JPH02147627A - Preparation of carbonate type flame-retardant - Google Patents

Preparation of carbonate type flame-retardant

Info

Publication number
JPH02147627A
JPH02147627A JP29952388A JP29952388A JPH02147627A JP H02147627 A JPH02147627 A JP H02147627A JP 29952388 A JP29952388 A JP 29952388A JP 29952388 A JP29952388 A JP 29952388A JP H02147627 A JPH02147627 A JP H02147627A
Authority
JP
Japan
Prior art keywords
reaction
dihydric phenol
phosgene
phenol
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29952388A
Other languages
Japanese (ja)
Other versions
JPH0627189B2 (en
Inventor
Yasuhisa Tahira
田平 泰久
Toshimasa Tokuda
俊正 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP29952388A priority Critical patent/JPH0627189B2/en
Publication of JPH02147627A publication Critical patent/JPH02147627A/en
Publication of JPH0627189B2 publication Critical patent/JPH0627189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the title flame-retardant with a low MW and suitable for flame-retarding of a thermoplastic resin with a low molding temp. by reacting a halogenated dihydric phenol and a non-halogenated dihydric phenol with phosgene under a specified condition. CONSTITUTION:When the title flame-retardant is prepd. by reacting a mixture of 1mol of a halogenated dihydric phenol (e.g. tetrabromobisphenol A) with 0.1-0.5mol of a non-halogenated dihydric phenol with phosgene in the presence of a solvent (e.g. methylene chloride), the amt. of phosgene used is 2.2 to 3.0-fold mol based on the total amt. of the dihydric phenol, and phosgene is reacted at a pH of 11-12 and a temp. of 20-27 deg.C in the reaction system. Then, 0.5 to 1.5-fold mol of a monohydric phenol (e.g. t-butylphenol) base on the total amt. of the dihydric phenol and a catalyst (e.g. triethylamine) are added thereto and the reaction is completed at a pH of 12.5 or higher and a temp. of 30-36 deg.C.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、カーボネート型難燃剤の製造法に関する。更
に詳しくは比較的成形温度の低い熱可塑性樹脂の難燃化
に適した。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing carbonate flame retardants. More specifically, it is suitable for flame retardant thermoplastic resins that require relatively low molding temperatures.

低分子量のハロゲン化カーボネート型離燃剤を収率よく
製造する方法に関する。
The present invention relates to a method for producing a low molecular weight halogenated carbonate type flame retardant with good yield.

[従来技術及び問題点] 従来より、熱可塑性樹脂用オリゴマー型難燃剤としてハ
ロゲン化ポリカーボネートオリゴマーが知られている(
特公昭47−44537号公報、特公昭56−2595
3号公報)。
[Prior art and problems] Halogenated polycarbonate oligomers have been known as oligomer flame retardants for thermoplastic resins (
Special Publication No. 47-44537, Special Publication No. 56-2595
Publication No. 3).

しかしながら、かかるハロゲン化ポリカーボネートオリ
ゴマーは、テトラハロゲン化ビスフェノールAのホモポ
リマーであり、融点が220〜290℃と高く、成形温
度の低いABS樹脂等に練り込んだ場き、分散不良を生
じ、成形片の物性低下、表面不良等の問題が生じ、使用
に適さない。
However, such halogenated polycarbonate oligomers are homopolymers of tetrahalogenated bisphenol A, and have a high melting point of 220 to 290°C, and when kneaded into ABS resin, etc., which has a low molding temperature, they cause poor dispersion, resulting in molded pieces. Problems such as deterioration of physical properties and surface defects occur, making it unsuitable for use.

これらの問題点を解決するために、ハロゲン置換2価フ
ェノールとハロゲン非置換2価フェノールとからなる平
均重合度2〜50の共重合カーボネートオリゴマーが提
案された(特公昭55−50987号公報)、シかしな
がら、この共重合カーボネートオリゴマーを、成形温度
の低いABS樹脂に使用するには、融点をより低くする
ためハロゲン非置換2価フェノールの割合を増やす必要
があり、その分龍燃化性能が低下し、使用量を増加させ
る必要が生じ、樹脂の物性を大きく低ドさせる欠点があ
った。
In order to solve these problems, a copolymerized carbonate oligomer consisting of a halogen-substituted dihydric phenol and a non-halogen-substituted dihydric phenol and having an average degree of polymerization of 2 to 50 was proposed (Japanese Patent Publication No. 50987/1987). However, in order to use this copolymerized carbonate oligomer in ABS resin, which has a low molding temperature, it is necessary to increase the proportion of non-halogen-substituted dihydric phenol in order to lower the melting point, which increases the durability of the copolymerized carbonate oligomer. This has the disadvantage that the physical properties of the resin are greatly deteriorated, resulting in a need to increase the amount used.

ハロゲン非置換2価フェノールの割合を増やす代りに、
平均重合度を低く押えたカーボネート型難燃剤を製造せ
んと試みたところ、ハロゲン置換2価フェノールとハロ
ゲン非置換2価フェノールの如く反応性が大きく異なる
化合物を共電なさせる際、従来の合成粂件では、ハロゲ
ン非置換2価フェノールの重合が進み易く、平均重合度
を低く押えたカーボネート型難燃剤を収率よく得ること
はできなかった。
Instead of increasing the proportion of halogen-unsubstituted dihydric phenol,
When we attempted to produce a carbonate-type flame retardant with a low average degree of polymerization, we found that when co-electrifying compounds with significantly different reactivities, such as halogen-substituted dihydric phenol and non-halogen-substituted dihydric phenol, we found that conventional synthetic In this case, the polymerization of halogen-unsubstituted dihydric phenol easily proceeded, and it was not possible to obtain a carbonate-type flame retardant with a low average degree of polymerization in a good yield.

2価フェノールのビスクロロボーメ−1への製造法とし
て、特開昭63−139914号公報には水、塩化メチ
レンの如き有機溶媒、2価フェノール及び水酸化ナトリ
ウムの如きアルカリ金属水酸化物からなる不均一混合物
中にホスゲンを吹込む際に、水増のPl+を8〜11の
範囲に維持する速度でアルカリ金属水酸化物を導入する
方法が提案されている。
JP-A No. 63-139914 discloses a method for producing bischlorobaume-1 from dihydric phenol, which comprises water, an organic solvent such as methylene chloride, dihydric phenol, and an alkali metal hydroxide such as sodium hydroxide. A method has been proposed in which when blowing phosgene into a heterogeneous mixture, an alkali metal hydroxide is introduced at a rate that maintains the Pl+ in the range of 8 to 11.

しかしながら、この方法を、反応性が大きく異なるハロ
ゲン置換2価フェノールとハロゲン非置換2価フェノー
ルの共重合に適用すると、平均重合度の低いビスクロロ
ホーメートの収率は著しく低いことが判った。
However, when this method was applied to the copolymerization of halogen-substituted dihydric phenol and non-halogen-substituted dihydric phenol, which have significantly different reactivities, it was found that the yield of bischloroformate with a low average degree of polymerization was extremely low.

[発明の目的] 本発明の目的は成形温度が比較的低い熱可塑性樹脂に用
いても物性低r、表面不良等の生じないハロゲン置換2
価フェノール1モルとハロゲン非置換2価フェノール0
,1〜0.5モルからなる比粘度0.015〜0.02
2の低分子量カーボネート型難燃剤を高収率で製造する
方法を提供することにある。
[Objective of the Invention] The object of the present invention is to provide a halogen-substituted resin that does not cause poor physical properties or surface defects even when used in thermoplastic resins whose molding temperature is relatively low.
1 mole of phenol and 0 mol of non-halogen-substituted dihydric phenol
, a specific viscosity of 0.015 to 0.02 consisting of 1 to 0.5 mol.
An object of the present invention is to provide a method for producing a low molecular weight carbonate flame retardant of No. 2 in high yield.

本発明者は、ハロゲン置換2価フェノールとハロゲン非
′f1換2価フェノールの如き反応性が大きく異なる化
合物から平均重合度を低く抑えたカーボネート型難燃剤
を収率よく得るには、平均重合度を低く抑えな2価フェ
ノールのビスクロロホーメートをつくるホスゲン化反応
工程が最も重要であること、及び次いで行なう重合反応
の東件ら重要であることを究明し、この知見に基いて更
に鋭意検討した結果、本発明に到達したものである。
The present inventor has discovered that in order to obtain a carbonate-type flame retardant with a low average degree of polymerization in a high yield from compounds with greatly different reactivities such as halogen-substituted dihydric phenol and halogen-free 'f1-substituted dihydric phenol, the average degree of polymerization is Toshiba et al. discovered that the phosgenation reaction step, which produces bischloroformate of dihydric phenol with a low level of oxidation, is the most important, and that the subsequent polymerization reaction is important, and based on this knowledge, further studies were carried out. As a result, we have arrived at the present invention.

し発明の構成] 本発明は、ハロゲン置換2価フェノール1モルとハロゲ
ン非置換2価フェノール0.1〜0.5モルとの混合物
に溶媒の存在下ホスゲンを反応させてカーボネート型難
燃剤を製造するに当り、ホスゲンの使用量を該2価フェ
ノールの全量に対して2.2〜3.0倍モルとし、反応
系のPH11〜12、温度20〜27℃でホスゲン化反
応させ、次いで該2価フェノールの全量に対して0.5
〜1.5倍モルの1価フェノールと触媒の存在下pH1
2,5以上、温度30〜36℃で反応を完結することを
特徴とするカーボネート型難燃剤の製造法である。
Structure of the Invention] The present invention produces a carbonate-type flame retardant by reacting a mixture of 1 mole of halogen-substituted dihydric phenol and 0.1 to 0.5 mole of halogen-unsubstituted dihydric phenol with phosgene in the presence of a solvent. In doing so, the amount of phosgene used is 2.2 to 3.0 times the mole of the total amount of the dihydric phenol, and the phosgenation reaction is carried out at a pH of 11 to 12 in the reaction system and a temperature of 20 to 27°C. 0.5 based on the total amount of hydric phenols
pH 1 in the presence of ~1.5 times the mole of monohydric phenol and a catalyst
This is a method for producing a carbonate-type flame retardant, characterized in that the reaction is completed at a temperature of 2.5 or more and a temperature of 30 to 36°C.

本発明で使用するハロゲン置換2価フェノールとしては
、例えば2,2−ビス(3,5−ジブロモ4−ヒドロキ
シフェニル)プロパン、2,2−ビス(3,5−ジクロ
ロ−4−ヒドロキシフェニル)プロパン、1,1−ビス
(3,5−ジブロモ−4−ヒドロキシフェニル)エタン
、1,1−ビス(3,5−ジクロロ−4−ヒドロキシフ
ェニル)エタン、1,1−ビス(3,5−ジブロモ−4
−ヒドロキシフェニル)シクロヘキサン、1.1−ビス
(3,5−ジクロロ−4−ヒドロキシフェニル)シクロ
ヘキサン。
Examples of the halogen-substituted dihydric phenol used in the present invention include 2,2-bis(3,5-dibromo4-hydroxyphenyl)propane and 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane. , 1,1-bis(3,5-dibromo-4-hydroxyphenyl)ethane, 1,1-bis(3,5-dichloro-4-hydroxyphenyl)ethane, 1,1-bis(3,5-dibromo -4
-hydroxyphenyl)cyclohexane, 1,1-bis(3,5-dichloro-4-hydroxyphenyl)cyclohexane.

ビス(3,5−ジブロモ−4−ヒト0キシフエニル)ス
ルフィド、ビス(3,5−ジクロロ−4−ヒドロキシフ
ェニル)スルフィド、ビス(3,5−ジブロモ−4−ヒ
ドロキシフェニル)オキシド、ビス(3,5−ジクロロ
−4−ヒドロキシフェニル)オキシド、ビス(3,5−
ジブロモ−4−ヒドロキシフェニル)スルホキシド、ビ
ス(3,5−ジクロロ=4−しドロキシフェニル)スル
ホキシド、ビス(3,5−ジブロモ−4−ヒドロキシフ
ェニル)スルホン、ビスク3,5−ジクロロ−4・−ヒ
ドロキシフェニル)スルホン、ビス(3,5−ジブロモ
−4−ヒドロキシフェニル)ゲトン、ビス(3,5−ジ
クロロ−4−ヒドロキシフェニル)ゲ1〜ン等があげら
れる。
Bis(3,5-dibromo-4-human 0xyphenyl) sulfide, bis(3,5-dichloro-4-hydroxyphenyl) sulfide, bis(3,5-dibromo-4-hydroxyphenyl) oxide, bis(3, 5-dichloro-4-hydroxyphenyl)oxide, bis(3,5-
dibromo-4-hydroxyphenyl) sulfoxide, bis(3,5-dichloro=4-droxyphenyl) sulfoxide, bis(3,5-dibromo-4-hydroxyphenyl) sulfone, bisque 3,5-dichloro-4. -hydroxyphenyl) sulfone, bis(3,5-dibromo-4-hydroxyphenyl) getone, bis(3,5-dichloro-4-hydroxyphenyl) getone, and the like.

また、ハロゲン非置換2価フェノールとしては前記ハロ
ゲン置換2価フェノールのハロゲンを水素に置換した化
会物があげられる。
Examples of the halogen-unsubstituted dihydric phenol include compounds in which the halogen of the halogen-substituted dihydric phenol is replaced with hydrogen.

これらの2価フェノールは、アルカリ金属水酸化物の水
溶液に溶解させて使用される。アルカリ金属水酸化物と
しては水酸化ナトリウム、水酸化カリウム等が好ましく
用いられ、(の濃度は3〜13重量%がNましい。
These dihydric phenols are used after being dissolved in an aqueous solution of an alkali metal hydroxide. As the alkali metal hydroxide, sodium hydroxide, potassium hydroxide, etc. are preferably used, and the concentration of (N is preferably 3 to 13% by weight).

本発明に用いられる有機溶媒は、水に対して実質的に不
溶で、反応に対して、不活性で且つ反応によって生ずる
ポリカーボネートオリゴマーを溶解する有機化合物であ
る。その具体例としては塩化メチレン、1.2−ジクロ
ロエタン、テトラクロロエタン、クロロホルム等の塩素
化脂肪族炭化水素、クロロベンゼン、ジクロロベンゼン
、クロロトルエン等の塩素化芳香族炭化水素、アセトフ
ェノン、シクロヘキサノン、アニソール等をあげること
ができ、これらは単独又は混合1勿の形で用いることが
できる。これらのうち塩化メチレンが最も好ましい。
The organic solvent used in the present invention is an organic compound that is substantially insoluble in water, inert to the reaction, and capable of dissolving the polycarbonate oligomer produced by the reaction. Specific examples include chlorinated aliphatic hydrocarbons such as methylene chloride, 1,2-dichloroethane, tetrachloroethane, and chloroform, chlorinated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, and chlorotoluene, acetophenone, cyclohexanone, and anisole. These can be used alone or in a mixed form. Among these, methylene chloride is most preferred.

触媒としては例えばトリエチルアミン、トリー11−プ
ロピルアミン、ジエチル−〇−プロピルアミン、トリー
ロープルアミン、4−ジメチルアミノピリジン等の3級
アミンやトリメチルドデシルアンモニウムクロリド、ジ
メチルベンジルフェニルアンモニウムクロリド、ジエチ
ルベンジルフェニルアンモニラムクリド、トリメチルド
デシルベンジルアンモニウムヒト1フキシド等の4級ア
ンモニウム塩が用いられる。
Examples of catalysts include tertiary amines such as triethylamine, tri-11-propylamine, diethyl-〇-propylamine, triloproplyamine, and 4-dimethylaminopyridine, trimethyldodecylammonium chloride, dimethylbenzylphenylammonium chloride, diethylbenzylphenylammonium chloride, Quaternary ammonium salts such as trimethyldodecylbenzylammonium hydroxide and the like are used.

なお、本発明にあっては、末端停止剤として1価のフェ
ノールを使用する。1価のフェノールとしては例えばフ
ェノール、クレゾール、し−ブチルフェノール、ノニル
フェノール、オクチルフェノール、 2,4.6〜トリ
ブロモフエノール等をあげることができる。
In addition, in this invention, monohydric phenol is used as a terminal stopper. Examples of the monovalent phenol include phenol, cresol, thi-butylphenol, nonylphenol, octylphenol, and 2,4.6-tribromophenol.

一般に、カーボネート型化合物の比粘度は、上記1価フ
ェノールの使用量によって略々決定されるが、他の反応
条件特にホスゲン化反応時におけるPl+や温度条件に
よって大きく影響される0本発明にあっては、前記の特
定の反応条件を採用するものであり、かかる条件では、
上記1価フェノールの使用量を、原料として使用する2
価フェノールの全量に対して0,5〜1.5モル倍の範
囲から適宜選択することによって、目的とする比粘度0
.015〜0.022のカーボネート型難燃剤が得られ
る。
In general, the specific viscosity of a carbonate type compound is approximately determined by the amount of monohydric phenol used, but it is greatly influenced by other reaction conditions, especially Pl+ and temperature conditions during the phosgenation reaction. employs the specific reaction conditions described above, in which
The amount of monohydric phenol used above is used as a raw material2
The target specific viscosity is 0 by appropriately selecting from the range of 0.5 to 1.5 times the mole based on the total amount of hydric phenol.
.. 0.015 to 0.022 carbonate type flame retardant is obtained.

本発明の反応の態様を詳しく説明する。ホスゲン化反応
の際のPHを11.0〜12.Oの範囲に特定すること
により、重合反応を抑制し、且つ過剰のアルカリ金属水
酸化物によるホスゲン及びクロロボーメートの分解を抑
制し、平均重合度を低く抑えたビスクロロホーメートの
生成を促進する。即ち、ホスゲンを吹き込む前に水酸化
ナトリウムを全2価フェノール1モルに対して1.8〜
2.1モル使用し、その3〜13重量%の水溶液に2価
フェノールを溶解し、塩化メチレン等の有機溶媒を上記
水溶液に溶媒:水溶液の容積比が1:0.5〜1.6に
なるように混合し、これに全2価フェノール1モルに対
して2.2〜3.0モルのホスゲンを20〜27℃で吹
き込みながら、アルカリ金属水酸化物の水溶液(水酸化
ナトリウムの場合4.1〜4.8モル)を滴下し、系内
のPl+を11.0へ−12,0に保持する。この際ホ
スゲン吹き込みと共に滴下するアルカリ金属水酸化物の
量が多くても少くても、即ち、Pl+11.0〜12.
0の範囲を外れると、未反応物が多くなり、反応収率が
低下する。また、ホスゲン化反応時の温度が20℃より
低いとホスゲン化反応速度が遅くなり、未反応物が増え
て収率が低下し、27℃より高すぎると重合反応が進行
して平均重合度か上がるので目的のものが得られなくな
る。
The reaction mode of the present invention will be explained in detail. The pH during the phosgenation reaction is 11.0-12. By specifying O within the range, it suppresses the polymerization reaction and the decomposition of phosgene and chlorobomate caused by excess alkali metal hydroxide, promoting the production of bischloroformate with a low average degree of polymerization. do. That is, before blowing in phosgene, add sodium hydroxide to 1.8 to 1 mole of total dihydric phenol.
Use 2.1 mol, dissolve dihydric phenol in a 3-13% by weight aqueous solution, and add an organic solvent such as methylene chloride to the above aqueous solution so that the volume ratio of solvent:aqueous solution is 1:0.5-1.6. While blowing 2.2 to 3.0 moles of phosgene per 1 mole of total dihydric phenol into the mixture at 20 to 27°C, add an aqueous solution of an alkali metal hydroxide (4 in the case of sodium hydroxide). .1 to 4.8 mol) is added dropwise to maintain Pl+ in the system at 11.0 to -12.0. At this time, no matter whether the amount of alkali metal hydroxide dropped with the phosgene blowing is large or small, that is, Pl+11.0 to 12.
When the value is outside the range of 0, unreacted substances increase and the reaction yield decreases. In addition, if the temperature during the phosgenation reaction is lower than 20°C, the phosgenation reaction rate will be slow, unreacted substances will increase, and the yield will decrease; if it is too high than 27°C, the polymerization reaction will proceed and the average degree of polymerization will decrease. Because it goes up, you won't be able to get what you want.

更に、ホスゲンの使用量が全2価フェノール1に対して
2.2倍モルより少ないと反応が充分に進行せず、未反
応物が多くなり、反応収率か低下し、3.0倍モルより
多くなると、この場合も同様に反応が進行し難くなる。
Furthermore, if the amount of phosgene used is less than 2.2 times the mole based on 1 mole of total dihydric phenol, the reaction will not proceed sufficiently, the amount of unreacted substances will increase, the reaction yield will decrease, and the amount will be 3.0 times the mole. If the amount increases, it becomes difficult for the reaction to proceed in this case as well.

上記のホスゲン化反応が終了した後、触媒及び1価フェ
ノールの存在1更に反応させる。この際アルカリ金属水
酸化物を加えて系内のpHを12.5以上になし、30
〜36℃で反応させる。 PHが12.5未満では触媒
の効果が充分に発揮されず、また反応温度が30℃未満
では反応が進み難く、いずれも収率が低下する0反応温
度が36℃より高くなると分解反応が生じるようになる
After the above phosgenation reaction is completed, the reaction is further carried out in the presence of a catalyst and a monohydric phenol. At this time, add an alkali metal hydroxide to adjust the pH in the system to 12.5 or higher.
React at ~36°C. If the pH is less than 12.5, the effect of the catalyst will not be fully exhibited, and if the reaction temperature is less than 30°C, the reaction will be difficult to proceed, and in both cases the yield will decrease.If the reaction temperature is higher than 36°C, a decomposition reaction will occur. It becomes like this.

また、触媒を添加するに当って、その全量を一時に添加
してもよいが、その使用量の略1/3を、ホスゲン化反
応終了直後に添加し、数分(通常3〜6分)程度撹拌し
、しかる後残量を添加して反応を完結するのが好ましい
、ホスゲン化終了時点で少藍の触媒を加えて数分撹拌す
ることによってホスゲン化反応を更に充分に進行させ、
残存する遊離ホスゲンをなくすことができる。更に、1
僅のフェノールは2回目の触媒添加時に添加するのが好
ましく、上記反応によって得られた2価フェノールのク
ロロホーメ−1〜と1価フェノールとの反応も、30℃
未満では反応速度か遅く、36℃より高温では分解反応
が生じるので、この点からも反応温度は30〜36℃に
ずべきである0反応によって得られるカーボネート型難
燃剤の有機溶媒溶液は酸洗浄及び水洗浄等によって不純
物を除去した後、有機溶媒を蒸発してパウダーを得る。
In addition, when adding the catalyst, the entire amount may be added at once, but approximately 1/3 of the amount to be used is added immediately after the phosgenation reaction is completed, and the catalyst is added for several minutes (usually 3 to 6 minutes). It is preferable to complete the reaction by stirring for a while and then adding the remaining amount.At the end of phosgenation, add a small amount of catalyst and stir for several minutes to allow the phosgenation reaction to proceed more fully.
Residual free phosgene can be eliminated. Furthermore, 1
It is preferable to add a small amount of phenol during the second addition of the catalyst, and the reaction between the dihydric phenol chloroforme-1~ obtained by the above reaction and monohydric phenol is also carried out at 30°C.
If the temperature is lower than 36°C, the reaction rate will be slow, and if the temperature is higher than 36°C, a decomposition reaction will occur, so from this point of view, the reaction temperature should be set to 30 to 36°C. After removing impurities by washing with water or the like, the organic solvent is evaporated to obtain a powder.

[発明の効果] 本発明方法によれば、反応性が大きく異なるハロゲン置
換2価フェノールとハロゲン非置換2価フェノールとか
ら所定の低分子量カーボネート型難燃剤を99%以上の
高収率で得ることができる。
[Effects of the Invention] According to the method of the present invention, a predetermined low molecular weight carbonate flame retardant can be obtained at a high yield of 99% or more from halogen-substituted dihydric phenol and halogen-unsubstituted dihydric phenol, which have significantly different reactivities. Can be done.

この難燃剤はABS等成形成形温度較的低い熱可塑性樹
脂に練り込んでも物性低下、表面不良等の問題は生じな
い。
Even when this flame retardant is kneaded into a thermoplastic resin such as ABS whose molding temperature is relatively low, problems such as deterioration of physical properties and surface defects will not occur.

[実施例] 以下に実施例及び比較例を挙げて本発明方法を説明する
が、本発明はこれらに限定するものではない、なお、反
応収率の測定、比粘度の測定、溶融温度の測定及び成形
板の物性評価は以下に記した方法で行った。
[Example] The method of the present invention will be explained below by giving Examples and Comparative Examples, but the present invention is not limited to these. The physical properties of the molded plates were evaluated using the methods described below.

(1)反応収率 反応終了後の水層中のフェノール成分(1価フェノール
も含む)量を、紫外線吸収スペクトルを測定して求め、
次式より算出した。
(1) Reaction yield The amount of phenol components (including monohydric phenol) in the aqueous layer after the completion of the reaction is determined by measuring the ultraviolet absorption spectrum,
It was calculated using the following formula.

反応収率(%)=((仕込フェノール成分)(反応フェ
ノール成分))/ (仕込フェノール成分)xloo なお、ここで言う仕込フェノール成分量には、1価フェ
ノールも含む。
Reaction yield (%) = ((Prepared phenol component) (Reacted phenol component)) / (Prepared phenol component) xloo The amount of charged phenol component referred to here includes monohydric phenol.

実施例においては2,2−ビス(3,5−ジブロモ4−
ヒドロキシフェニル)プロパン(T B Aと略す)2
.2−ビス(4−ヒドロキシフェニル)プロパン(BP
Aと略す)及び末端停止剤として2゜4.6−)リブロ
モフェノール(’I’ B Pと略す)を使用したので
、これらを使用した場合について説明する1反応終了後
の水層中に存在する未反応のTBA、BPA及びTBP
の各成分の濃度は各成分のUv吸収が重なって現われる
ので、各成分の吸収極大波長における吸光係数を求め、
下記の連立方程式により求めた。
In the examples, 2,2-bis(3,5-dibromo4-
Hydroxyphenyl)propane (abbreviated as TBA) 2
.. 2-bis(4-hydroxyphenyl)propane (BP
A) and 2゜4.6-)ribromophenol (abbreviated as 'I' B P) were used as the end capping agent. Unreacted TBA, BPA and TBP present
The concentration of each component appears as a result of the overlapping UV absorption of each component, so find the extinction coefficient at the maximum absorption wavelength of each component,
It was calculated using the following simultaneous equations.

A  294.0nn= 22.02bCx+11.4
6bCy+  7.56bCzA  309.9ni=
  6.22bCx+18.85bCy+13.06b
CzA  315.6n1!=  1.34bCX千1
6.52bCV+13.88tlCZ吸光度は紫外線吸
収スペクトロメータ(日立製U −3200型)により
測定した。
A 294.0nn=22.02bCx+11.4
6bCy+ 7.56bCzA 309.9ni=
6.22bCx+18.85bCy+13.06b
CzA 315.6n1! = 1.34bCX 1,0001
6.52bCV+13.88tlCZ absorbance was measured using an ultraviolet absorption spectrometer (model U-3200 manufactured by Hitachi).

(2)比粘度(η5ly) 乾燥した試料0.700 gを塩化メチレン100m1
に溶解し、オストワルド粘度計にて20°Cで測定した
(2) Specific viscosity (η5ly) 0.700 g of dried sample was added to 100 ml of methylene chloride.
It was measured at 20°C using an Ostwald viscometer.

(31溶融温度(Ill、D、) カバーグラス上に試料を載せ、微量融点n]定装置(柳
木製)の熱板りにセットし、3°C/分で加熱し、拡大
鏡でr!A察しつつ試74にわずかに細がい液滴を認め
たときから試料が融は終って透明な液滴状になるまでの
温度を溶融温度とした。
(31 Melting temperature (Ill, D,) Place the sample on a cover glass, set it on a hot plate of a trace melting point n] constant device (willow wood), heat at 3°C/min, and use a magnifying glass to measure the r! The melting temperature was defined as the temperature from when slightly thin droplets were observed in Sample 74 until the sample finished melting and became transparent droplets.

(4)流動性 ABS樹脂(束し■トヨラックタイプ100) 100
重量部に5b2o、(日本精鉱(111ATOX−3)
 6重量部、実施例及び比較例にて得られたカーボネー
ト型難燃剤23重量部を混合し、30nmφの押出機を
用いてペレット化した。得られたベレットを80℃で3
時間乾燥後流動性を評価した。流動性の評価(MfR)
はJIS K−7210熱可塑性プラスチツクの流れ試
験方法に従って実施した(試験温度230℃、試yI!
RM巨E 5 ki ン 。
(4) Fluid ABS resin (bundled ■ TOYOLAC type 100) 100
5b2o in weight part, (Japan Concentrate (111ATOX-3)
6 parts by weight and 23 parts by weight of the carbonate flame retardants obtained in Examples and Comparative Examples were mixed and pelletized using a 30 nmφ extruder. The obtained pellet was heated at 80℃ for 3
After time drying, fluidity was evaluated. Liquidity evaluation (MfR)
was conducted according to JIS K-7210 flow test method for thermoplastics (test temperature 230°C, trial yI!
RM Giant E5kin.

(5)成形板の物性 流動性の評価に用いたペレットを80°Cで3時間乾燥
した後、射出成形機を用いてシリンダー温度230°C
で64市x12.7叩X3.18mm及び6411+n
 X t2.7間X6.351+111の衝撃試験片に
それぞれ成形し、0.250111Rのノツチを付けた
。この試験片を温度23℃、湿度50%で24時間処理
した後、アイゾツト衝撃試験a(東洋製R@製)にて衝
撃強さ(IIQD)を測定した。衝撃強さが高い程耐衝
撃性の優れることを表わず。
(5) After drying the pellets used for evaluating the physical properties and fluidity of the molded plate at 80°C for 3 hours, the pellets were molded using an injection molding machine at a cylinder temperature of 230°C.
64 cities x 12.7 strokes x 3.18mm and 6411+n
Each test piece was formed into an impact test piece of X6.351+111 between Xt2.7 and a notch of 0.250111R. After treating this test piece at a temperature of 23° C. and a humidity of 50% for 24 hours, the impact strength (IIQD) was measured using an Izod impact test a (manufactured by Toyo R@). Higher impact strength does not indicate better impact resistance.

f61  難燃性 流動性の評価に用いたペレットを80℃で3時間乾燥し
た後、射出成形機を用いてシリンダー温度230°Cで
152止X 12.7ii X 1.59鴎、152市
X12.7間X3.18市及び152 ms+ X 1
2.7aun X 6.35間の試験片にそれぞれ成形
し、アンダーライターズラボラトリーの5LlbjeC
t 94に従って燃焼試験を実施した。
After drying the pellets used for the evaluation of f61 flame retardancy and fluidity at 80°C for 3 hours, they were molded using an injection molding machine at a cylinder temperature of 230°C. 7 days x 3.18 days and 152 ms+ x 1
Each was molded into a test piece between 2.7aun
Combustion tests were carried out according to T 94.

実施例1 ホスゲン吹込管、温度計及び撹拌機をとりつけた2!三
ツロフラスコに、TBA106.6 ir (0,19
6モル)とBPA9.12 (0,040モル)を溶解
した4、37%NaOH水溶液398 ml (NaO
H0,456モル)と塩化メチレン684 mlと共に
仕込んで溶解し、撹拌下ホスゲン62.4t (0,6
3モル)と48,5%NaOH水溶液59.0mlを2
0〜27°C″′C−P旧1.0〜12.0に保つよう
に67分を要して加えホスゲン化反応させた。実際の反
応系内の温度及びPHは表1に示す通りであった。
Example 1 2! equipped with a phosgene blowing tube, thermometer and stirrer! Add TBA106.6 ir (0,19
6 mol) and 398 ml of 4,37% NaOH aqueous solution (NaO
684 ml of methylene chloride and 62.4 t of phosgene (0.6 mol) were added under stirring.
3 mol) and 59.0 ml of 48.5% NaOH aqueous solution
It took 67 minutes to maintain the temperature between 0 and 27°C''C-P 1.0 and 12.0 to carry out the phosgenation reaction.The actual temperature and pH in the reaction system are as shown in Table 1. Met.

ホスゲン化終了後、触媒としてトリエチルアミン0.6
2m1 (0,0045モル)加えて5分間撹拌し、次
いでTBP 78.1g (0,236モル)を溶解し
た7、6%NaOH水7!gfi410mlと共にトリ
エチルアミン1.24011(0,0089モル)を加
えて30〜36℃に保つように3時間撹拌下反応させた
。実際の反応温度は表1に示す通りであった0反応終了
後、静置して水層と塩化メチレン層に分離し、水層の溶
存モノマー濃度から求めた反応収率は99.9%であっ
た。
After completion of phosgenation, 0.6% triethylamine was added as a catalyst.
2 ml (0,0045 mol) was added and stirred for 5 minutes, and then 7.6% NaOH water in which 78.1 g (0,236 mol) of TBP was dissolved was added. 1.24011 (0,0089 mol) of triethylamine was added together with 410 ml of gfi, and the mixture was reacted with stirring for 3 hours while maintaining the temperature at 30 to 36°C. The actual reaction temperature was as shown in Table 1. After the reaction was completed, it was left to stand and separated into an aqueous layer and a methylene chloride layer, and the reaction yield determined from the dissolved monomer concentration in the aqueous layer was 99.9%. there were.

この反応終了時の塩化メチレン層を無機塩類及びアミン
がなくなるまで酸洗浄及び水洗後場化メチレンを除去し
た。得られたカーボネート型難燃荊ノηsoハo、01
7 、 n、o、LL172〜180℃テ1> ッf、
: 。
At the end of this reaction, the methylene chloride layer was washed with acid and water until the inorganic salts and amines were removed, and then the methylene chloride layer was removed. The obtained carbonate-type flame-retardant material ηsohao, 01
7, n, o, LL172~180℃Te1>f,
:.

得られたカーボネート型難燃剤を使用して前記の条件で
試験片を成形し、物性試験を行った。結果は表1に示し
た。
Using the obtained carbonate type flame retardant, a test piece was molded under the above conditions and a physical property test was conducted. The results are shown in Table 1.

実施例2 実施例1においてBPへの使用量を4.56r fo、
020モル)にし、BPAと18^を溶解する4、37
%NaOH水溶液の使用量を365m1にし、ホスゲン
吹き込み時に加える48.5%Na0fl水溶液の使用
量を54.6mlに変更すする以外は実施例1と同様に
反応させてカーボネート型難燃剤を得た。収率は99.
8%、ηspは0.015 、11.11.は166〜
172℃であった。このものをABSに練り込んだもの
の物性は表1に示すとおりであった。
Example 2 In Example 1, the amount used for BP was 4.56rfo,
020 mol) and dissolve BPA and 18^4,37
A carbonate-type flame retardant was obtained by carrying out the reaction in the same manner as in Example 1, except that the amount of the 48.5% Na0fl aqueous solution used during phosgene injection was changed to 54.6 ml. Yield is 99.
8%, ηsp is 0.015, 11.11. is 166~
The temperature was 172°C. The physical properties of this material mixed into ABS were as shown in Table 1.

実施例3 実施例1においてBPAの使用量を18゜01gf0.
079モル)にし、BPAとTB^を溶解する4、37
%N a OH水溶液の使用量を464 mlにし、ホ
スゲンと同時に滴下する48.5%Na0tt水溶液の
量を63.5011とする以外は実施例1と同様に反応
させてカーボネート型難燃剤を得な、収率は99.7%
、ηsoは0.021 。
Example 3 In Example 1, the amount of BPA used was changed to 18°01gf0.
079 mol) and dissolve BPA and TB^4,37
A carbonate-type flame retardant was obtained by carrying out the reaction in the same manner as in Example 1, except that the amount of the %NaOH aqueous solution used was 464 ml, and the amount of the 48.5% Na0tt aqueous solution added dropwise at the same time as phosgene was changed to 63.5011. , yield is 99.7%
, ηso is 0.021.

1、 p、は175〜183’Cであった。このものを
八3Sに練り込んだものの物性は表1に示すとおりであ
った。
1, p, was 175-183'C. The physical properties of this product mixed into 83S were as shown in Table 1.

比較例1 実施例1で用いた装置に、TBA103.9. (0,
191モル)とBPA 14.61r(0,064モル
)を、6.2%Naart水溶1385.3 ml (
Na0IIO,638モル)と塩化メチレン445m1
と共に仕込んで溶解し、撹拌下ホスゲ755.4t (
0,56モル)と48.5%N a OH水溶i43.
7o1を20〜27℃を保つように67分を要して滴下
してホスゲン化反応させた。実際の反応系内の温度及び
Pl+は表1に示す通りであった。
Comparative Example 1 TBA103.9. (0,
191 mol) and BPA 14.61r (0,064 mol) in 1385.3 ml of 6.2% Naart aqueous solution (
Na0IIO, 638 mol) and methylene chloride 445 ml
Add 755.4 tons of phosge (
0.56 mol) and 48.5% NaOH in water i43.
7o1 was added dropwise over 67 minutes while maintaining the temperature at 20 to 27°C to cause a phosgenation reaction. The actual temperature and Pl+ in the reaction system were as shown in Table 1.

ホスゲン化終了後、触媒としてトリエチルアミン1.5
 a+1 (0,011モル)を加えて10分間撹拌し
、その後TOP 42.Or (0,t27モル)を溶
解した7、6%Na叶水溶滴水溶液221共にトリエチ
ルアミン0.56ml (0,004モル)を加えて3
0〜36°Cに保つように3時間撹拌下反応させた。実
際の反応温度は表1に示す通りであった0反応終了後、
実線例1と同様に処理してカーボネート型難燃剤を得た
0反応収率は96.4%、ηspは0.033 、 l
′i、p、は202〜214℃であった。このものを実
施例1と同様にABSに練り込んだものの物性を表1に
示した。
After completion of phosgenation, 1.5% of triethylamine was added as a catalyst.
Add a+1 (0,011 mol) and stir for 10 minutes, then TOP 42. Add 0.56 ml (0,004 mol) of triethylamine to the 7.6% Na leaf droplet aqueous solution 221 in which Or (0.t27 mol) was dissolved.
The reaction was carried out under stirring for 3 hours while maintaining the temperature at 0 to 36°C. The actual reaction temperature was as shown in Table 1. After the completion of the reaction,
A carbonate-type flame retardant was obtained by processing in the same manner as in Solid Line Example 1. The reaction yield was 96.4%, ηsp was 0.033, l
'i, p, were 202-214°C. This material was kneaded into ABS in the same manner as in Example 1, and the physical properties are shown in Table 1.

比較例4 実施例1においてホスゲン化反応温度を28〜30℃に
なるようにする以外は実施例1と同様にしてカーボネー
ト型難燃剤を得た0反応収率は85.5%と悪く、且つ
ηspが0.025 と高くなった。このもののABS
II)I脂への練り込みテストでは表1に示す如く表面
性がやや悪かった。
Comparative Example 4 A carbonate-type flame retardant was obtained in the same manner as in Example 1 except that the phosgenation reaction temperature was changed to 28 to 30°C.The zero reaction yield was poor at 85.5%, and ηsp was as high as 0.025. ABS of this thing
II) In the kneading test into I fat, the surface properties were somewhat poor as shown in Table 1.

比較例2 実施例1においてホスゲンと同時に滴下する48.5%
t4aOH水溶液の1を61.2+nlとする以外は実
施例1と同様に反応させた。得られたカーボネート型難
燃剤の収率は65%と低く、未反応モノマーが多く残存
した。
Comparative Example 2 48.5% added simultaneously with phosgene in Example 1
The reaction was carried out in the same manner as in Example 1 except that 1 of the t4aOH aqueous solution was changed to 61.2+nl. The yield of the carbonate flame retardant obtained was as low as 65%, and a large amount of unreacted monomer remained.

比較例3 実施例1においてホスゲン化時の温度を10〜18℃と
低く押えるようにする以外は実施例1と同様にしてカー
ボネート型難燃剤を得た。収率は76%と低く、未反応
モノマーが多く残存した。
Comparative Example 3 A carbonate-type flame retardant was obtained in the same manner as in Example 1 except that the temperature during phosgenation was kept as low as 10 to 18°C. The yield was as low as 76%, and a large amount of unreacted monomer remained.

比較例5 実施例1におけるホスゲン化反応後の反応温度を23〜
27°Cになるようにする以外は実施例1と同様にして
カーボネート型難燃剤を得な0反応収率は86%と急く
、未反応モノマーが多く残存した。
Comparative Example 5 The reaction temperature after the phosgenation reaction in Example 1 was set to 23~
A carbonate type flame retardant was obtained in the same manner as in Example 1, except that the temperature was adjusted to 27°C.The reaction yield was rapid at 86%, and a large amount of unreacted monomer remained.

比較例6 実施例1に用いた装置に、rBA115.3g(0,2
12モルンと8PA9.8f(0,043モル)を、3
.5%NaOH水洛液779.1 ml (NaOH0
,709モル)と塩化メチレン442.2011と共に
仕込んで溶解し、撹拌下ホスゲン61.4. (0,6
2モル)と48.5%NaOH水溶i48.7+nlを
20〜27℃でPHを9.0〜11.0の範囲に維持す
るように65分を要して滴下した。実際の反応系内の温
度及びPllは表1に示す通りであった。Pllが低い
ため反応中少量のホスゲンか系外に洩れ出な。
Comparative Example 6 Into the apparatus used in Example 1, 115.3 g of rBA (0.2
12 mol and 8PA9.8f (0,043 mol), 3
.. 779.1 ml of 5% NaOH aqueous solution (NaOH0
, 709 mol) and methylene chloride (442.2011 mol) and dissolved therein, and with stirring 61.4 mol of phosgene. (0,6
2 mol) and 48.7+nl of 48.5% NaOH aqueous solution were added dropwise over 65 minutes at 20 to 27°C while maintaining the pH in the range of 9.0 to 11.0. The actual temperature and Pll in the reaction system were as shown in Table 1. Because Pll is low, a small amount of phosgene leaks out of the system during the reaction.

ホスゲン化終了後トリエチルアミン0.6II+1(0
,0043モル)を加えて5分間撹拌し、その後TBP
 70.2 g(0,212モル)を溶解した7、6%
N a OH水溶液369 mlと共にトリエチルアミ
ン1.2m1(0,0087モル)を加えて30〜36
℃になるように3時間撹拌下反応させた。実際の反応温
度は表1に示す通りであった0反応終了後、実施例1と
同様に処理してカーボネート型難燃剤を得た0反応収率
は62.5%と著しく低く、実用性はなかった。
After completion of phosgenation, triethylamine 0.6II+1(0
,0043 mol) and stirred for 5 minutes, then TBP
7.6% dissolved in 70.2 g (0,212 mol)
Add 1.2 ml (0,0087 mol) of triethylamine together with 369 ml of NaOH aqueous solution to make 30-36
The reaction was carried out under stirring for 3 hours so that the temperature reached ℃. The actual reaction temperature was as shown in Table 1. After the completion of the 0 reaction, a carbonate type flame retardant was obtained by processing in the same manner as in Example 1. The 0 reaction yield was extremely low at 62.5%, making it impractical. There wasn't.

Claims (1)

【特許請求の範囲】[Claims] ハロゲン置換2価フェノール1モルとハロゲン非置換2
価フェノール0.1〜0.5モルとの混合物に溶媒の存
在下ホスゲンを反応させてカーボネート型難燃剤を製造
するに当り、ホスゲンの使用量を該2価フェノールの全
量に対して2.2・〜3.0倍モルとし、反応系のPH
11〜12、温度20〜27℃でホスゲン化反応させ、
次いで該2価フェノールの全量に対して0.5〜1.5
倍モルの1価フェノールと触媒の存在下PH12.5以
上、温度30〜36℃で反応を完結することを特徴とす
るカーボネート型難燃剤の製造法。
1 mol of halogen-substituted dihydric phenol and 2 non-halogen-substituted phenols
In producing a carbonate flame retardant by reacting a mixture of 0.1 to 0.5 mol of dihydric phenol with phosgene in the presence of a solvent, the amount of phosgene used is 2.2% of the total amount of the dihydric phenol.・~3.0 times the molar value, and the pH of the reaction system
11-12, phosgenation reaction at a temperature of 20-27°C,
Then, 0.5 to 1.5 based on the total amount of the dihydric phenol.
A method for producing a carbonate-type flame retardant, characterized in that the reaction is completed in the presence of twice the mole of monohydric phenol and a catalyst at a pH of 12.5 or higher and a temperature of 30 to 36°C.
JP29952388A 1988-11-29 1988-11-29 Method for producing carbonate type flame retardant Expired - Lifetime JPH0627189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29952388A JPH0627189B2 (en) 1988-11-29 1988-11-29 Method for producing carbonate type flame retardant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29952388A JPH0627189B2 (en) 1988-11-29 1988-11-29 Method for producing carbonate type flame retardant

Publications (2)

Publication Number Publication Date
JPH02147627A true JPH02147627A (en) 1990-06-06
JPH0627189B2 JPH0627189B2 (en) 1994-04-13

Family

ID=17873695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29952388A Expired - Lifetime JPH0627189B2 (en) 1988-11-29 1988-11-29 Method for producing carbonate type flame retardant

Country Status (1)

Country Link
JP (1) JPH0627189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157737A (en) * 1992-11-25 1994-06-07 Teijin Chem Ltd Production of carbonate-type flame retardant
US5426170A (en) * 1992-12-02 1995-06-20 Mitsui Toatsu Chemicals, Inc. Method for preparing an aromatic polycarbonate
JPH08109252A (en) * 1994-10-12 1996-04-30 Teijin Chem Ltd Method for isolating solid polycarbonate
JP2011219596A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Method for producing carbonate type flame retardant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157737A (en) * 1992-11-25 1994-06-07 Teijin Chem Ltd Production of carbonate-type flame retardant
US5426170A (en) * 1992-12-02 1995-06-20 Mitsui Toatsu Chemicals, Inc. Method for preparing an aromatic polycarbonate
JPH08109252A (en) * 1994-10-12 1996-04-30 Teijin Chem Ltd Method for isolating solid polycarbonate
JP2011219596A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Method for producing carbonate type flame retardant

Also Published As

Publication number Publication date
JPH0627189B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
GB1592724A (en) Polycarbonate optical lenses
JPS6051499B2 (en) Method for recovering high quality polycarbonate from polycarbonate scrap
SU776564A3 (en) Method of preparing aromatic polyformals
KR100561337B1 (en) Method for preparing high molecular weight polycarbonate
KR20100122080A (en) Alkylphenol for adjusting the molecular weight, and polycarbonate compositions having improved properties
US3733304A (en) Aryl sulfate polymers and methods for their production
JPH02147627A (en) Preparation of carbonate type flame-retardant
JPS638969B2 (en)
CA1171198A (en) Halogen-containing polycarbonate resin and process for producing same
CA1152532A (en) Polycarbonates having sulfur containing phenolic diols incorporated therein
JPH06116382A (en) Non-rigid polycarbonate resin
JP2968402B2 (en) Manufacturing method of carbonate type flame retardant
EP0302447A1 (en) Polycarbonate and process for production thereof
AU641468B2 (en) Halogenated copolycarbonates having improved end group selectivity and resistance to degradation
JP3687690B2 (en) Polymer type flame retardant and resin composition
JPS59159823A (en) Heat-resistant aromatic polyester sulfone and its production
KR940005872B1 (en) Novel polycarbonate resins process for production of said resin and compositions containing such resins
KR20180001397A (en) Thermoplastic copolymer resin having excellent heat resistance and transparency and method for preparing the same
US4918155A (en) Process for production of polycarbonate
NO174812B (en) High molecular weight thermoplastic branched polycarbonates with flame-retardant properties, and halogenated macrocyclic compounds for their preparation
JPS6021691B2 (en) Method for producing halogen-containing polycarbonate resin
EP1035151A1 (en) Branched polycarbonate resin
JPS60166322A (en) Material for optical device
KR101630907B1 (en) Phenyl carboxylic acid capping polyoxyalkylene monomer, and method for preparing polycarbonate copolymer with improved optical properties using thereof
KR101096470B1 (en) Polycarbonate resin