JPH02149680A - Production of aluminum alloy material having superior wear resistance - Google Patents

Production of aluminum alloy material having superior wear resistance

Info

Publication number
JPH02149680A
JPH02149680A JP63304517A JP30451788A JPH02149680A JP H02149680 A JPH02149680 A JP H02149680A JP 63304517 A JP63304517 A JP 63304517A JP 30451788 A JP30451788 A JP 30451788A JP H02149680 A JPH02149680 A JP H02149680A
Authority
JP
Japan
Prior art keywords
base material
wear resistance
hard
hard particles
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63304517A
Other languages
Japanese (ja)
Other versions
JP2769337B2 (en
Inventor
Fukuhisa Matsuda
松田 福久
Kazuhiro Nakada
一博 中田
Tamotsu Ueno
保 上野
Ichizo Tsukuda
市三 佃
Shigetoshi Jogan
茂利 成願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP63304517A priority Critical patent/JP2769337B2/en
Publication of JPH02149680A publication Critical patent/JPH02149680A/en
Application granted granted Critical
Publication of JP2769337B2 publication Critical patent/JP2769337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce an Al alloy material having superior wear resistance and durability by locally melting the surface of an Al alloy base material contg. a specified amt. of B, Si or Ge together with a metal fed from the outside of the base material to form a hard alloyed layer. CONSTITUTION:Powder 3 of one or more kinds of metals such as Mi, Mn and Ti or hard particles of one or more kinds of compds. such as TiC, ZrN and Al2O3 is embedded in a shallow groove 2 cut in the surface of an Al alloy base material 1 contg. 1-30wt.%, in total, of one or more among B, Si and Ge. The surface of the base material 1 is locally melted together with the powder 3 by irradiation with laser beams 4. Since the wettability of a crystallized Al-contg. intermetallic compd. or the hard particles is improved by the B, Si and Ge, the intermetallic compd. or the hard particles are dispersed and alloyed with the Al matrix to form a hard alloyed layer 5 in the surface of the base material 1 in one body. An Al alloy material having superior wear resistance, not causing exfoliation under high surface pressure and capable of ensuring satisfactory durability is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、自動車、事務機、一般機械等において、耐
摩耗性の要求される部品材料として使用される耐摩耗性
に優れたアルミニウム合金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the production of aluminum alloy materials with excellent wear resistance, which are used as parts materials that require wear resistance in automobiles, office machines, general machinery, etc. Regarding the method.

従来の技術 周知のように、アルミニウムあるいはアルミニウム合金
は汎用されている鉄系材料等と比較して格段に軽量であ
るのに加え、熱伝導特性に優れ、また耐食性も優れると
ころから、最近では自動車等の各種機械部品として広く
使用されるようになっている。しかしながら、一般にア
ルミニウムあるいはアルミニウム合金は鉄系材料と比較
して耐摩耗性が劣り、このことが自動車等における軽量
化等を目的として鉄系部材をA4合金部材に代える際の
大きな障害となっていた。
As is well known in the art, aluminum or aluminum alloys are much lighter than commonly used iron-based materials, have excellent thermal conductivity, and have excellent corrosion resistance, so they have recently been used in automobiles. It has come to be widely used as various machine parts such as. However, aluminum or aluminum alloys generally have inferior wear resistance compared to iron-based materials, and this has been a major obstacle when replacing iron-based parts with A4 alloy parts for the purpose of reducing weight in automobiles, etc. .

そこで従来から、耐摩耗性が要求される部位に適用され
るアルミニウム合金材の耐摩耗性向上策として、メツキ
や陽極酸化処理、あるいは溶射等の表面処理を施して耐
摩耗性の高い表面処理層を形成する試みがなされている
が、いずれも耐摩耗性の要求に対しいまだ充分な満足を
与え得るものではなかった。しかも、いずれの場合も表
面処理層の基材に対する密着性が充分でないところから
、高面圧下で使用した場合に充分な耐久性を確保できな
いという欠点があった。
Therefore, as a measure to improve the wear resistance of aluminum alloy materials used in areas where wear resistance is required, surface treatments such as plating, anodizing, or thermal spraying have been applied to create a highly wear-resistant surface treatment layer. Attempts have been made to form a steel sheet, but none of them have yet been able to fully satisfy the requirements for wear resistance. Moreover, in both cases, the adhesion of the surface treatment layer to the base material is insufficient, resulting in the drawback that sufficient durability cannot be ensured when used under high surface pressure.

この発明は、このような技術的背景のもとでなされたも
のであって、優れた耐摩耗性を有するとともに、高面圧
下で使用した場合にも充分な耐久性を有するアルミニウ
ム合金材料の製作提供を目的とするものである。
The present invention was made against this technical background, and is aimed at producing an aluminum alloy material that has excellent wear resistance and sufficient durability even when used under high surface pressure. It is intended for the purpose of providing.

課題を解決するための手段 上記目的において、この発明は、アルミニウム合金基材
の表面に、AQ系金金属間化合物Aρマトリクスに晶出
せしめた硬質合金化層、あるいはAlマトリックスと硬
質粒子とを合金化した硬質合金化層を形成することによ
り、材料の耐摩耗性を向上させることを基本的着眼点と
して、さらに良好な合金化層を形成するために鋭意研究
の結果なされたものである。
Means for Solving the Problems To achieve the above object, the present invention provides a hard alloyed layer crystallized in an AQ-based gold intermetallic compound Aρ matrix, or an alloyed Al matrix and hard particles on the surface of an aluminum alloy base material. The basic aim was to improve the wear resistance of the material by forming a hard alloyed layer with a high temperature, and this was the result of intensive research to form an even better alloyed layer.

即ちこの発明の1つは、B、St、Geのうちの1種ま
たは2種以上を合計で1〜30wt%の範囲に含有する
アルミニウム合金基材を用い、該基材の表面を、基材外
部から供給した1giまたは2種以上の金属とともに局
部的に溶融し、もってAlマトリックスにAl系金属間
化合物の晶出した硬質合金化層を前記基材の表面に形成
することを特徴とする耐摩耗性に優れたアルミニウム合
金材の製造方法を要旨とするものである。また、他の1
つはB、Si、Geのうちの1種または2種以上を合計
で1〜30wL%の範囲に含有するアルミニウム合金基
材を用い、該基材の表面を、基材外部から供給した1種
または2種以上の硬質粒子とともに局部的に溶融し、も
ってAρマトリックスと硬質粒子とが合金化した硬質合
金化層を前記基材の表面に形成することを特徴とする耐
摩耗性に優れたアルミニウム合金材の製造方法を要旨と
するものである。
That is, one of the inventions uses an aluminum alloy base material containing one or more of B, St, and Ge in a total range of 1 to 30 wt%, and the surface of the base material is A hard alloying method characterized by locally melting together with 1 gi or two or more metals supplied from the outside to form a hard alloyed layer on the surface of the base material in which an Al-based intermetallic compound crystallizes in an Al matrix. The gist of this paper is a method for producing an aluminum alloy material with excellent wear resistance. Also, another one
One is an aluminum alloy base material containing one or more of B, Si, and Ge in a total range of 1 to 30 wL%, and the surface of the base material is made of one type that is supplied from outside the base material. Alternatively, aluminum having excellent wear resistance is characterized in that it is locally melted together with two or more types of hard particles to form a hard alloyed layer in which the Aρ matrix and the hard particles are alloyed on the surface of the base material. The gist of this paper is a method for manufacturing alloy materials.

アルミニウム合金基材の表面の溶融はレーザビーム、電
子ビーム、TIGアーク等の照射による高密度エネルギ
ー源を用いた溶融手段によれば良い。このような手段を
用いることにより、基材表面層のみを溶融しえて基材へ
の熱影響を少なくでき、基材の一部のみを局部的に合金
化することができる。−膜内にはレーザビームを用いる
場合が多く、具体的にはYAGレーザ(波長1 、 0
6 u m sパルス発振)とかco2レーザ(波長1
0.6μm1連続発振)を主に用いる。また、溶融は耐
摩耗性の要求される部位について行えば良いが、その部
位が広範囲にわたるときはレーザビーム等のオシレージ
ジン幅の調整や順次的照射により対処すれば良い。
The surface of the aluminum alloy base material may be melted by a melting means using a high-density energy source such as irradiation with a laser beam, electron beam, or TIG arc. By using such means, only the surface layer of the base material can be melted to reduce the thermal influence on the base material, and only a part of the base material can be locally alloyed. - A laser beam is often used inside the film, specifically a YAG laser (wavelength 1, 0
6 u m s pulse oscillation) or CO2 laser (wavelength 1
0.6 μm 1 continuous wave) is mainly used. Furthermore, melting may be carried out in areas where wear resistance is required, but if the area is spread over a wide area, it may be necessary to adjust the oscillation width of a laser beam or the like or to sequentially irradiate the area.

基材表面の溶融は基材外部からの金属や硬質粒子の供給
を伴いつつ行う。金属は溶融によってAlとの間で金属
間化合物を形成するものであれば何でもよい。−例とし
てはNi5Mn。
The surface of the base material is melted while metal and hard particles are supplied from outside the base material. Any metal may be used as long as it forms an intermetallic compound with Al when melted. - For example, Ni5Mn.

Fe5Ti、V、Cr、Zr、NbSMo、Hf、Ta
等の各元素を挙げうる。また、必ずしも金属単体である
必要はなく、金属間化合物の形で供給し、溶融によって
Alと反応してΔΩ系の金属間化合物を形成するもので
も良い。
Fe5Ti, V, Cr, Zr, NbSMo, Hf, Ta
Each element can be mentioned. Further, it does not necessarily have to be a single metal, but may be supplied in the form of an intermetallic compound, which reacts with Al by melting to form a ΔΩ-based intermetallic compound.

方、硬質粒子としては、T i Cs W C%Z r
 C1NbC等の炭化物やTiN5ZrNSCrN等の
窒化物、AQ203等の酸化物その他のセラミックスを
挙げうる。これら金属単体あるいは硬質粒子は1種のみ
を用いても良く、あるいは金属どうし、硬質粒子どうし
を2種以上組合せて用いても良い。さらに金属と硬質粒
子とを組合せても良い。
On the other hand, as hard particles, T i Cs W C% Z r
Examples include carbides such as C1NbC, nitrides such as TiN5ZrNSCrN, oxides such as AQ203, and other ceramics. These single metals or hard particles may be used alone, or two or more metals or hard particles may be used in combination. Furthermore, metal and hard particles may be combined.

而して、上記の金属あるいは硬質粒子とAQとの反応に
際して、基材中のB s 3 is G eの1種また
は2種以上が、金属あるいは硬質粒子の基材に対する濡
れ性を向上せしめ、基材中のAQとの反応を促進させる
。即ち、基材にB15iSGeを含有しない場合には、
溶融時に金属の表面張力が大きく、基材と反応しにくい
ものとなる。また硬質粒子の場合にも基材との濡れ性が
良くないものとなる。このように、B1Si、Geは濡
れ性向上効果を付与する点で相互に均等物であり、少な
くともその1種を基材に含有すれば足りる。しかしそれ
らの合=1量が1wt%未満では上記効果に乏しく、逆
に3’ Owt26を超えると基材の圧延、押出等の加
工性が悪くなるという欠点を派生する。従って、基材中
のBSS l % G eの含有量は合計で1〜30w
t%に設定しなければならない。なお、B、St。
Therefore, during the reaction between the metal or hard particles and AQ, one or more Bs3isGe in the base material improves the wettability of the metal or hard particles to the base material, Accelerates the reaction with AQ in the base material. That is, when the base material does not contain B15iSGe,
When melted, the surface tension of the metal is high, making it difficult to react with the base material. Also, in the case of hard particles, the wettability with the substrate is poor. In this way, B1Si and Ge are equivalent to each other in terms of imparting the effect of improving wettability, and it is sufficient to contain at least one of them in the base material. However, if the total amount is less than 1 wt%, the above effects are poor, and if it exceeds 3' Owt26, the workability of the base material in rolling, extrusion, etc. will be poor. Therefore, the total content of BSS l % Ge in the base material is 1 to 30 w
Must be set to t%. In addition, B, St.

Ge以外の残部組成については特に限定するものではな
く、用途に応じて必要とされる機械的性質、加工特性を
保有させるために各種の元素を添加含有せしめても良く
、あるいは純アルミニウムをベースとしても良い。また
基材の形状も、適用される部品の形状に応じて任意に設
計すれば良い。
The composition of the remainder other than Ge is not particularly limited, and various elements may be added to maintain the mechanical properties and processing characteristics required depending on the application, or pure aluminum may be used as the base. Also good. Further, the shape of the base material may be arbitrarily designed depending on the shape of the part to which it is applied.

金属や硬質粒子の供給態様の1つとしては、レーザビー
ム等の照射前に予め所期する部位にコーティング層を形
成しておく場合を挙げうる。
One method of supplying metal or hard particles is to form a coating layer in advance on a desired location before irradiation with a laser beam or the like.

コーティング層の形成は湿式メツキ、CVD。The coating layer is formed by wet plating and CVD.

PVD、溶射法等により、あるいは粉末をエチルアルコ
ールなど各種バインダーを用いて塗布することにより行
いうる。また、他の供給態様として、粉末をレーザビー
ム等の照射中に溶融部に直接投入する場合を挙げうる。
This can be done by PVD, thermal spraying, etc., or by applying powder using various binders such as ethyl alcohol. In addition, as another supply mode, the powder may be directly introduced into the melting zone during irradiation with a laser beam or the like.

いずれの方法を用いても良いが、直接投入方式の場合、
供給速度の調整等が面倒であるため、簡便性の点でバイ
ンダーを用いたコーティング方式が優れている。
Either method may be used, but in the case of the direct injection method,
Since it is troublesome to adjust the supply rate, etc., a coating method using a binder is superior in terms of simplicity.

上記のように、レーザビーム等の照射により基材表面を
金属と共に溶融した後においては、溶融部分は短詩に凝
固しへΩマトリックスに金属間化合物、例えばTi/1
3、Z rAR3、NiA、Q、N1AQ3 、Ni2
 Afi3 、FeAD3、Fe+ Auo、MnAQ
6 、HfAN3、Nb : Af13、CrAu7な
どが均一緻密にあるいは塊状に晶出した合金化層となる
。一方、基材表面を硬質粒子と共に溶融した場合にはA
lマトリックスに該粒子が均一に分散しあるいは塊状化
した合金化層となる。而して、上記の金属間化合物は一
般的に硬さが硬いものであり、また硬質粒子はそれ自体
優れた硬度を有しているため、合金化層が全体として高
い硬度を示し、優れた耐摩耗性を具有する。この合金化
層の厚さはレーザビーム等の照射条件、例えば出力、照
射速度、焦点位置等を変化させることで数十μmから数
M程度にまヤ容易に制御できる。なお、金属間化合物や
硬質粒子はこれが硬質であるほど合金化層の硬さは硬い
ものとなる。
As mentioned above, after the surface of the base material is melted together with the metal by irradiation with a laser beam or the like, the melted portion solidifies into short pieces and forms an intermetallic compound, such as Ti/1, in the Ω matrix.
3, Z rAR3, NiA, Q, N1AQ3, Ni2
Afi3, FeAD3, Fe+ Auo, MnAQ
6, HfAN3, Nb: An alloyed layer in which Af13, CrAu7, etc. are crystallized uniformly and densely or in blocks. On the other hand, when the base material surface is melted together with hard particles, A
The particles are uniformly dispersed or aggregated in the l matrix to form an alloyed layer. The above intermetallic compounds are generally hard, and the hard particles themselves have excellent hardness, so the alloyed layer as a whole exhibits high hardness and has excellent hardness. Has wear resistance. The thickness of this alloyed layer can be easily controlled from several tens of micrometers to several meters by changing the irradiation conditions of the laser beam, such as the output, irradiation speed, focal position, etc. Note that the harder the intermetallic compound or hard particles are, the harder the alloyed layer will be.

表面に硬質合金化層を形成した基材は、その後必要に応
じて最終製品形状に機械加工し、耐摩耗性部品として実
用に供する。
The base material with the hard alloyed layer formed on its surface is then machined into the final product shape as required, and put into practical use as a wear-resistant part.

発明の詳細 な説明したように、この発明は、B55t。Details of the invention As explained above, this invention is based on B55t.

Geのうちの1種または2種以上を合計で1〜30wt
%の範囲に含有するアルミニウム合金基材の表面を、基
材外部から供給した金属や硬質粒子とともに局部的に溶
融することにより、AρマトリックスにAρ系金金属間
化合物晶出しあるいは硬質粒子が合金化した極めて硬度
の高い合金化層を形成するものであるがら、本発明によ
って製造したアルミニウム合金材は格段に耐摩耗性に優
れたものとなり、従って自動車等に要請される耐摩耗部
品として好適なものとなしつる。また、合金化層は従来
のようなメツキ等による表面処理層と異なり、基材と一
体的に結合しているから、高面圧下で使用した場合にも
抜屑の剥離等を起こす危険はなく、充分な耐久性を確保
しうるちのとなる。
A total of 1 to 30 wt of one or more of Ge
By locally melting the surface of the aluminum alloy base material containing the aluminum alloy base material in the range of 50% to 300% with the metal and hard particles supplied from outside the base material, Aρ-based gold intermetallic compounds crystallize or hard particles are alloyed in the Aρ matrix. Although it forms an extremely hard alloyed layer, the aluminum alloy material produced according to the present invention has extremely excellent wear resistance, and is therefore suitable as wear-resistant parts required for automobiles, etc. Toshitsu vine. In addition, unlike conventional surface treatment layers such as plating, the alloyed layer is integrally bonded to the base material, so there is no risk of peeling of chips even when used under high surface pressure. , ensuring sufficient durability.

実施例 下記第1表に示すような組成からなる厚さ7゜5 ji
II X幅40IIIII×長さ100111I11の
各試験片を基材(1)(第1図において)として用いた
。そしてこの試験片の中央部長手方向に、深さ0゜51
1III11幅6alの浅溝(2)を掘り、抜溝に、第
1表に示す組合せで金属、硬質粒子の粉末(3)をエチ
ルアルコールをバインダーとして埋込み状態に塗布した
。塗布厚さは約0. 5#III+であった。
Example: Thickness 7゜5 ji consisting of the composition shown in Table 1 below.
Each test piece of II x width 40III x length 100111I11 was used as the substrate (1) (in Figure 1). Then, in the longitudinal direction of the center of this test piece, a depth of 0°51
1III11 Shallow grooves (2) with a width of 6 al were dug, and metal and hard particle powders (3) in the combinations shown in Table 1 were embedded in the grooves using ethyl alcohol as a binder. The coating thickness is approximately 0. It was 5#III+.

[以下余白] 次f:10kw級CO2レーザ加工機を用いて、前記試
験片の粉末塗布部分にレーザビーム(4)を照射し、粉
末とその直下の基材Alとを共に溶融した。照射条件は
、出力5kw、試片移動速度100mm/m i n、
焦点位置+30、ビームオシレーション’3Hz、5m
mとした。
[Left below blank spaces] Next f: Using a 10 kW class CO2 laser processing machine, the powder coated portion of the test piece was irradiated with a laser beam (4) to melt both the powder and the base material Al immediately below it. The irradiation conditions were: output 5 kW, specimen moving speed 100 mm/min,
Focus position +30, beam oscillation '3Hz, 5m
It was set as m.

レーザビームの照射による溶融後、凝固した試験片の組
織状態を調べたところ、試料Nol〜IOの試験片につ
いては溝部分のほぼ全体にわたって表面が滑らかで欠陥
のない合金化層(5)が形成されていた。合金化層の厚
さを第1表に示す。かつこれらの合金化層は金属間化合
物や硬質粒子が比較的緻密に晶出あるいは分散した部分
と、塊状となった部分とを有し、合金化層全体の硬さは
第1表のとおりであった。しかも、合金化層内及び合金
化層と基材Aρ界面では割れ及び気孔の発生は全く認め
られなかった。
After melting by laser beam irradiation, we examined the structure of the solidified specimens, and found that for specimens No. 1 to IO, an alloyed layer (5) with a smooth surface and no defects was formed over almost the entire groove portion. It had been. The thickness of the alloyed layer is shown in Table 1. In addition, these alloyed layers have parts where intermetallic compounds and hard particles are relatively densely crystallized or dispersed, and parts where they are lumpy, and the hardness of the entire alloyed layer is as shown in Table 1. there were. Furthermore, no cracks or pores were observed within the alloyed layer or at the interface between the alloyed layer and the base material Aρ.

これに対し、試料No1lでは、表面に亀甲状の割れが
認められ、一部が剥離しており、しかも合金化層直下に
基材Aρのみの溶融域が存在し、AQとの濡れ性が悪い
ことが認められた。
On the other hand, in sample No. 1l, tortoiseshell-shaped cracks were observed on the surface, some parts had peeled off, and there was also a molten area of only the base material Aρ directly under the alloyed layer, and the wettability with AQ was poor. This was recognized.

また、試料NoL2では表面に不連続の孔が形成される
とともに、合金下層直下でやはり基材Alのみの溶融域
が存在し、Aρとの濡れ性が悪いものであった。また、
試料No13では溶融Niが球状化し、基材AQと濡れ
なかった。
In addition, in sample NoL2, discontinuous pores were formed on the surface, and there was also a melted region of only the base material Al just below the alloy lower layer, resulting in poor wettability with Aρ. Also,
In sample No. 13, molten Ni was spheroidized and did not wet the base material AQ.

一方、それぞれの基材単体の硬度を調べたところ、第1
表のとおりであった。
On the other hand, when we investigated the hardness of each base material, we found that
It was as shown in the table.

以上の試験結果かられかるように、本発明によれば、極
めて硬度が高く従って当然に耐摩耗性にも優れた合金化
層を基材表面に有するアルミニウム材料を製造しうるこ
とを確認しえた。
As can be seen from the above test results, it has been confirmed that according to the present invention, it is possible to produce an aluminum material having an alloyed layer on the surface of the base material that has extremely high hardness and therefore naturally has excellent wear resistance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例における合金化の工程を模式
的に示す斜視図である。 (1)・・・基材、(2)・・・金属(硬質粒子)粉末
、(4)・・・レーザビーム、(5)・・・合金化層。 以上
FIG. 1 is a perspective view schematically showing the alloying process in an embodiment of the present invention. (1) Base material, (2) Metal (hard particles) powder, (4) Laser beam, (5) Alloyed layer. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)B、Si、Geのうちの1種または2種以上を合
計で1〜30wt%の範囲に含有するアルミニウム合金
基材を用い、該基材の表面を、基材外部から供給した1
種または2種以上の金属とともに局部的に溶融し、もっ
てAlマトリックスにAl系金属間化合物の晶出した硬
質合金化層を前記基材の表面に形成することを特徴とす
る耐摩耗性に優れたアルミニウム合金材の製造方法。
(1) Using an aluminum alloy base material containing one or more of B, Si, and Ge in a total range of 1 to 30 wt%, the surface of the base material is
Excellent wear resistance characterized by locally melting together with a seed or two or more metals, thereby forming a hard alloyed layer on the surface of the base material in which an Al-based intermetallic compound crystallizes in an Al matrix. A method for producing aluminum alloy material.
(2)B、Si、Geのうちの1種または2種以上を合
計で1〜30wt%の範囲に含有するアルミニウム合金
基材を用い、該基材の表面を、基材外部から供給した1
種または2種以上の硬質粒子とともに局部的に溶融し、
もってAlマトリックスと硬質粒子とが合金化した硬質
合金化層を前記基材の表面に形成することを特徴とする
耐摩耗性に優れたアルミニウム合金材の製造方法。
(2) Using an aluminum alloy base material containing one or more of B, Si, and Ge in a total range of 1 to 30 wt%, the surface of the base material is
Locally melts together with seeds or two or more hard particles,
A method for producing an aluminum alloy material with excellent wear resistance, comprising forming a hard alloyed layer in which an Al matrix and hard particles are alloyed on the surface of the base material.
JP63304517A 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance Expired - Fee Related JP2769337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304517A JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304517A JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH02149680A true JPH02149680A (en) 1990-06-08
JP2769337B2 JP2769337B2 (en) 1998-06-25

Family

ID=17933980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304517A Expired - Fee Related JP2769337B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP2769337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265513A (en) * 2009-05-15 2010-11-25 Kagoshima Univ Aluminum or aluminum alloy material, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166982A (en) * 1985-01-16 1986-07-28 Toyota Motor Corp Wear resistant al alloy member
JPS61170578A (en) * 1985-01-23 1986-08-01 Toyota Motor Corp Heat resistant al alloy member
JPS6372488A (en) * 1986-09-16 1988-04-02 Mazda Motor Corp Surface processing method for sliding member
JPH02101177A (en) * 1988-10-05 1990-04-12 Toyota Motor Corp Wear-resistant al alloy member and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166982A (en) * 1985-01-16 1986-07-28 Toyota Motor Corp Wear resistant al alloy member
JPS61170578A (en) * 1985-01-23 1986-08-01 Toyota Motor Corp Heat resistant al alloy member
JPS6372488A (en) * 1986-09-16 1988-04-02 Mazda Motor Corp Surface processing method for sliding member
JPH02101177A (en) * 1988-10-05 1990-04-12 Toyota Motor Corp Wear-resistant al alloy member and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265513A (en) * 2009-05-15 2010-11-25 Kagoshima Univ Aluminum or aluminum alloy material, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2769337B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
KR100388150B1 (en) Light metal cylinder block, method of producing the same and device for carrying out the method
Gassmann Laser cladding with (WC+ W2C)/Co–Cr–C and (WC+ W2C)/Ni–B–Si composites for enhanced abrasive wear resistance
CA2254700C (en) Laser clad pot roll sleeves for galvanizing baths
CN108883469B (en) Surface hardening of cemented carbide bodies
JP2002510361A (en) Surface abrasion resistant sintered machine parts and method of manufacturing the same
DE3808285C2 (en)
JPS62270277A (en) Production of titanium base alloy-made wear resistant member
JPH04105787A (en) Filler metal for surface reforming of aluminum material
JPH02149680A (en) Production of aluminum alloy material having superior wear resistance
JPH02149682A (en) Production of aluminum alloy material having superior wear resistance
JP6761596B2 (en) Cutting tool made of composite material
JP2769338B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
DE3715327C2 (en)
JPH02149678A (en) Production of aluminum alloy material having superior wear resistance
JP2942299B2 (en) Additive for surface hardening of aluminum
JP2677412B2 (en) Filler for surface hardening of aluminum materials
JPH0480990B2 (en)
JP2769336B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2677413B2 (en) Filler for surface hardening of aluminum materials
JPH08132310A (en) Lubricating head film-coated drill
JP2935123B2 (en) Additive for surface hardening of aluminum
JP2954258B2 (en) Method of manufacturing filler metal for surface hardening of aluminum material
JPH0343011B2 (en)
JP2022148199A (en) Fe-based alloy and metal powder
JPH04120280A (en) Production of surface-hardened aluminum material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees