JPH02148803A - Thin film type voltage-dependent nonlinear resistor - Google Patents

Thin film type voltage-dependent nonlinear resistor

Info

Publication number
JPH02148803A
JPH02148803A JP63300723A JP30072388A JPH02148803A JP H02148803 A JPH02148803 A JP H02148803A JP 63300723 A JP63300723 A JP 63300723A JP 30072388 A JP30072388 A JP 30072388A JP H02148803 A JPH02148803 A JP H02148803A
Authority
JP
Japan
Prior art keywords
thin film
zinc oxide
layer
film layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300723A
Other languages
Japanese (ja)
Inventor
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63300723A priority Critical patent/JPH02148803A/en
Publication of JPH02148803A publication Critical patent/JPH02148803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a thin film type voltage-dependent nonlinear resistor having a large nonlinear coefficient, excellent characteristic stability, small size and high practical utility by incorporating a predetermined content of cobalt in first and second zinc oxide thin film layers and a predetermined content of manganese in a lead oxide thin film layer. CONSTITUTION:In a thin film type voltage nonlinear resistor, a lower electrode layer 2 made of a thin metal film is formed on a board 1, at least one set of a first zinc oxide (ZnO) thin film layer 3a and a zinc oxide (PbO) thin film layer 4 are sequentially laminated on the electrode layer, a second zinc oxide thin film layer 3b is formed on the laminate, and an upper electrode layer 5 is formed on the thin film layer. Cobalt of 0.1-0.5mol-% in terms of CoO is contained in the first and second zinc oxide layer, and manganese of 0.05-0.1mol-% in terms of MoO is further contained in the zinc oxide layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基板上に酸化亜鉛を主成分とする簿膜と酸化
鉛を主成分とする絶縁膜を積層することによって得られ
る対称型の電圧電流特性を示す薄膜型電圧非直線抵抗器
に関し、特に特性の安定性に優れた小型の′a模型電圧
非直線抵抗器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a symmetrical structure obtained by laminating a dielectric film containing zinc oxide as a main component and an insulating film containing lead oxide as a main component on a substrate. The present invention relates to a thin film type voltage non-linear resistor exhibiting voltage-current characteristics, and in particular to a small 'a model voltage non-linear resistor with excellent stability of characteristics.

[従来の技術] 電圧非直線抵抗体く以下バリスタと称する)は通常、下
記の式[I]の特性で示される非オーム性の対称型電圧
−電流特性を示すものをいう。
[Prior Art] A voltage nonlinear resistor (hereinafter referred to as a varistor) usually exhibits a non-ohmic symmetrical voltage-current characteristic expressed by the following formula [I].

α (/  i  −(V/V ・ )         
・”  [工 ]ここで、Iは素子を流れる電流値、■
は素子にかかる電圧で、電流がiアンペアの時の電圧V
1を立上がり電圧と称する。通常この値は1mAの時の
電圧値を採る。αは非直線係数と称し、この値の大きい
ものほど特性的に優れているといえる。
α (/i − (V/V ・ )
・” [Eng.] Here, I is the current value flowing through the element, ■
is the voltage applied to the element, and the voltage V when the current is i ampere
1 is called the rising voltage. Usually, this value takes the voltage value at 1 mA. α is called a nonlinear coefficient, and it can be said that the larger the value, the better the characteristics.

一般にバリスタは、異常電圧から電気回路を保護する目
的の1ノージ吸収素子や異常電圧抑制器または電圧安定
化素子として電気回路中に挿入して用いられる。
Generally, a varistor is used by being inserted into an electric circuit as a one-noge absorption element, an abnormal voltage suppressor, or a voltage stabilizing element for the purpose of protecting the electric circuit from abnormal voltage.

これまでに知られているバリスタは、酸化亜鉛を主成分
とし、これに種々の添加物、例えばB i 203 、
coo、MnO,Sb203 。
Varistors known so far have zinc oxide as a main component, and various additives such as B i 203,
coo, MnO, Sb203.

Cr2 03  、N +O,B2 03  、PbO
Cr2 03 , N + O, B2 03 , PbO
.

5i02等を微量添加混合し、焼結することによって、
優れた電圧非直線性を示すバリスタを得るもので、この
うち特に添加物としてB!2C)3を用いたものがよく
知られている。この方法で得られるバリスタはセラミッ
ク焼結体にして初めて得られるもので、酸化亜鉛結晶粒
界の性質を利用している。即ち、焼結時に、n−型半導
体で必るZnO結晶粒の成長や焼結と共に、結晶粒の粒
界に、例えばBi2O3の液相を発生さじ、そこに種々
の添加物を偏析させることによって、酸化亜鉛結晶粒界
に電子に対する電位障壁を形成できる現象を利用してい
る。従ってこれまでは優れた電圧非直線抵抗器はバルク
型のセラミック焼結体でしか得られていなかった。
By adding and mixing a small amount of 5i02 etc. and sintering,
To obtain a varistor that exhibits excellent voltage nonlinearity, B! A method using 2C)3 is well known. The varistor obtained by this method is the first to be obtained as a ceramic sintered body, and utilizes the properties of zinc oxide grain boundaries. That is, during sintering, along with the growth and sintering of ZnO crystal grains that are necessary for n-type semiconductors, a liquid phase of, for example, Bi2O3 is generated at the grain boundaries of the crystal grains, and various additives are segregated there. , which utilizes the phenomenon of forming potential barriers against electrons at zinc oxide grain boundaries. Therefore, until now, excellent voltage nonlinear resistors have only been available in bulk type ceramic sintered bodies.

電子機器への応用を考えると、簿膜ないしは厚膜にして
基板上に電圧非直線抵抗器を形成することが望まれる。
Considering application to electronic equipment, it is desirable to form a voltage nonlinear resistor on a substrate using a thin film or a thick film.

基板上に薄膜ないしは厚膜にして電圧非直線抵抗器(バ
リスタ)を作製する試みは、従来種々試みられている。
Various attempts have been made to fabricate a voltage nonlinear resistor (varistor) using a thin film or a thick film on a substrate.

しかしながら、厚膜を用いたバリスタも酸化亜鉛結晶粒
子と結晶粒界を利用するため、その厚みは結晶粒子径5
〜10ミクロンの数倍以上が必要である。厚膜の表面に
平行電極を形成する手法でも電極間にはZnO結晶粒の
大きさの数倍(50〜100ミクロン)の電極間隔を設
けることが必要であり、小型化にも限度があると共に、
サージ耐量が大きくできにくい、表面汚染に弱いという
問題もある。
However, since varistors using thick films also utilize zinc oxide crystal grains and grain boundaries, the thickness is limited to 5
~ Several times more than 10 microns is required. Even with the method of forming parallel electrodes on the surface of a thick film, it is necessary to provide a spacing between the electrodes that is several times the size of the ZnO crystal grains (50 to 100 microns), and there is a limit to miniaturization. ,
There are also problems in that it is difficult to increase surge resistance and is susceptible to surface contamination.

またBi2O3の液相は極めて反応性に富み、はとんど
の酸化物や金属と反応するため厚膜に形成できても基板
との界面の変質が激しく、素子として有効に動作する部
分が少なくなるという問題もある。ざらに配線パターン
やデバイスを作製する際のヒスマスと配線金属材料との
反応や、10ミクロン以上の厚みによる段差での配線切
れなどの問題が生ずる。ざらに立上がり電圧の制御が困
難で、形状寸法は印刷技術によっているために100ミ
クロン以下にできにくく、また非直線係数も高々10程
度のものしか得られないという問題があった。
In addition, the liquid phase of Bi2O3 is extremely reactive and reacts with most oxides and metals, so even if it can be formed into a thick film, the interface with the substrate will be severely altered, reducing the portion that can effectively function as a device. There is also the problem. Problems arise such as reactions between hismuth and wiring metal materials during the rough fabrication of wiring patterns and devices, and wiring breakage at steps with a thickness of 10 microns or more. There were problems in that it was difficult to control the rising voltage, it was difficult to reduce the shape and size to 100 microns or less because it was dependent on printing technology, and the nonlinear coefficient could only be about 10 at most.

バリスタを薄膜の形で作製する試みは、例えば1979
年発行のジャーナル・オブ・アプライド・フィジクス誌
、第50巻、第555〜558頁(JOurnaof 
Applied Physics、vol、50.p、
555−558 (1979) )所載のごとく、溶融
石英基板上にスパッタ法を用いて亜鉛金属膜を約100
0人成膜し、その上にZr1O1膜とBi2O3薄膜を
順次それぞれ約6000人程度積層し、その上に電極と
してActを2000八つけることによって、立上がり
電圧が2〜3vの非対称性の電圧非直線素子が得られる
ことが明らかにされている。この素子はZnO薄膜とB
i2031膜の界面を利用するもので、半導体であるZ
nOと絶縁物であるBi2O3の界面、いわゆる半導体
−絶縁体の界面現象を利用したものである。
Attempts to produce varistors in the form of thin films were made in 1979, for example.
Journal of Applied Physics, Volume 50, pp. 555-558 (Journaof
Applied Physics, vol, 50. p,
555-558 (1979)), a zinc metal film with a thickness of about 100% was deposited on a fused silica substrate by sputtering.
By depositing a Zr1O1 film and a Bi2O3 thin film of approximately 6,000 layers each on top of that, and attaching Act 2,000 as an electrode on top of that, an asymmetrical voltage non-linearity with a rising voltage of 2 to 3V was created. It has been revealed that an element can be obtained. This device consists of ZnO thin film and B
It utilizes the interface of the i2031 film, and Z
This utilizes the so-called semiconductor-insulator interface phenomenon, which is the interface between nO and Bi2O3, which is an insulator.

[発明が解決しようとする課題〕 しかしながら、これらの素子は、非対称型の電圧電流特
性でおる、非直線係数が小さい、立上がり電圧の制御が
できない、厚みを薄くできない、100ミクロン以下程
度の小型にできにくい、特性の安定性に欠ける等の問題
点があり、応用範囲は限られていた。
[Problems to be Solved by the Invention] However, these devices have asymmetric voltage-current characteristics, have a small nonlinear coefficient, cannot control the rise voltage, cannot be made thin, and cannot be made small to about 100 microns or less. There were problems such as difficulty in forming and lack of stability of properties, and the range of application was limited.

対称型の薄膜型バリスタが実現できれば超小型のバリス
タアレーを安価に提供できるため、きわめて応用範囲は
広く、実用性は高い。薄膜型バリスタを作製するには先
に述べたごとく、Bi2O3薄膜をznoi膜で上下挟
んだ積層構造にすればよいことは容易に推察できる。し
かしながら、こ、のような構造にしても先に述べた問題
点を解決することはできなかった。この原因を考察する
と、Bi2O3は融点が880°Cと低く、結晶変態を
起こしやすく、バリスタの動作時に発生する熱のために
変化してしまい、特性の安定性に欠ける結果しか得られ
なかったものと考えられる。
If a symmetrical thin-film varistor could be realized, it would be possible to provide an ultra-small varistor array at low cost, which would have an extremely wide range of applications and be highly practical. As mentioned above, it can be easily inferred that in order to manufacture a thin film type varistor, a stacked structure in which a Bi2O3 thin film is sandwiched between upper and lower ZNOI films is sufficient. However, even with this structure, the above-mentioned problems could not be solved. Considering the cause of this, Bi2O3 has a low melting point of 880°C and is prone to crystal transformation, which changes due to the heat generated during varistor operation, resulting in unstable characteristics. it is conceivable that.

バリスタの特性変化は、立上がり電圧(VllIIA)
の約80%の直流電圧を一定時間印加した後のv11I
IAノ変化率、即う△v11IIA/v11IIAテ評
価される。実用上この値は±10%以内が望まれている
が、先に述べた構造の薄膜バリスタでは、この値は±1
0%を越えるものしかなかった。
The characteristic change of the varistor is the rising voltage (VllIIA)
v11I after applying a DC voltage of about 80% of
The rate of change in IA, ie, Δv11IIA/v11IIA, is evaluated. In practice, this value is desired to be within ±10%, but in the thin film varistor with the structure described above, this value is within ±10%.
There were only cases exceeding 0%.

本発明は以上述べたような従来の問題点を解決するため
になされたもので、非直線係数が大きく、特性の安定性
に優れ、小型で実用性の高い薄膜型電圧非直線抵抗器を
提供することを目的とする。
The present invention has been made in order to solve the conventional problems as described above, and provides a thin film voltage nonlinear resistor that has a large nonlinear coefficient, excellent stability of characteristics, and is small and highly practical. The purpose is to

[課題を解決するための手段] 薄膜型のバリスタの持つ種々の問題点を解決するには、
半導体としてのZr1O薄膜の性質やZnOと絶縁体と
の界面の制御および絶縁物層の安定性、更に用いる電極
材料の安定性等に十分な配慮が必要である。本発明者は
不安定性の大きいB12O3に代わる材料を種々検討し
た結果、下記の如き所定の構成とすることによって、先
に述べた種々の問題点を解決した薄膜バリスタが突環で
きることを見出し、本発明に至った。
[Means for solving the problems] In order to solve the various problems of thin film varistors,
Sufficient consideration must be given to the properties of the ZrO thin film as a semiconductor, the control of the interface between ZnO and the insulator, the stability of the insulator layer, and the stability of the electrode material used. As a result of examining various materials to replace the highly unstable B12O3, the present inventor found that a thin film varistor that solved the various problems mentioned above could be produced by having a predetermined configuration as shown below. This led to the invention.

すなわち本発明は、基板上に金属薄膜からなる下部電極
層が形成され、該電極層上に第1の酸化亜鉛(ZnO)
薄膜層と酸化鉛(PbO)薄膜層とが順次少なくとも1
組積層され、該積層体上に第2の酸化亜鉛薄膜層が形成
され、該薄膜層上に金属薄膜からなる上部電極層が形成
されてなる薄膜型電圧非直線抵抗器であって、第1およ
び第2の酸化亜鉛薄膜層中には、コバルトをCoOに換
算して0.1〜0.5モル%含有させ、さらに酸化鉛薄
膜層中には、マンガンをMnOに換算して0.05〜0
.1モル%含有させたことを特徴とする薄膜型電圧非直
線抵抗器である。
That is, in the present invention, a lower electrode layer made of a metal thin film is formed on a substrate, and a first zinc oxide (ZnO) layer is formed on the electrode layer.
At least one thin film layer and a lead oxide (PbO) thin film layer are sequentially formed.
A thin film type voltage nonlinear resistor comprising a first zinc oxide thin film layer, a second zinc oxide thin film layer formed on the laminate, and an upper electrode layer made of a metal thin film formed on the thin film layer. The second zinc oxide thin film layer contains 0.1 to 0.5 mol% of cobalt in terms of CoO, and the lead oxide thin film layer contains 0.05 mol% of manganese in terms of MnO. ~0
.. This is a thin film type voltage non-linear resistor characterized by containing 1 mol%.

本発明の薄膜型バリスタの構造は、実施例を兼ねてその
基本的構成を示す第1図のようになり、第1図(a)は
その断面図、第1図(b)は平面図である。なお第1図
(a)の断面図は第1図(b)におけるA−A−線に沿
うものでおる。
The structure of the thin film type varistor of the present invention is as shown in FIG. 1, which also serves as an example and shows its basic configuration. FIG. 1(a) is a cross-sectional view, and FIG. 1(b) is a plan view. be. Note that the sectional view of FIG. 1(a) is taken along the line AA- in FIG. 1(b).

第1図(a)において、下地となる基板1は表面平坦度
の良好なもので、以後の最高400°Cの酸化雰囲気中
での成膜という工程条件に耐えられるもの、例えばガラ
スやアルミナないしはサファイア等で形成されていれば
よく、特に限定されるものではない。最初に付ける下部
電極層2も同様の雰囲気条件に耐えるものであることを
必要とし、例えば金、白金、パラジウムおるいはルテニ
ウム金属が適当である。電極膜材料として前記記載のも
のが適当である理由は、不明の点もあるが、酸化亜鉛薄
膜層3a(第1の酸化亜鉛薄膜層)と金属材料との仕事
関数の差、あるいは酸化亜鉛薄膜層3aを成膜する寸前
の金属表面酸化皮膜層の存在の有無等に起因するもので
ある可能性もある。要するに、酸化雰囲気中で安定な低
抵抗性を示す材料であればよいものと思われる。
In FIG. 1(a), the underlying substrate 1 is made of a material that has good surface flatness and can withstand the subsequent process conditions of film formation in an oxidizing atmosphere at a maximum temperature of 400°C, such as glass, alumina, or It is not particularly limited as long as it is made of sapphire or the like. The lower electrode layer 2 applied first needs to be resistant to similar atmospheric conditions, and is suitably made of, for example, gold, platinum, palladium or ruthenium metal. The reason why the above-mentioned materials are suitable as electrode film materials is partly due to the difference in work function between the zinc oxide thin film layer 3a (first zinc oxide thin film layer) and the metal material, or because the zinc oxide thin film This may also be due to the presence or absence of an oxide film layer on the metal surface just before layer 3a is formed. In short, it seems that any material that is stable and exhibits low resistance in an oxidizing atmosphere is sufficient.

次にコバルトをCoOに換算して0.1〜0.5モル%
添加した酸化亜鉛薄膜@3aは予め同組成となるように
ターゲットを準備し、スパッタ法等で成膜する。ターゲ
ットの作製には、通常の粉末冶金の手法を用いることが
でき、粉末原料を混合・焼成することによって準備すれ
ばよい。
Next, cobalt is converted to CoO and is 0.1 to 0.5 mol%.
A target is prepared in advance so that the added zinc oxide thin film @3a has the same composition, and the film is formed by sputtering or the like. A normal powder metallurgy method can be used to prepare the target, and the target may be prepared by mixing and firing powder raw materials.

次いで、マンガンをMnOに換算して0.05〜0.1
モル%含有させた酸化鉛薄膜層4、および上記と同様の
条件に適合する酸化亜鉛薄膜@3b(第2の酸化亜鉛薄
膜層)をスパッタ法で成膜すればよい。
Next, convert manganese into MnO and convert it to 0.05 to 0.1.
The lead oxide thin film layer 4 containing mol% and the zinc oxide thin film @3b (second zinc oxide thin film layer) meeting the same conditions as above may be formed by sputtering.

このとき添加物であるコバルトおよびマンガンは酸化亜
鉛薄膜層3a、3bおよび酸化鉛薄膜層4中にわずかに
相互に拡散混入される条件が適当であった。即ち、酸化
亜鉛薄膜層3aおよび3bと酸化鉛薄膜層4との界面近
傍の濃度変化を最適の分イ5にすることによって、電気
的に良好な特性か得られるものと思われる。このときコ
バルトの濃度は酸化亜鉛薄膜中に高く、逆にマンガンは
閑化鉛薄膜中に濃度を高くすることか必要である。
At this time, conditions were suitable such that the additives cobalt and manganese were slightly diffused and mixed into the zinc oxide thin film layers 3a, 3b and the lead oxide thin film layer 4. That is, it seems that good electrical characteristics can be obtained by setting the concentration change near the interface between the zinc oxide thin film layers 3a and 3b and the lead oxide thin film layer 4 to an optimum value. At this time, the concentration of cobalt is high in the zinc oxide thin film, and conversely, it is necessary to increase the concentration of manganese in the lead-lead thin film.

薄膜中でこのような現象が期待できる方法であれば特に
スパッタ法に限るものではなく、イオンビームやプラズ
マを用いる蒸着法でもよい。あるいは成膜を終了した後
熱処理することでも構わない。
Any method that can be expected to produce such a phenomenon in a thin film is not limited to sputtering, and may also be a vapor deposition method using an ion beam or plasma. Alternatively, heat treatment may be performed after film formation is completed.

上部電極層5は特に特性を悪化させるものでなければ何
を用いてもよい。
Any material may be used for the upper electrode layer 5 as long as it does not particularly deteriorate the characteristics.

[実施例] 次に本発明の実施例について、図面を参照して詳細に説
明する。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の概略断面図および平面図
であり、その製造方法は次の通りである。
FIG. 1 is a schematic cross-sectional view and a plan view of an embodiment of the present invention, and the manufacturing method thereof is as follows.

まず、基板1として溶融石英およびサファイア基板を用
いた。下部電極層2としてパラジウムまたは白金を用い
る場合には基板との密着性を考慮して、予め500人だ
けTiをマグネトロンスパッタ法で付けた後、パラジウ
ムまたは白金を3000人同じくスパッタ法で成膜した
。一方、下部電極層2としてルテニウム(Ru)を用い
る場合は基板−Fに直接3000人の厚みに成膜した。
First, as the substrate 1, fused silica and sapphire substrates were used. When using palladium or platinum as the lower electrode layer 2, in consideration of adhesion to the substrate, Ti was applied in advance by magnetron sputtering on only 500 people, and then palladium or platinum was deposited on 3000 people using the same sputtering method. . On the other hand, when ruthenium (Ru) was used as the lower electrode layer 2, it was deposited directly on the substrate-F to a thickness of 3000 nm.

Cooとして純度99.9%以上の酸化物粉末を用い、
該粉末と、同じく純度99.9%以上のZnO粉末とを
純水を用いてボールミル法により混合したものを、2ト
ン/cm2の圧力で直径15cm、厚み1 cmに成形
し、1200°Cで1時間焼結した焼結体を酸化亜鉛薄
膜層用のスパッタターゲットとした。コバルトを含有す
る酸化亜鉛薄膜層3aの作製は、基板温度300°Cで
高周波マグネトロンスパッタ法により5000人の厚み
に成膜した。
Using oxide powder with a purity of 99.9% or more as Coo,
This powder and ZnO powder, which also has a purity of 99.9% or higher, were mixed using pure water using a ball mill method, and then molded into a diameter of 15 cm and a thickness of 1 cm at a pressure of 2 tons/cm2, and heated at 1200°C. The sintered body sintered for 1 hour was used as a sputter target for a zinc oxide thin film layer. The zinc oxide thin film layer 3a containing cobalt was formed to a thickness of 5,000 wafers by high frequency magnetron sputtering at a substrate temperature of 300°C.

酸化鉛層4は、MnOをPbO粉末と共に混合し、2ト
ン/cm2で押し固めたものをスパッタタゲツ1〜とし
て、上記と同じ方法で2000への厚みに成膜した。
The lead oxide layer 4 was formed by mixing MnO with PbO powder and compacting it at 2 tons/cm 2 to a thickness of 2,000 mm using the same method as described above using sputter targets 1 to 1.

更に再びコバルトを含有する酸化亜鉛薄膜層3bを50
00人、上記と同じ条件で順次、積層・成膜した。最後
に金電極を電子線加熱方式の蒸着法により、3000 
Aの厚みに成膜して上部電極層5とした。
Further, the zinc oxide thin film layer 3b containing cobalt is again deposited at 50%
00 people, and laminated and formed films in sequence under the same conditions as above. Finally, a gold electrode was deposited using an electron beam heating method.
A film was formed to a thickness of A to form the upper electrode layer 5.

(qられた素子の電気特性は、カーブトレーサおよび直
流での電圧電流特性を測定して評1fiuだ。
(The electrical characteristics of the q element were evaluated as 1fiu by measuring the voltage-current characteristics with a curve tracer and DC.

非直線係数は1mAおよび10rTIAの電流値におけ
る電圧の測定値v11nAとVlomAの値から面記[
工]式に従って算定した。
The nonlinear coefficient is calculated from the measured voltage values v11nA and VlomA at current values of 1mA and 10rTIA [
Calculated according to the following formula:

酸化亜鉛薄膜層中のコバルト添加量、および酸化鉛簿膜
層中のマンガン添加量をそれぞれ変化させた時の非直線
係数(α)を測定した結果をそれぞれ第2図および第3
図に示す。なお、各添加物依存性は、他の添加物量を最
適量とした条件下で測定したものであり、いずれも酸化
物換算した間をボす。
Figures 2 and 3 show the results of measuring the nonlinear coefficient (α) when varying the amount of cobalt added in the zinc oxide thin film layer and the amount of manganese added in the lead oxide thin film layer, respectively.
As shown in the figure. Note that the dependence on each additive was measured under conditions in which the amounts of other additives were set to the optimum amounts, and all values exceed the values calculated in terms of oxides.

第2図および第3図から明らかなように、本発明による
薄膜バリスタは非直線性の優れたものである。
As is clear from FIGS. 2 and 3, the thin film varistor according to the present invention has excellent nonlinearity.

第1表は立上かり電圧(vllIIA)の80%の直流
電圧を100時間印7]0した後の■1111Aの変化
率△V1mA /V1mAを示す。第1表では、本発明
にあける酸化鉛の代わりに酸化ビスマスを用いたものの
特性を従来例として示した。同表かられかるように、非
直線係数およびVllIIAの変化率は本発明によるも
のが明らかに良好な特性を示している。
Table 1 shows the change rate ΔV1mA/V1mA of ■1111A after applying a DC voltage of 80% of the rising voltage (vllIIA) to mark 7]0 for 100 hours. Table 1 shows the characteristics of a conventional example in which bismuth oxide was used instead of lead oxide according to the present invention. As can be seen from the table, the nonlinear coefficient and the rate of change of VllIIA clearly show better characteristics in the case of the present invention.

第  1  表 なd3、本実施例では第1図に記載の構造の薄膜バリス
タについてのみ述べたが、本実施例による構成の構造を
多数回繰返して積層・成膜することによって、容易に立
上がり電圧の高い安定性に優れた薄膜バリスタが得られ
ることは言うまでもない。
d3 in Table 1. In this example, only the thin film varistor having the structure shown in FIG. Needless to say, a thin film varistor with excellent stability can be obtained.

[発明の効果] 以上)小べたように、本発明による薄膜バリスタは、非
直線特性のみならず、その特性の安定性にも浸れた実用
性の高い素子であり、各種の基板上に容易に形成できる
ことから超小型のバリスタアレーのみならず、液晶表示
素子に要求されるような10ミクロンサイズにもフォト
リソグラフィーによる微細加工技術を利用することによ
って容易に加工でき広範な応用が可能である。
[Effects of the Invention] As mentioned above, the thin film varistor according to the present invention is a highly practical element that has not only nonlinear characteristics but also stable characteristics, and can be easily mounted on various substrates. Since it can be formed, it can be easily fabricated not only into ultra-small varistor arrays, but also into 10-micron sizes, such as those required for liquid crystal display elements, by using photolithographic microfabrication technology, making it possible to have a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略断面図および平面図、
第2図および第3図は非直線係数の添加物量依存性を示
す特性図である。 1・・・基板      2・・・下部電lll1層3
a、 3b・・・酸化亜鉛薄膜層
FIG. 1 is a schematic cross-sectional view and a plan view of an embodiment of the present invention,
FIGS. 2 and 3 are characteristic diagrams showing the dependence of the nonlinear coefficient on the amount of additives. 1...Substrate 2...Lower electrode 11 layer 3
a, 3b...Zinc oxide thin film layer

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に金属薄膜からなる下部電極層が形成され
、該電極層上に第1の酸化亜鉛(ZnO)薄膜層と酸化
鉛(PbO)薄膜層とが順次少なくとも1組積層され、
該積層体上に第2の酸化亜鉛薄膜層が形成され、該薄膜
層上に金属薄膜からなる上部電極層が形成されてなる薄
膜型電圧非直線抵抗器であつて、第1および第2の酸化
亜鉛薄膜層中には、コバルトをCoOに換算して0.1
〜0.5モル%含有させ、さらに酸化鉛薄膜層中には、
マンガンをMnOに換算して0.05〜0.1モル%含
有させたことを特徴とする薄膜型電圧非直線抵抗器。
(1) A lower electrode layer made of a metal thin film is formed on the substrate, and at least one set of a first zinc oxide (ZnO) thin film layer and a lead oxide (PbO) thin film layer are sequentially laminated on the electrode layer,
A thin film type voltage nonlinear resistor comprising: a second zinc oxide thin film layer formed on the laminate; and an upper electrode layer made of a metal thin film formed on the thin film layer; In the zinc oxide thin film layer, cobalt is converted to CoO and contains 0.1
~0.5 mol% is contained in the lead oxide thin film layer, and further, in the lead oxide thin film layer,
A thin film type voltage nonlinear resistor characterized in that it contains manganese in an amount of 0.05 to 0.1 mol% in terms of MnO.
JP63300723A 1988-11-30 1988-11-30 Thin film type voltage-dependent nonlinear resistor Pending JPH02148803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300723A JPH02148803A (en) 1988-11-30 1988-11-30 Thin film type voltage-dependent nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300723A JPH02148803A (en) 1988-11-30 1988-11-30 Thin film type voltage-dependent nonlinear resistor

Publications (1)

Publication Number Publication Date
JPH02148803A true JPH02148803A (en) 1990-06-07

Family

ID=17888329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300723A Pending JPH02148803A (en) 1988-11-30 1988-11-30 Thin film type voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH02148803A (en)

Similar Documents

Publication Publication Date Title
JP2002246207A (en) Voltage nonlinear resistor and porcelain composition
EP0645784B1 (en) A varistor and its manufacturing method
US5324986A (en) Chip type varistor
JPS644322B2 (en)
EP3696827B1 (en) Thermistor sintered body and temperature sensor element
US4349496A (en) Method for fabricating free-standing thick-film varistors
TWI719130B (en) Voltage nonlinear resistance element and its manufacturing method
TWI654624B (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and manufacturing method of positive temperature coefficient resistor
US4338223A (en) Method of manufacturing a voltage-nonlinear resistor
JPS6253923B2 (en)
JPH02148803A (en) Thin film type voltage-dependent nonlinear resistor
JPH02148802A (en) Thin film type voltage-dependent nonlinear resistor
JPH02119205A (en) Thin-film type voltage nonlinear resistor
JPH02119204A (en) Thin-film type voltage nonlinear resistor
JPH02119203A (en) Thin-film type voltage nonlinear resistor
KR950007948B1 (en) Varister
JP2000228302A (en) Zinc oxide based porcelain laminated member, its manufacture and zinc oxide varistor
KR102137936B1 (en) Zinc oxide based varistor composition, varistor using the same and method of manufacturing the varistor
JPS5912002B2 (en) Voltage nonlinear resistor and its manufacturing method
WO2012111385A1 (en) Positive temperature-coefficient thermistor
JPH05283209A (en) Laminated varistor
JP2001052907A (en) Ceramic element and manufacturing method
JPH01297803A (en) Voltage nonlinear resistance laminated thin film and manufacture thereof
JPH0431163B2 (en)
KR20230097845A (en) ZnO-BASED VARISTOR COMPOSITION AND VARISTOR INCLUDING THE SAME AND MANUFACTURING METHOD THEREOF