JPH02147899A - Treatment for volume reduction of radioactive waste by hip - Google Patents

Treatment for volume reduction of radioactive waste by hip

Info

Publication number
JPH02147899A
JPH02147899A JP30336988A JP30336988A JPH02147899A JP H02147899 A JPH02147899 A JP H02147899A JP 30336988 A JP30336988 A JP 30336988A JP 30336988 A JP30336988 A JP 30336988A JP H02147899 A JPH02147899 A JP H02147899A
Authority
JP
Japan
Prior art keywords
zircaloy
hip
capsule
pressure
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30336988A
Other languages
Japanese (ja)
Other versions
JPH0782115B2 (en
Inventor
Masao Shiotsuki
塩月 正雄
Shigeyoshi Kawamura
川村 重義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63303369A priority Critical patent/JPH0782115B2/en
Publication of JPH02147899A publication Critical patent/JPH02147899A/en
Publication of JPH0782115B2 publication Critical patent/JPH0782115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To treat the radioactive waste consisting of zircaloy to reduce its volume by a hot isostatic pressurization (HIP) method of a relatively low pressure by using a metal having the high eutectic m.p. with the zircaloy as the material of a capsule. CONSTITUTION:The material for constituting the capsule 16 is selected from titanium, titanium alloy, zirconium, and zirconium alloy as the metal having the high eutectic m. p. with the zircaloy. Used fuel cladding pipes consisting of the zircaloy are packed as the radioactive waste 18 into the capsule 16 to form an object 14 to be treated. The object 14 is installed into an HIP pressure vessel 10 and a pressure medium is introduced therein and is heated by a heater 12. The object is thus solidified and treated by the HIP at a high temp. under a uniform pressure and is thereby reduced in volume. The sufficient solidification performance is obtainable even if the pressure is kept under <10kgf/cm<2> if the treating temp. is set at about 1,400 deg.C which is below the eutectic m. p. of the capsule material with the zircaloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本願発明は、使用済燃料被覆管のように主としてジルカ
ロイからなる放射性金属廃棄物をHIPg容処理する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for HIPg treatment of radioactive metal waste mainly composed of Zircaloy, such as spent fuel cladding tubes.

[従来の技術〕 使用済撚t−1の再処理工程で発生ずる使用済燃料被覆
管等の放射性廃棄物は、H! P (熱間静水圧プレス
)法によって減容固化処理することが行われている。 
HI P法は、第1図に示すように、圧力容器10内に
圧媒(不活性ガス)を導入し、同時に内部のヒークニ1
2で加熱することにより被処理体14を高温で且つ均等
な圧力で圧縮する方法であり、様々な分野で広く用いら
れている。
[Prior art] Radioactive waste such as spent fuel cladding tubes generated in the reprocessing process of spent twisted t-1 is produced by H! Volume reduction and solidification treatment is carried out by the P (hot isostatic pressing) method.
As shown in Fig. 1, in the HIP method, a pressure medium (inert gas) is introduced into a pressure vessel 10, and at the same time the internal heat tank 10 is
This is a method of compressing the object to be processed 14 at high temperature and uniform pressure by heating at step 2, and is widely used in various fields.

このHI P法を利用した使用済燃料被覆管の減容処理
では、ステンレス製のカプセル16を使用し、その中に
ジルカロイからなる使用済燃料被覆管等の放射性廃棄物
18を充填したものを被処理体14としている。ここで
処理温度は1100℃以下に制限されており、通常、1
000℃の温度で50 kgf/cm”以上の加圧圧力
を数時間保持する必要がある。
In the volume reduction treatment of spent fuel cladding using this HIP method, a stainless steel capsule 16 is used, and the capsule is filled with radioactive waste 18 such as spent fuel cladding made of Zircaloy. It is referred to as a processing body 14. Here, the processing temperature is limited to 1100°C or less, and usually 1
It is necessary to maintain a pressure of 50 kgf/cm" or more at a temperature of 1,000°C for several hours.

[発明が解決しようとする課題] 従来技術ではHIP処理における圧媒として上記のよう
な高圧のArガスを使用するため高圧ガス取締り法の適
用を受け、定期保安検査を実施することが必要となる。
[Problem to be solved by the invention] In the conventional technology, high pressure Ar gas as described above is used as a pressure medium in HIP processing, so it is necessary to conduct periodic safety inspections under the High Pressure Gas Control Law. .

ここで被処理体が放射性廃棄物であることから、検査に
際して検査官が管理区域内に立ち入れるように設置施設
内を完全に除染しなければならない。そのため施設を長
期間閉鎖する必要が生じ、その間、HIP処理作業も停
止しなければならず、設備の稼動効率は著しく低下する
Since the object to be treated here is radioactive waste, the inside of the facility must be completely decontaminated so that inspectors can enter the controlled area during inspections. Therefore, it becomes necessary to close the facility for a long period of time, during which time the HIP processing operation must also be stopped, which significantly reduces the operating efficiency of the facility.

本発明の目的は、上記のような従来技術の欠点を解消し
、高圧ガス取締り法が適用されない条件、即ち10 k
gf/cm”未満の加圧圧力でも充分な同化性能を得る
ことができ、そのため装置の設置及び管理を容易に行え
るような放射性廃棄物のHIP減容処理方法を提供する
ことにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, and to meet the conditions where the High Pressure Gas Control Law is not applicable, that is, 10 k
The object of the present invention is to provide a HIP volume reduction treatment method for radioactive waste that can obtain sufficient assimilation performance even at a pressurizing pressure of less than "gf/cm" and that allows easy installation and management of the device.

[課題を解決するための手段] 上記のような技術的課題を解決できる本発明は、チタン
、チタン合金、ジルコニウム、又はジルコニウム合金で
製作したカプセルを用い、その内部に主としてジルカロ
イからなる放射性廃棄物を充填し、前記カプセル材ギ4
とジルカロイの共晶溶融点未満の温度で且つ] Okg
f/cm”未満の加圧圧力でII I P処理する放射
性廃棄物のIIIP′$1容処理方法である。
[Means for Solving the Problems] The present invention, which can solve the above technical problems, uses a capsule made of titanium, titanium alloy, zirconium, or zirconium alloy, and contains radioactive waste mainly made of zircaloy. and the capsule material 4
and at a temperature below the eutectic melting point of Zircaloy and]
This is a $1 volume IIIP treatment method for radioactive waste in which the IIP treatment is carried out at a pressurizing pressure of less than f/cm''.

ここで実際に行う場合に好ましい条件は、HIP処理温
度を約1400℃、加圧圧力を灼9kgf/cm”程度
とすることである。
Preferred conditions for actually carrying out this process are that the HIP treatment temperature is approximately 1400° C. and the pressurization pressure is approximately 9 kgf/cm”.

[作用] 従来技術において、加圧圧力を最低50kgf/cm’
以上必要としたのは、加熱温度が1100℃以下に制限
されたためである。これはカプセル構成材ネIであるス
テンレスと放射性廃棄物であるジルカロイとの共晶溶融
点が1100℃であるため、その温度まで加熱するとス
テンレス製カプセルが溶融しカプセル内部に圧媒が侵入
して圧縮できなくなるからである。そこで実際には温度
コントロールのための余裕を見込んで1000℃程度で
II I P処理を行っていた。
[Function] In the conventional technology, the pressurizing pressure is at least 50 kgf/cm'
The above reason is necessary because the heating temperature is limited to 1100° C. or lower. This is because the eutectic melting point of stainless steel, which is the capsule component material, and Zircaloy, which is radioactive waste, is 1100°C, so when heated to that temperature, the stainless steel capsule melts and the pressure medium enters the capsule. This is because it cannot be compressed. Therefore, in practice, II IP treatment was performed at about 1000° C., allowing for a margin for temperature control.

本発明ではチタン、チタン合金、ジルコニウム、又はジ
ルコニウム合金からなるカプセルを使用するため、それ
らとジルカロイとの共晶溶融点は高く、例えばチタンで
は1537℃になり、従来技術よりもはるかに高い! 
、i 00℃程度で処理することができる。
Since the present invention uses capsules made of titanium, titanium alloy, zirconium, or zirconium alloy, the eutectic melting point of titanium and zircaloy is high; for example, titanium has a high eutectic melting point of 1537°C, which is much higher than that of the conventional technology!
, i It can be processed at about 00°C.

他方、第2図に示すようにジルカロイの強度は高温にな
るほど低下し、加熱温度を1400°C程度に設定する
と10 kgf/cm’未満の加圧圧力で充分な同化性
能を得ることができる。
On the other hand, as shown in FIG. 2, the strength of Zircaloy decreases as the temperature increases, and if the heating temperature is set to about 1400°C, sufficient assimilation performance can be obtained with an applied pressure of less than 10 kgf/cm'.

[実施例] 本発明の第1の特徴は、カプセルの構成材料として従来
技術のようなステンレス鋼ではなくジルカロイとの共晶
溶融点の高い金属材料を用いる点である。この種の材料
としては、チタン、チタン合金、ジルコニウム、ジルコ
ニウム合金の中から選択する。そしてその材料からなる
カプセル内に放射性廃棄物であるジルカロイからなる使
用済核燃料被覆管を充填する。
[Example] The first feature of the present invention is that a metal material having a high eutectic melting point with Zircaloy is used as the constituent material of the capsule, instead of stainless steel as in the prior art. This type of material is selected from titanium, titanium alloys, zirconium, and zirconium alloys. A spent nuclear fuel cladding tube made of Zircaloy, a radioactive waste, is then filled into a capsule made of that material.

このようにして得られた被処理体をHI P圧力容器内
に設置し、内部のヒータで加熱すると共に圧媒を導入し
て高温でfl、つ均等な圧力でIIIFσ友容固化処理
する。
The object to be treated thus obtained is placed in a HIP pressure vessel, heated by an internal heater, and a pressure medium is introduced to perform IIIFσ solidification treatment at high temperature and uniform pressure.

本発明の第2の特徴は、そのI(I P処理条件である
。この処理はカプセル材料とジルカロイとの共晶溶融点
未満の温度で且つl Okgf/c、m2未満の加圧圧
力で行う。より望ましくは、温度約1400℃、圧力約
9 kgf/cm”で行うことである。本発明ではステ
ンレスではなくジルカロイとの共晶t8融点の高い金属
でカプセルを構成しているため、カプセルの強度が高温
まで維持される。例えばカプセル材料としてチタンを使
用すると、そのジルカロイとの共晶溶融点は1537℃
であり、温度コントロール代等の余裕を見込んでも14
00℃で充分処理が行える。
The second feature of the present invention is its I (I P treatment conditions. This treatment is carried out at a temperature below the eutectic melting point of the encapsulant and Zircaloy and at an applied pressure of less than lOkgf/c, m2. More preferably, it is carried out at a temperature of about 1,400°C and a pressure of about 9 kgf/cm.In the present invention, the capsule is made of a metal with a high melting point of eutectic T8 with Zircaloy instead of stainless steel. Strength is maintained up to high temperatures.For example, when titanium is used as the capsule material, its eutectic melting point with Zircaloy is 1537°C.
Therefore, even if allowances are made for temperature control costs, etc., it is 14
The treatment can be carried out sufficiently at 00°C.

他方、ジルカロイの高温強度は、第2図に示すように1
000℃を超えると漸次低下する。
On the other hand, the high temperature strength of Zircaloy is 1 as shown in Figure 2.
When it exceeds 000°C, it gradually decreases.

圧縮のための加圧力をl Okgf/cm”未満(実際
には設計圧力9 、 9 kgf/cm”の場合、常用
圧力を9 、 0 kgf/cm” に設定する)の圧
力を加えて減容固化させるためには約1400℃の温度
であればよい。また加圧時間は被処理体の大きさに合わ
せて適宜決定すればよい。従って上記のような材料のカ
プセルを使用すると、比較的低い力n圧力で充分な固化
性能を発現させることが可能となる。
Apply pressure for compression of less than 10 kgf/cm" (actually, if the design pressure is 9.9 kgf/cm", set the normal pressure to 9.0 kgf/cm") to reduce the volume. A temperature of about 1400°C is sufficient for solidification. Also, the pressurization time can be determined appropriately depending on the size of the object to be treated. Therefore, if capsules made of the above materials are used, the temperature will be relatively low. It becomes possible to exhibit sufficient solidification performance with force n pressure.

[発明の効果] 本発明は上記のように被処理体のカプセル材質をステン
レスに代えてジルカロイとの共晶溶Af4点の高い金属
材ギ4にしたため、約1400℃程度の高l晶に耐え、
I Okgf/cm”未満の比較的低い圧力でジルカロ
イからなる放81性廃棄物のII + P減容処理が可
能となる効果がある。
[Effects of the Invention] As described above, the present invention uses a metal material with a high Af4 point of eutectic melting with Zircaloy instead of stainless steel as the capsule material of the object to be processed, so that it can withstand high l crystals at about 1400°C. ,
This has the effect of making it possible to perform II + P volume reduction treatment of radioactive waste made of Zircaloy at a relatively low pressure of less than 10 kgf/cm''.

このため高圧ガス取締り法の適用が免除され、検査官に
よる保安検査のための除染作業や、そのYlを備等のた
め、II I P処理作業を長期間にわたって停止する
必要がなくなる。勿論設胃汗による定期自主検査は当然
実施する必要があるが、その場合、検査員は必要な遮蔽
保護を行うため除染作業を大幅に短縮できる。このよう
にして装置の設置及び管理が容易となり、装置の稼動効
率が高くなる。
For this reason, the application of the High Pressure Gas Control Law will be exempted, and there will be no need to stop IIIP treatment work for a long period of time due to decontamination work by inspectors for safety inspections or preparation of the Yl. Of course, regular self-inspections using gastric sweat must be carried out, but in that case, inspectors can provide the necessary shielding protection, greatly shortening decontamination work. In this way, the installation and management of the device is facilitated, and the operating efficiency of the device is increased.

4、U21面のfiii A’−な説明第1図はHI 
P法の一例を示す説明図、第2図はジルカロイの高温強
度特性を示す説明図である。
4. fiii A'- explanation of U21 side Figure 1 is HI
An explanatory diagram showing an example of the P method, and FIG. 2 is an explanatory diagram showing the high temperature strength characteristics of Zircaloy.

10・・・圧力容器、12・・・ヒータ、14・・・被
処理体、16・・・カプセル、[8・・・放射性廃棄物
DESCRIPTION OF SYMBOLS 10... Pressure vessel, 12... Heater, 14... Treated object, 16... Capsule, [8... Radioactive waste.

特約出願人 動力炉・核燃料開発+1工業団代  理 人 茂  見 撰Special contract applicant: Power reactor/nuclear fuel development +1 industrial group representative: Osamu Man Shigeru Mi Selection

Claims (1)

【特許請求の範囲】 1、チタン、チタン合金、ジルコニウム、又はジルコニ
ウム合金で製作したカプセルを使用し、その内部に主と
してジルカロイからなる放射性廃棄物を充填し、前記カ
プセル材料とジルカロイの共晶溶融点未満の温度で且つ 10kgf/cm^2未満の加圧圧力でHIP処理する
ことを特徴とする放射性廃棄物のHIP減容処理方法。 2、HIP処理を温度約1400℃、加圧圧力約9kg
f/cm^2で行う請求項1記載のHIP減容処理方法
[Claims] 1. A capsule made of titanium, titanium alloy, zirconium, or zirconium alloy is used, and radioactive waste mainly made of zircaloy is filled inside the capsule, and the eutectic melting point of the capsule material and zircaloy is 1. A HIP volume reduction treatment method for radioactive waste, characterized in that HIP treatment is performed at a temperature below 10 kgf/cm^2 and at a pressure below 10 kgf/cm^2. 2.HIP treatment at a temperature of approximately 1400℃ and a pressure of approximately 9kg.
The HIP volume reduction treatment method according to claim 1, which is carried out at f/cm^2.
JP63303369A 1988-11-29 1988-11-29 HIP volume reduction method for radioactive waste Expired - Lifetime JPH0782115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303369A JPH0782115B2 (en) 1988-11-29 1988-11-29 HIP volume reduction method for radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303369A JPH0782115B2 (en) 1988-11-29 1988-11-29 HIP volume reduction method for radioactive waste

Publications (2)

Publication Number Publication Date
JPH02147899A true JPH02147899A (en) 1990-06-06
JPH0782115B2 JPH0782115B2 (en) 1995-09-06

Family

ID=17920167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303369A Expired - Lifetime JPH0782115B2 (en) 1988-11-29 1988-11-29 HIP volume reduction method for radioactive waste

Country Status (1)

Country Link
JP (1) JPH0782115B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357400A (en) * 1976-11-02 1978-05-24 Asea Ab Method of fixing radoactive material in water immersion resistive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357400A (en) * 1976-11-02 1978-05-24 Asea Ab Method of fixing radoactive material in water immersion resistive material

Also Published As

Publication number Publication date
JPH0782115B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
CA1190332A (en) Method of preparing spent nuclear fuel rods for long- term storage
JPH02147899A (en) Treatment for volume reduction of radioactive waste by hip
US4383855A (en) Cermets and method for making same
JPH02201199A (en) Treatment of high-radioactive waste
JPH0356439B2 (en)
US3429025A (en) Method of making non-metallic swaged fuel elements
US3278387A (en) Fuel recycle system in a molten salt reactor
NL193238C (en) Pellet for the sorption of hydrogen isotope.
US3838184A (en) Process for producing fuel and breeder bodies for a nuclear reactor
US5454425A (en) Metal matrix composite made with reduced interface reactions
JP2708209B2 (en) Volume reduction of spent nuclear fuel cladding
KR102456636B1 (en) Method for removing radioactive carbon
JPH0552479B2 (en)
JP7385505B2 (en) Chemical decontamination methods
Clauer et al. Hot isostatic processing
US3417167A (en) Method of preparing spherical uranium nitride particles having a porous interior
Gott Residual Stress Measurements in Welded Specimens of Pressure Vessel Type A 533 B. Final Report
JPH03172799A (en) Preprocessing method for radioactive metal refuse
Mills et al. Effect of irradiation on the stress corrosion cracking behavior of Alloy X-750 and Alloy 625
RU2031455C1 (en) Method of operation of nuclear power complex
KR20240046024A (en) How to solidify radioactive waste
JP2005048203A (en) Duplex stainless steel, its production method, and member for nuclear device
CN117316487A (en) Method and system for treating waste sodium by utilizing high-temperature self-propagating process
JPH03140898A (en) Reprocessing method of spent nuclear fuel element
Salvioni et al. Creep comparison between type 316 stainless steel and Nimonic PE-16 used as the first wall in a fusion reactor