 parts by weight of glass fiber chopped strands of 2.5 mm in diameter were mixed in a tumbler, and 2.7 mm in weight were mixed using a vented extruder.
Polyamide resin 100 is extruded after melt-kneading at 5°C.
The glass roving was impregnated in an amount of 28.6 parts by weight, and then cut into a length of 4 mm to produce a pellet-shaped molding material. Long fiber type glass Il obtained by cutting glass roving! The fiber length was 4 mm, which was equal to the pellet length. Further, the chopped glass fiber strands having a length of 3 mrn were crushed in the extruder and had an average fiber length of 0.26 mm. This molding material was injection molded at a mold temperature of 130° C. to obtain an M6 bolt molded product. The performance test results of the molded products are shown in Table 1.

実施例2 実施例1においてポリ(メタキシリレンアジパミド)8
0重量部、ナイロン6620重量部、長さ3mmのガラ
ス繊維チョツプドストランド40重量部、および、ガラ
スロービング60重IBを用いて長さ3.5mmのペレ
ット状成形材料を得た。これを用いて実施例1と同様に
成形物を得た。この成形物の試験結果を第1表に示す。
Example 2 In Example 1, poly(methaxylylene adipamide) 8
A pellet-shaped molding material having a length of 3.5 mm was obtained using 0 parts by weight of 6620 parts by weight of nylon, 40 parts by weight of chopped glass fiber strands having a length of 3 mm, and 60 parts by weight of glass roving IB. Using this, a molded product was obtained in the same manner as in Example 1. The test results of this molded product are shown in Table 1.

実施例3 長さ3mmのガラス繊維チョツプドストランド50重量
部、および、ガラスロービング100重量部を用いる以
外は実施例1と同様にして成形物を得た。この成形物の
試験結果を第1表に示す。
Example 3 A molded article was obtained in the same manner as in Example 1, except that 50 parts by weight of chopped glass fiber strands having a length of 3 mm and 100 parts by weight of glass roving were used. The test results of this molded product are shown in Table 1.

実施例4 実施例2のポリアミド樹脂として、ナイロン66100
重量部を用いる以外は、実施例2と同様にして成形物を
得た。この成形物の試験結果を第1表に示す。
Example 4 Nylon 66100 was used as the polyamide resin of Example 2.
A molded product was obtained in the same manner as in Example 2 except that parts by weight were used. The test results of this molded product are shown in Table 1.

比較例1 長さ3mmのガラス繊維チョツプドストランド28.6
重量部、および、ガラスロービング143重量部を用い
る以外は実施例1と同様にして成形物を得た。この成形
物の試験結果を第2表に示す。ボルトの破壊トルクおよ
びボルトの引張強度は低く不充分であった。
Comparative Example 1 Chopped glass fiber strand with a length of 3 mm 28.6
A molded article was obtained in the same manner as in Example 1 except that 143 parts by weight of glass roving were used. The test results for this molded product are shown in Table 2. The breaking torque of the bolt and the tensile strength of the bolt were low and insufficient.

比較例2 実施例1において、ガラス繊維チョツプドストランドを
使用せず、ガラスロービングを150重量部用いる以外
は、実施例2と同様にして成形物を得た。この成形物の
試験結果を第2表に示す。
Comparative Example 2 A molded product was obtained in the same manner as in Example 2, except that in Example 1, the chopped glass fiber strands were not used and 150 parts by weight of glass roving was used. The test results for this molded product are shown in Table 2.

ボルトの破壊トルクおよびボルトの引張強度は低く不充
分であった。
The breaking torque of the bolt and the tensile strength of the bolt were low and insufficient.

比較例3 実施例1において、ガラス繊維チョップドストランド1
00重量部、ガラスロービングを170重量部用いる以
外は、実施例1と同様にして成形を試みた。
Comparative Example 3 In Example 1, glass fiber chopped strand 1
Molding was attempted in the same manner as in Example 1 except that 170 parts by weight of the glass roving and 170 parts by weight of the glass roving were used.

しかし、ガラス繊維の配合量が多いため、成形時の流動
性が悪く、成形不能であった。
However, due to the large amount of glass fiber blended, the fluidity during molding was poor and molding was impossible.

比較例4 実施例1のポリアミド樹脂として、ナイロン66100
重量部を用い、ガラス繊維としてはチョツプドストラン
ドは使用せず、ガラスロービングを100重量部を用い
る以外は実施例4と同様にして成形物を得た。この成形
物の試験結果を第2表に示す。ボルトの破壊トルクおよ
びボルトの引張強度は低く不充分であった。
Comparative Example 4 Nylon 66100 was used as the polyamide resin of Example 1.
A molded product was obtained in the same manner as in Example 4 except that 100 parts by weight of glass roving was used, without using chopped strands as the glass fiber. The test results of this molded product are shown in Table 2. The breaking torque of the bolt and the tensile strength of the bolt were low and insufficient.

*組成物の配合割合は重量部で示す。*The blending ratio of the composition is shown in parts by weight.

特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文Patent applicant: Mitsubishi Gas Chemical Co., Ltd. Agent: Patent Attorney Sadafumi Kohori

Claims (2)

【特許請求の範囲】[Claims] (1)ポリアミド樹脂100重量部に対し、繊維長2m
m以上の長繊維タイプガラス繊維および平均繊維長0.
1〜1mmの短繊維タイプガラス繊維からなるガラス繊
維混合物を50〜250重量部含有するポリアミド樹脂
成形材料であって、該ガラス繊維混合物は該長繊維タイ
プガラス繊維100重量部に対し該短繊維タイプガラス
繊維が10〜100重量部配合されたものであることを
特徴とするポリアミド樹脂成形材料。
(1) Fiber length: 2 m for 100 parts by weight of polyamide resin
long fiber type glass fiber with an average fiber length of 0.
A polyamide resin molding material containing 50 to 250 parts by weight of a glass fiber mixture consisting of short fiber type glass fibers of 1 to 1 mm, wherein the glass fiber mixture is composed of short fiber type glass fibers based on 100 parts by weight of the long fiber type glass fibers. A polyamide resin molding material containing 10 to 100 parts by weight of glass fiber.
(2)ポリアミド樹脂が、キシリレンジアミンとα、ω
−直鎖脂肪族二塩基酸とから得られるポリアミド樹脂4
0〜99重量部とナイロン66 60〜1重量部とから
なる混合ポリアミド樹脂である特許請求の範囲第(1)
項記載のポリアミド樹脂成形材料。
(2) Polyamide resin and xylylene diamine α, ω
- Polyamide resin obtained from linear aliphatic dibasic acid 4
Claim No. 1, which is a mixed polyamide resin consisting of 0 to 99 parts by weight and 60 to 1 part by weight of nylon 66.
The polyamide resin molding material described in .
JP30407688A 1988-12-02 1988-12-02 Molding material Pending JPH02150449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30407688A JPH02150449A (en) 1988-12-02 1988-12-02 Molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30407688A JPH02150449A (en) 1988-12-02 1988-12-02 Molding material

Publications (1)

Publication Number Publication Date
JPH02150449A true JPH02150449A (en) 1990-06-08

Family

ID=17928742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30407688A Pending JPH02150449A (en) 1988-12-02 1988-12-02 Molding material

Country Status (1)

Country Link
JP (1) JPH02150449A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532435A (en) * 2002-07-01 2005-10-27 ランクセス・コーポレーション Glass fiber filled thermoplastic composition with good surface performance
EP2476933A1 (en) * 2003-07-09 2012-07-18 JTEKT Corporation Gear from a PA66/PA6 polymer blend
JP2015054916A (en) * 2013-09-11 2015-03-23 旭化成ケミカルズ株式会社 Polyamide resin composition and manufacturing method thereof
WO2023037937A1 (en) * 2021-09-08 2023-03-16 Ube株式会社 Polyamide resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532435A (en) * 2002-07-01 2005-10-27 ランクセス・コーポレーション Glass fiber filled thermoplastic composition with good surface performance
EP2476933A1 (en) * 2003-07-09 2012-07-18 JTEKT Corporation Gear from a PA66/PA6 polymer blend
JP2015054916A (en) * 2013-09-11 2015-03-23 旭化成ケミカルズ株式会社 Polyamide resin composition and manufacturing method thereof
WO2023037937A1 (en) * 2021-09-08 2023-03-16 Ube株式会社 Polyamide resin composition

Similar Documents

Publication Publication Date Title
EP0605005B1 (en) Reinforced polyamide resin composition and process for producing the same
JP6782069B2 (en) Polyamide molding material, molded article manufactured from it, and intended use
US4702859A (en) Electrically conductive polyamide resin composition
US5416172A (en) Transparent polyamide compositions having high resistance to chemical agents
KR101388387B1 (en) High-flow polyamides
JPH03163165A (en) Polyamide resin composition
JP2006519886A (en) Polyamide articles reinforced with long fibers
BRPI0818970B1 (en) Composition, process of making a composition and article
JP6174707B2 (en) Polyamide resin composition and molded product
JP2006274061A (en) Continuous fiber reinforced semi-aromatic polyamide resin composition
JP2011088944A (en) Manufacturing method for polyamide resin composition pellet
JP4693435B2 (en) Polyamide resin composition and method for producing the same
US4866115A (en) Solid mixture of nucleated and nonnucleated polyamides
EP0346825B1 (en) Molding polyamide resin composition
JPH02123159A (en) Polyamide/polyarylene sulfide blend
JPH02150449A (en) Molding material
JPS62218445A (en) Glass fiber-reinforced polyamide composition
JPH05230366A (en) Galss-fiber reinforced polyamide resin composition and method for molding the same
JP3456501B2 (en) Polyamide resin composition
KR20200067889A (en) Improved stabilizer for polyamide
JP2001115017A (en) Polyamide resin composition
JPH09241505A (en) Polyamide resin composition
JP2004123927A (en) Copolyamide resin composition
JP4140995B2 (en) Polyamide resin composition
JPH0275660A (en) Polyamide molding material