JP2005048203A - Duplex stainless steel, its production method, and member for nuclear device - Google Patents

Duplex stainless steel, its production method, and member for nuclear device Download PDF

Info

Publication number
JP2005048203A
JP2005048203A JP2003203119A JP2003203119A JP2005048203A JP 2005048203 A JP2005048203 A JP 2005048203A JP 2003203119 A JP2003203119 A JP 2003203119A JP 2003203119 A JP2003203119 A JP 2003203119A JP 2005048203 A JP2005048203 A JP 2005048203A
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
phase
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203119A
Other languages
Japanese (ja)
Inventor
Yumiko Abe
由美子 阿部
Fumihisa Kano
文寿 鹿野
Yoshihisa Saito
宣久 斉藤
Kazuyoshi Kataoka
一芳 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003203119A priority Critical patent/JP2005048203A/en
Publication of JP2005048203A publication Critical patent/JP2005048203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide duplex stainless steel having an austenitic phase and a ferritic phase, high in strength and corrosion resistance, and suitable for use in a radiation environment, to provide its production method, and to provide a member for a nuclear device. <P>SOLUTION: The duplex stainless steel has an austenitic phase and a ferritic phase, and in which the equivalent of Cr and the equivalent of Ni comprised as components lie in the boundary part between the dual phase of the austenitic phase and the ferritic phase and the austenitic single phase in Schaeffler's diagram, and the crystal grains are made minute. The duplex stainless steel is produced in such a manner that cold working (a) and (d) and heat treatment (b), (c), (e) and (f) are controlled, and the coarsening of the crystal grains is suppressed by the precipitation of the ferritic phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、オーステナイト相とフェライト相を有する2相ステンレス鋼およびその製造方法および前記2相ステンレス鋼を用いた原子力装置用部材に関する。
【0002】
【従来の技術】
軽水炉プラントもしくは原子力プラントより発生する廃棄物を処理する施設等の環境は、中性子照射による放射線環境下となるため、このような原子力施設に使用されているオーステナイトステンレス鋼等は、使用が長期にわたると、ボイド発生等による強度および延性の低下や偏析誘起による粒界部Cr等の濃度低下から生じる耐食性低下および粒界割れが発生する。これらの現象は、改良材を適用してもなお発生しており、対策は十分とは言い難く、プラントの長寿命化への懸念材料のひとつとなっている。
【0003】
また、現在、超臨界圧水軽水炉を代表とする高温・高圧によって熱効率向上を目指した原子力プラントの実用化が検討されており、その適用温度は290℃から550℃、圧力は25MPaと厳しい環境となる。しかし、従来の軽水炉プラントに使用されている構造材料および燃料被覆管材料の高温強度は、温度が550℃以上になると急激に低下するため、超臨界圧水軽水炉等における使用は困難である。さらに、水の密度が低下するため中性子密度がより高い環境となるため、粒界偏析による耐食性低下も懸念される。従って、高温強度および耐食性を向上させた改良材の開発が望まれている。
【0004】
一方、オーステナイトステンレス鋼の高温強度および耐食性を高める手法としては、結晶粒の微細化が挙げられる。一般的な微細化の手段は、冷間加工→熱処理(再結晶化)→冷却である(下記特許文献1,2,3参照)。微細化を促進させるために最も効果的な方法は冷間加工率をできるだけ高くすることであるが、冷間加工率の上昇は材料の厚さを制限することになり、加工できる製品も限られるという難点が生じる。そのため、冷間加工率を上げずに結晶粒の微細化を促進させる手段を検討する必要がある。
【0005】
【特許文献1】
特開2000−273538号公報
【特許文献2】
特開2001−32045号公報
【特許文献3】
特開2002−256400号公報
【0006】
【発明が解決しようとする課題】
本発明は、オーステナイト相とフェライト相を有し、強度と耐食性が高く、放射線環境下での使用に適した2相ステンレス鋼およびその製造方法および原子力装置用部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は2相ステンレス鋼であり、オーステナイト相およびフェライト相を有し、成分として含まれるCr当量およびNi当量が、シェフラーの組織図においてオーステナイト相とフェライト相の複相とオーステナイト相単相の境界部にあり結晶粒が微細化されている構成とする。
【0008】
請求項2の発明は、請求項1の発明において、重量比1.5%以下のTi、または重量比1.5%以下のNb、または重量比1.5%以下のZrの少なくともいずれか1種類を含有する構成とする。
【0009】
請求項3の発明は、請求項1に記載の2相ステンレス鋼の製造方法において、冷間加工と熱処理の制御により、結晶粒粗大化をフェライト相の析出によって抑制する方法とする。
【0010】
請求項4の発明は、請求項3の発明において、冷間加工を40%以上として制御する方法とする。
請求項5の発明は、請求項3の発明において、熱処理温度を800℃以上1100℃以下として制御する方法とする。
【0011】
請求項6の発明は、請求項3の発明において、熱処理後の冷却速度を制御することによって粒界部のCr濃度を濃縮させる方法とする。
請求項7の発明は、請求項3の発明において、熱処理後の冷却速度を1℃/秒ないし50℃/秒に制御する方法とする。
【0012】
請求項8の発明は原子力装置用部材であり、請求項1に記載の2相ステンレス鋼によって形成され、燃料被覆管、または軽水炉炉内構造物または配管、または軽水炉、または廃棄物処理装置の少なくとも一部分を構成する構成とする。
【0013】
【発明の実施の形態】
図1,2,3を参照して本発明の実施の形態を説明する。
本実施の形態の2相ステンレス鋼は、冷間加工と熱処理の制御により、結晶粒粗大化をフェライト相の析出によって抑制した、オーステナイト相およびフェライト相を持つ結晶粒微細化ステンレス鋼である。
【0014】
図1にシェフラーの組織図を示す。本実施の形態では、オーステナイト相およびフェライト相を持つ2相ステンレス鋼において、フェライト相を分散析出させることによって、オーステナイト相の粒径粗大化を防ぐ。そのため、フェライト相の含有量は少ない方が望ましく、製造にあたっては図1をもとにオーステナイト相に近い2相ステンレス鋼になるようにCr当量およびNi当量を決定する。分散析出したフェライト相は、結晶粒成長を抑制もしくは阻止するピン止め効果を発揮し、微細化が促進される。
【0015】
図2に、オーステナイト相およびフェライト相を持つ本実施の形態の2相ステンレス鋼の冷間加工と熱処理を制御して組織を微細化させる製造工程を示す。鋼の製造は、1回目の微細化工程と2回目の微細化または1回目の微細化工程と2回目の微細化およびCr濃度濃縮工程で行う。
【0016】
図1をもとに製作した2相ステンレス鋼の材料1を冷間圧延機2にかけ冷間加工40%以上となるように圧延する(a)。冷間加工した材料1を電気炉3において温度800℃〜1100℃まで加熱し保持(b)した後、電気炉3を開けて空冷もしくは材料1を取り出し水冷を行い冷却する(c)。ここまでを一回目の微細化工程とする。次に、冷却した材料1を再度、冷間圧延機2にかけ、一回目の冷間加工率と同等もしくはそれ以上の冷間加工を行い(d)、電気炉3に入れ、温度800℃〜1050℃まで加熱し保持(e)した後冷却を行う。
【0017】
粒界部のCr濃度濃縮を実施する場合は、電気炉3の加熱制御とファン4を用いて材料1の冷却速度制御を行う(f)。冷却速度は、粒界部Cr濃度を上げるために、温度800℃から500℃の間を1℃/秒から50℃/秒とする。これらが第2回目の微細化処理と粒界部Cr濃度濃縮工程となる。これによって、材料1の粒度は微細化され、かつ粒界部のCr濃度の濃縮が行われ、強度および耐食性が改善された材料が製造される。
【0018】
製造工程に含まれる冷間加工は結晶粒微細化促進効果とともに、加工によって入った歪によってフェライト相が析出しやすくし、分散化促進効果もある。また、2相ステンレス鋼の材料1には、あらかじめ、重量比1.5%以下のTi、NbおよびZrを1種類または2種類以上添加しておくとさらに強度および耐食性が向上する。同時に、Ti、NbおよびZrは、析出した元素および相を捕獲する性質があるため、フェライト相分散析出効果が得られる。
【0019】
図3に本実施の形態の2相ステンレス鋼の組織写真を示す。写真(a)はFe−15Ni−25Cr合金で、写真(b)はFe−15Ni−25Cr−Ti−Zr合金である。粒径は9〜10μmであり、微細化されていることがわかる。
【0020】
本実施の形態の2相ステンレス鋼は、原子力プラントの燃料被覆管や、炉内機器や、配管や、高温高圧化によって熱効率を向上させた軽水炉に適用することができる。
【0021】
本実施の形態によれば、冷間加工および熱処理の制御という非常に簡便な手段で、高温強度および耐食性を向上させた2相ステンレス鋼を製作することができる。すなわち、フェライト相の分散析出により、粒径微細化したステンレス鋼が得られるとともに、微細化かつ粒界部のCr濃縮を行うことによって、高温強度および耐食性を高めた材料を得ることができる。また、Ti、NbおよびZrの添加によって、より効果的に微細化および耐食性を向上させることができる。そして、本実施の形態の2相ステンレス鋼を使用すれば、軽水炉プラントおよび廃棄物処理システムの構造部材の健全性を長期間維持した安全な運転を行うことが可能になる。
【0022】
【発明の効果】
本発明によれば、オーステナイト相とフェライト相を有し、強度と耐食性が高く、放射線環境下での使用に適した2相ステンレス鋼およびその製造方法および原子力装置用部材を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明するシェフラーの組織図。
【図2】Crを含む鉄鋼材料の冷間加工と熱処理を制御して、組織の微細化および粒界部の成分元素濃度を濃縮させる本発明の実施の形態の製造工程を説明する図。
【図3】フェライト相を分散析出させた本発明の実施の形態の2相ステンレス鋼の組織写真。
【符号の説明】
1…材料、2…冷間圧延機、3…電気炉、4…熱電対、5…温度測定器、6…ファン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a duplex stainless steel having an austenite phase and a ferrite phase, a method for producing the duplex stainless steel, and a nuclear device member using the duplex stainless steel.
[0002]
[Prior art]
Because the environment of facilities that treat waste generated from light water reactor plants or nuclear power plants is in a radiation environment due to neutron irradiation, austenitic stainless steel used in such nuclear facilities should be used for a long time. In addition, a decrease in strength and ductility due to void generation or the like, and a decrease in corrosion resistance and a grain boundary crack resulting from a decrease in the concentration of grain boundary portion Cr due to segregation induction occur. These phenomena still occur even when the improved material is applied, and it is difficult to say that countermeasures are sufficient, and this is one of the concerns for extending the plant life.
[0003]
Currently, the practical application of nuclear power plants aiming at improving the thermal efficiency by high temperature and high pressure represented by the supercritical water reactor is being studied, and its application temperature is from 290 ° C to 550 ° C, and the pressure is 25 MPa. Become. However, the high-temperature strength of structural materials and fuel cladding materials used in conventional light water reactor plants rapidly decreases when the temperature reaches 550 ° C. or higher, making it difficult to use in supercritical water reactors. Furthermore, since the density of water decreases and the environment becomes higher in neutron density, there is a concern that the corrosion resistance is reduced due to grain boundary segregation. Therefore, development of an improved material having improved high temperature strength and corrosion resistance is desired.
[0004]
On the other hand, as a technique for increasing the high-temperature strength and corrosion resistance of austenitic stainless steel, there is a refinement of crystal grains. A general means of miniaturization is cold working → heat treatment (recrystallization) → cooling (see Patent Documents 1, 2, and 3 below). The most effective way to promote miniaturization is to increase the cold working rate as much as possible, but increasing the cold working rate will limit the thickness of the material and limit the products that can be processed. The difficulty that arises. Therefore, it is necessary to examine means for promoting the refinement of crystal grains without increasing the cold working rate.
[0005]
[Patent Document 1]
JP 2000-273538 A [Patent Document 2]
Japanese Patent Laying-Open No. 2001-32045 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-256400 [0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a duplex stainless steel having an austenite phase and a ferrite phase, having high strength and corrosion resistance, and suitable for use in a radiation environment, a method for producing the same, and a member for a nuclear device.
[0007]
[Means for Solving the Problems]
The invention of claim 1 is a duplex stainless steel, which has an austenite phase and a ferrite phase, and the Cr equivalent and Ni equivalent contained as components are a double phase of the austenite phase and the ferrite phase and a single austenite phase in the Schaeffler structure diagram. The structure is such that the crystal grains are refined at the phase boundary.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, at least one of Ti having a weight ratio of 1.5% or less, Nb having a weight ratio of 1.5% or less, or Zr having a weight ratio of 1.5% or less. It is set as the structure containing a kind.
[0009]
A third aspect of the invention is a method for producing a duplex stainless steel according to the first aspect of the present invention, wherein the grain coarsening is suppressed by precipitation of a ferrite phase by controlling cold working and heat treatment.
[0010]
The invention of claim 4 is the method of controlling cold working as 40% or more in the invention of claim 3.
The invention according to claim 5 is the method according to claim 3, wherein the heat treatment temperature is controlled to be 800 ° C. or higher and 1100 ° C. or lower.
[0011]
The invention of claim 6 is a method of concentrating the Cr concentration in the grain boundary part by controlling the cooling rate after the heat treatment in the invention of claim 3.
The invention according to claim 7 is the method according to claim 3, wherein the cooling rate after the heat treatment is controlled to 1 ° C./second to 50 ° C./second.
[0012]
The invention of claim 8 is a member for nuclear power equipment, which is formed of the duplex stainless steel according to claim 1, and is at least a fuel cladding tube, a light water reactor internal structure or piping, a light water reactor, or a waste treatment device. A part of the structure is used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
The duplex stainless steel of the present embodiment is a grain refined stainless steel having an austenite phase and a ferrite phase, in which grain coarsening is suppressed by precipitation of a ferrite phase by controlling cold working and heat treatment.
[0014]
Fig. 1 shows the organization chart of Schaeffler. In this embodiment, in a duplex stainless steel having an austenite phase and a ferrite phase, the ferrite phase is dispersed and precipitated to prevent the austenite phase from becoming coarse. For this reason, it is desirable that the content of the ferrite phase is small. In production, the Cr equivalent and the Ni equivalent are determined based on FIG. 1 so as to obtain a duplex stainless steel close to the austenite phase. The dispersed and precipitated ferrite phase exhibits a pinning effect that suppresses or prevents crystal grain growth and promotes refinement.
[0015]
FIG. 2 shows a manufacturing process in which the microstructure is refined by controlling cold working and heat treatment of the duplex stainless steel of this embodiment having an austenite phase and a ferrite phase. Steel is manufactured in the first refinement process and the second refinement process, or the first refinement process, the second refinement process, and the Cr concentration concentration process.
[0016]
The material 1 of the duplex stainless steel produced based on FIG. 1 is rolled in a cold rolling machine 2 so that the cold working is 40% or more (a). After the cold-worked material 1 is heated and held (b) in the electric furnace 3 to a temperature of 800 ° C. to 1100 ° C., the electric furnace 3 is opened and air cooling or the material 1 is taken out and cooled by water cooling (c). This is the first miniaturization step. Next, the cooled material 1 is again applied to the cold rolling mill 2 to perform cold working equivalent to or higher than the first cold working rate (d), put into the electric furnace 3, and temperature 800 ° C. to 1050 After cooling to 0 ° C. and holding (e), cooling is performed.
[0017]
When carrying out the concentration of Cr at the grain boundary, the heating control of the electric furnace 3 and the cooling rate control of the material 1 are performed using the fan 4 (f). The cooling rate is 1 ° C./second to 50 ° C./second between 800 ° C. and 500 ° C. in order to increase the grain boundary Cr concentration. These are the second refinement process and the grain boundary Cr concentration concentration process. As a result, the particle size of the material 1 is refined, and the Cr concentration at the grain boundary is concentrated to produce a material with improved strength and corrosion resistance.
[0018]
The cold working included in the manufacturing process has a crystal grain refinement promoting effect, a ferrite phase easily precipitates due to strains caused by the processing, and has a dispersion promoting effect. Further, when one or more of Ti, Nb and Zr having a weight ratio of 1.5% or less are added to the material 1 of the duplex stainless steel in advance, the strength and corrosion resistance are further improved. At the same time, since Ti, Nb and Zr have the property of capturing the precipitated elements and phases, the effect of ferrite phase dispersion and precipitation can be obtained.
[0019]
FIG. 3 shows a structure photograph of the duplex stainless steel of the present embodiment. The photograph (a) is an Fe-15Ni-25Cr alloy, and the photograph (b) is an Fe-15Ni-25Cr-Ti-Zr alloy. It can be seen that the particle size is 9 to 10 μm, which is miniaturized.
[0020]
The duplex stainless steel of the present embodiment can be applied to a fuel cladding tube of a nuclear power plant, in-reactor equipment, piping, and a light water reactor whose thermal efficiency is improved by increasing the temperature and pressure.
[0021]
According to the present embodiment, duplex stainless steel with improved high-temperature strength and corrosion resistance can be produced by a very simple means of cold working and heat treatment control. That is, a stainless steel with a refined grain size can be obtained by dispersing and precipitating the ferrite phase, and a material with improved high temperature strength and corrosion resistance can be obtained by refining and concentrating Cr at the grain boundary. Further, the addition of Ti, Nb and Zr can more effectively reduce the size and improve the corrosion resistance. And if the duplex stainless steel of this Embodiment is used, it will become possible to perform the safe driving | running which maintained the soundness of the structural member of a light water reactor plant and a waste disposal system for a long period of time.
[0022]
【The invention's effect】
According to the present invention, it is possible to provide a duplex stainless steel having an austenite phase and a ferrite phase, having high strength and corrosion resistance, and suitable for use in a radiation environment, a method for producing the same, and a member for a nuclear device.
[Brief description of the drawings]
FIG. 1 is an organization chart of Schaeffler explaining an embodiment of the present invention.
FIG. 2 is a diagram for explaining a manufacturing process according to an embodiment of the present invention in which cold working and heat treatment of a steel material containing Cr are controlled to refine a structure and concentrate a concentration of component elements in a grain boundary part.
FIG. 3 is a structural photograph of a duplex stainless steel according to an embodiment of the present invention in which a ferrite phase is dispersed and precipitated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Material, 2 ... Cold rolling mill, 3 ... Electric furnace, 4 ... Thermocouple, 5 ... Temperature measuring device, 6 ... Fan.

Claims (8)

オーステナイト相およびフェライト相を有し、成分として含まれるCr当量およびNi当量が、シェフラーの組織図においてオーステナイト相とフェライト相の複相とオーステナイト相単相の境界部にあり結晶粒が微細化されていることを特徴とする2相ステンレス鋼。There is an austenite phase and a ferrite phase, and the Cr equivalent and Ni equivalent contained as components are at the boundary between the austenite phase and the ferrite phase double phase and the austenite phase single phase in the Schaeffler structure diagram. A duplex stainless steel characterized by 重量比1.5%以下のTi、または重量比1.5%以下のNb、または重量比1.5%以下のZrの少なくともいずれか1種類を含有することを特徴とする請求項1に記載の2相ステンレス鋼。2. The composition according to claim 1, comprising at least one of Ti having a weight ratio of 1.5% or less, Nb having a weight ratio of 1.5% or less, or Zr having a weight ratio of 1.5% or less. Duplex stainless steel. 請求項1に記載の2相ステンレス鋼において、冷間加工と熱処理の制御により、結晶粒粗大化をフェライト相の析出によって抑制することを特徴とする2相ステンレス鋼の製造方法。The method for producing a duplex stainless steel according to claim 1, wherein coarsening of the crystal grains is suppressed by precipitation of a ferrite phase by controlling cold working and heat treatment. 冷間加工を40%以上として制御することを特徴とする請求項3に記載の2相ステンレス鋼の製造方法。The method for producing a duplex stainless steel according to claim 3, wherein the cold working is controlled to be 40% or more. 熱処理温度を800℃以上1100℃以下として制御することを特徴とする請求項3に記載の2相ステンレス鋼の製造方法。The method for producing a duplex stainless steel according to claim 3, wherein the heat treatment temperature is controlled to be 800 ° C or higher and 1100 ° C or lower. 熱処理後の冷却速度を制御することによって粒界部のCr濃度を濃縮させることを特徴とする請求項3に記載の2相ステンレス鋼の製造方法。The method for producing a duplex stainless steel according to claim 3, wherein the Cr concentration in the grain boundary part is concentrated by controlling a cooling rate after the heat treatment. 熱処理後の冷却速度を1℃/秒ないし50℃/秒に制御することを特徴とする請求項3に記載の2相ステンレス鋼の製造方法。The method for producing a duplex stainless steel according to claim 3, wherein a cooling rate after the heat treatment is controlled to 1 ° C / second to 50 ° C / second. 請求項1に記載の2相ステンレス鋼によって形成され、燃料被覆管、または軽水炉炉内構造物または配管、または軽水炉、または廃棄物処理装置の少なくとも一部分を構成することを特徴とする原子力装置用部材。A nuclear power plant member formed of the duplex stainless steel according to claim 1 and constituting at least a part of a fuel cladding tube, a light water reactor internal structure or piping, a light water reactor, or a waste treatment device. .
JP2003203119A 2003-07-29 2003-07-29 Duplex stainless steel, its production method, and member for nuclear device Pending JP2005048203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203119A JP2005048203A (en) 2003-07-29 2003-07-29 Duplex stainless steel, its production method, and member for nuclear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203119A JP2005048203A (en) 2003-07-29 2003-07-29 Duplex stainless steel, its production method, and member for nuclear device

Publications (1)

Publication Number Publication Date
JP2005048203A true JP2005048203A (en) 2005-02-24

Family

ID=34262604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203119A Pending JP2005048203A (en) 2003-07-29 2003-07-29 Duplex stainless steel, its production method, and member for nuclear device

Country Status (1)

Country Link
JP (1) JP2005048203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170300A (en) * 2007-01-12 2008-07-24 Toshiba Corp Fuel cladding tube, its manufacturing method, and fuel rod
CN111918979A (en) * 2018-03-30 2020-11-10 杰富意钢铁株式会社 Duplex stainless steel clad steel sheet and method for manufacturing same
CN112893790A (en) * 2021-01-18 2021-06-04 燕山大学 Cast-rolling short-process-based uniform and fine duplex stainless steel thin strip and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170300A (en) * 2007-01-12 2008-07-24 Toshiba Corp Fuel cladding tube, its manufacturing method, and fuel rod
JP4592709B2 (en) * 2007-01-12 2010-12-08 株式会社東芝 Fuel cladding tube, manufacturing method thereof, and fuel rod
CN111918979A (en) * 2018-03-30 2020-11-10 杰富意钢铁株式会社 Duplex stainless steel clad steel sheet and method for manufacturing same
CN111918979B (en) * 2018-03-30 2022-01-18 杰富意钢铁株式会社 Duplex stainless steel clad steel sheet and method for manufacturing same
CN112893790A (en) * 2021-01-18 2021-06-04 燕山大学 Cast-rolling short-process-based uniform and fine duplex stainless steel thin strip and preparation method thereof

Similar Documents

Publication Publication Date Title
Muroga et al. Vanadium alloys–overview and recent results
Saeidi et al. Subgrain-controlled grain growth in the laser-melted 316 L promoting strength at high temperatures
CN104032232B (en) A kind of anti-oxidant resistance to liquid lead bismuth corrodes low activation martensite heat-resistant steel
WO2012074026A1 (en) Precipitation-strengthened ni-based heat-resistant alloy and method for producing the same
JP2009197316A (en) Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, and method for producing the same
CN106995902B (en) A kind of FeCrAl based alloy cladding materials and preparation method thereof
CN103173698A (en) Dispersed precipitated phase strengthened austenitic stainless steel with high Cr and high Ni and thermal processing method
CN106957971A (en) A kind of compressed water reactor nuclear power station-service zircaloy and preparation method thereof
CN101225464B (en) Method for improving resistant property of ferrite/martensite heat resistant steel for high-temperature water vapour oxidation
JP4843230B2 (en) Austenitic stainless steel and manufacturing method thereof
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
JP7081931B2 (en) Methods for Producing Iron-Based Steel Compositions, Fuel Elements, Fuel Assembly Components and Steel Compositions for Fuel Elements
JP2005048203A (en) Duplex stainless steel, its production method, and member for nuclear device
CN107304465A (en) A kind of PWR fuel assembly zircaloy
CN105441717B (en) A kind of nuclear power core structural material zirconium-base alloy
CN107236904B (en) A kind of nuclear reactor FeCrAl base alloy material and preparation method thereof
Zhong et al. Microstructure and mechanical properties of high Mn-containing ferritic-martensitic alloys exposed to cyclical thermal treatment
CN115478220A (en) Ferrite/martensite heat-resistant steel for lead-bismuth pile and preparation method thereof
CN101225465B (en) Method for improving resistant property of heat resistant steel for high-temperature water vapour oxidation
Wang et al. High temperature strengthening in 12Cr-W-Mo steels by controlling the formation of delta ferrite
JP2008063602A (en) Corrosion resistant austenitic alloy and its production method
CN111549294A (en) High-strength Fe-Cr-Zr-W-Mo-B ferrite alloy resistant to liquid lead and bismuth corrosion and preparation method thereof
CN107217205B (en) A kind of nuclear reactor fuel element involucrum FeCrAl base alloy material and preparation method thereof
SE528120C2 (en) Manufacturing sheet metal for fuel box for boiling water nuclear reactor, involves transformation annealing cold-rolled material at temperature less than phase boundary for secondary phase particles
CN115612924B (en) Ferrite/martensite heat-resistant steel for lead-bismuth pile and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209